1
|
Coleman CM, Ferreira D. Oligosaccharides and Complex Carbohydrates: A New Paradigm for Cranberry Bioactivity. Molecules 2020; 25:E881. [PMID: 32079271 PMCID: PMC7070526 DOI: 10.3390/molecules25040881] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cranberry is a well-known functional food, but the compounds directly responsible for many of its reported health benefits remain unidentified. Complex carbohydrates, specifically xyloglucan and pectic oligosaccharides, are the newest recognized class of biologically active compounds identified in cranberry materials. Cranberry oligosaccharides have shown similar biological properties as other dietary oligosaccharides, including effects on bacterial adhesion, biofilm formation, and microbial growth. Immunomodulatory and anti-inflammatory activity has also been observed. Oligosaccharides may therefore be significant contributors to many of the health benefits associated with cranberry products. Soluble oligosaccharides are present at relatively high concentrations (~20% w/w or greater) in many cranberry materials, and yet their possible contributions to biological activity have remained unrecognized. This is partly due to the inherent difficulty of detecting these compounds without intentionally seeking them. Inconsistencies in product descriptions and terminology have led to additional confusion regarding cranberry product composition and the possible presence of oligosaccharides. This review will present our current understanding of cranberry oligosaccharides and will discuss their occurrence, structures, ADME, biological properties, and possible prebiotic effects for both gut and urinary tract microbiota. Our hope is that future investigators will consider these compounds as possible significant contributors to the observed biological effects of cranberry.
Collapse
Affiliation(s)
- Christina M. Coleman
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | |
Collapse
|
2
|
Feucherolles M, Poppert S, Utzinger J, Becker SL. MALDI-TOF mass spectrometry as a diagnostic tool in human and veterinary helminthology: a systematic review. Parasit Vectors 2019; 12:245. [PMID: 31101120 PMCID: PMC6525464 DOI: 10.1186/s13071-019-3493-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/06/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has become a widely used technique for the rapid and accurate identification of bacteria, mycobacteria and certain fungal pathogens in the clinical microbiology laboratory. Thus far, only few attempts have been made to apply the technique in clinical parasitology, particularly regarding helminth identification. METHODS We systematically reviewed the scientific literature on studies pertaining to MALDI-TOF MS as a diagnostic technique for helminths (cestodes, nematodes and trematodes) of medical and veterinary importance. Readily available electronic databases (i.e. PubMed/MEDLINE, ScienceDirect, Cochrane Library, Web of Science and Google Scholar) were searched from inception to 10 October 2018, without restriction on year of publication or language. The titles and abstracts of studies were screened for eligibility by two independent reviewers. Relevant articles were read in full and included in the systematic review. RESULTS A total of 84 peer-reviewed articles were considered for the final analysis. Most papers reported on the application of MALDI-TOF for the study of Caenorhabditis elegans, and the technique was primarily used for identification of specific proteins rather than entire pathogens. Since 2015, a small number of studies documented the successful use of MALDI-TOF MS for species-specific identification of nematodes of human and veterinary importance, such as Trichinella spp. and Dirofilaria spp. However, the quality of available data and the number of examined helminth samples was low. CONCLUSIONS Data on the use of MALDI-TOF MS for the diagnosis of helminths are scarce, but recent evidence suggests a potential role for a reliable identification of nematodes. Future research should explore the diagnostic accuracy of MALDI-TOF MS for identification of (i) adult helminths, larvae and eggs shed in faecal samples; and (ii) helminth-related proteins that are detectable in serum or body fluids of infected individuals.
Collapse
Affiliation(s)
- Maureen Feucherolles
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation, Belvaux, Luxembourg
| | - Sven Poppert
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany.
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Abstract
The investigation of the glycan repertoire of several organisms has revealed a wide variation in terms of structures and abundance of glycan moieties. Among the parasites, it is possible to observe different sets of glycoconjugates across taxa and developmental stages within a species. The presence of distinct glycoconjugates throughout the life cycle of a parasite could relate to the ability of that organism to adapt and survive in different hosts and environments. Carbohydrates on the surface, and in excretory-secretory products of parasites, play essential roles in host-parasite interactions. Carbohydrate portions of complex molecules of parasites stimulate and modulate host immune responses, mainly through interactions with specific receptors on the surface of dendritic cells, leading to the generation of a pattern of response that may benefit parasite survival. Available data reviewed here also show the frequent aspect of parasite immunomodulation of mammalian responses through specific glycan interactions, which ultimately makes these molecules promising in the fields of diagnostics and vaccinology.
Collapse
|
4
|
Advanced LC-MS Methods for N-Glycan Characterization. ADVANCES IN THE USE OF LIQUID CHROMATOGRAPHY MASS SPECTROMETRY (LC-MS) - INSTRUMENTATION DEVELOPMENTS AND APPLICATIONS 2018. [DOI: 10.1016/bs.coac.2017.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
5
|
Veillon L, Huang Y, Peng W, Dong X, Cho BG, Mechref Y. Characterization of isomeric glycan structures by LC-MS/MS. Electrophoresis 2017; 38:2100-2114. [PMID: 28370073 PMCID: PMC5581235 DOI: 10.1002/elps.201700042] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/21/2017] [Accepted: 03/12/2017] [Indexed: 12/12/2022]
Abstract
The characterization of glycosylation is critical for obtaining a comprehensive view of the regulation and functions of glycoproteins of interest. Due to the complex nature of oligosaccharides, stemming from variable compositions and linkages, and ion suppression effects, the chromatographic separation of glycans, including isomeric structures, is necessary for exhaustive characterization by MS. This review introduces the fundamental principles underlying the techniques in LC utilized by modern day glycomics researchers. Recent advances in porous graphitized carbon, reverse phase, ion exchange, and hydrophilic interaction LC utilized in conjunction with MS, for the characterization of protein glycosylation, are described with an emphasis on methods capable of resolving isomeric glycan structures.
Collapse
Affiliation(s)
- Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | | | | | | | - Byeong G. Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| |
Collapse
|
6
|
Hokke CH, van Diepen A. Helminth glycomics - glycan repertoires and host-parasite interactions. Mol Biochem Parasitol 2016; 215:47-57. [PMID: 27939587 DOI: 10.1016/j.molbiopara.2016.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 01/12/2023]
Abstract
Glycoproteins and glycolipids of parasitic helminths play important roles in biology and host-parasite interaction. This review discusses recent helminth glycomics studies that have been expanding our insights into the glycan repertoire of helminths. Structural data are integrated with biological and immunological observations to highlight how glycomics advances our understanding of the critical roles that glycans and glycan motifs play in helminth infection biology. Prospects and challenges in helminth glycomics and glycobiology are discussed.
Collapse
Affiliation(s)
- Cornelis H Hokke
- Parasite Glycobiology Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Angela van Diepen
- Parasite Glycobiology Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Reversed-phase separation methods for glycan analysis. Anal Bioanal Chem 2016; 409:359-378. [PMID: 27888305 PMCID: PMC5203856 DOI: 10.1007/s00216-016-0073-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022]
Abstract
Reversed-phase chromatography is a method that is often used for glycan separation. For this, glycans are often derivatized with a hydrophobic tag to achieve retention on hydrophobic stationary phases. The separation and elution order of glycans in reversed-phase chromatography is highly dependent on the hydrophobicity of the tag and the contribution of the glycan itself to the retention. The contribution of the different monosaccharides to the retention strongly depends on the position and linkage, and isomer separation may be achieved. The influence of sialic acids and fucoses on the retention of glycans is still incompletely understood and deserves further study. Analysis of complex samples may come with incomplete separation of glycan species, thereby complicating reversed-phase chromatography with fluorescence or UV detection, whereas coupling with mass spectrometry detection allows the resolution of complex mixtures. Depending on the column properties, eluents, and run time, separation of isomeric and isobaric structures can be accomplished with reversed-phase chromatography. Alternatively, porous graphitized carbon chromatography and hydrophilic interaction liquid chromatography are also able to separate isomeric and isobaric structures, generally without the necessity of glycan labeling. Hydrophilic interaction liquid chromatography, porous graphitized carbon chromatography, and reversed-phase chromatography all serve different research purposes and thus can be used for different research questions. A great advantage of reversed-phase chromatography is its broad distribution as it is used in virtually every bioanalytical research laboratory, making it an attracting platform for glycan analysis. Glycan isomer separation by reversed phase liquid chromatography ![]()
Collapse
|
8
|
Smit CH, Homann A, van Hensbergen VP, Schramm G, Haas H, van Diepen A, Hokke CH. Surface expression patterns of defined glycan antigens change duringSchistosoma mansonicercarial transformation and development of schistosomula. Glycobiology 2015; 25:1465-79. [DOI: 10.1093/glycob/cwv066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/12/2015] [Indexed: 01/28/2023] Open
|
9
|
Wang S, Hu W. Development of "-omics" research in Schistosoma spp. and -omics-based new diagnostic tools for schistosomiasis. Front Microbiol 2014; 5:313. [PMID: 25018752 PMCID: PMC4072072 DOI: 10.3389/fmicb.2014.00313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Indexed: 12/02/2022] Open
Abstract
Schistosomiasis, caused by dioecious flatworms in the genus Schistosoma, is torturing people from many developing countries nowadays and frequently leads to severe morbidity and mortality of the patients. Praziquantel based chemotherapy and morbidity control for this disease adopted currently necessitate viable and efficient diagnostic technologies. Fortunately, those “-omics” researches, which rely on high-throughput experimental technologies to produce massive amounts of informative data, have substantially contributed to the exploitation and innovation of diagnostic tools of schistosomiasis. In its first section, this review provides a concise conclusion on the progresses pertaining to schistosomal “-omics” researches to date, followed by a comprehensive section on the diagnostic methods of schistosomiasis, especially those innovative ones based on the detection of antibodies, antigens, nucleic acids, and metabolites with a focus on those achievements inspired by “-omics” researches. Finally, suggestions about the design of future diagnostic tools of schistosomiasis are proposed, in order to better harness those data produced by “-omics” studies.
Collapse
Affiliation(s)
- Shuqi Wang
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University Shanghai, China
| | - Wei Hu
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University Shanghai, China ; Key Laboratory of Parasite and Vector Biology of Ministry of Health, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention Shanghai, China
| |
Collapse
|
10
|
Prasanphanich NS, Mickum ML, Heimburg-Molinaro J, Cummings RD. Glycoconjugates in host-helminth interactions. Front Immunol 2013; 4:240. [PMID: 24009607 PMCID: PMC3755266 DOI: 10.3389/fimmu.2013.00240] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/03/2013] [Indexed: 12/20/2022] Open
Abstract
Helminths are multicellular parasitic worms that comprise a major class of human pathogens and cause an immense amount of suffering worldwide. Helminths possess an abundance of complex and unique glycoconjugates that interact with both the innate and adaptive arms of immunity in definitive and intermediate hosts. These glycoconjugates represent a major untapped reservoir of immunomodulatory compounds, which have the potential to treat autoimmune and inflammatory disorders, and antigenic glycans, which could be exploited as vaccines and diagnostics. This review will survey current knowledge of the interactions between helminth glycans and host immunity and highlight the gaps in our understanding which are relevant to advancing therapeutics, vaccine development, and diagnostics.
Collapse
Affiliation(s)
- Nina Salinger Prasanphanich
- Department of Biochemistry, Glycomics Center of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | - Megan L. Mickum
- Department of Biochemistry, Glycomics Center of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | - Jamie Heimburg-Molinaro
- Department of Biochemistry, Glycomics Center of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D. Cummings
- Department of Biochemistry, Glycomics Center of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
11
|
Mandalasi M, Dorabawila N, Smith DF, Heimburg-Molinaro J, Cummings RD, Nyame AK. Development and characterization of a specific IgG monoclonal antibody toward the Lewis x antigen using splenocytes of Schistosoma mansoni-infected mice. Glycobiology 2013; 23:877-92. [PMID: 23542315 PMCID: PMC3671776 DOI: 10.1093/glycob/cwt025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 03/13/2013] [Accepted: 03/26/2013] [Indexed: 12/11/2022] Open
Abstract
The parasitic blood fluke Schistosoma mansoni synthesizes immunogenic glycans containing the human Lewis x antigen (Le(x); Galactose-β1-4(Fucα1-3)N-acetylglucosamine-β-R, also called CD15), but the biological role(s) of this antigen in the parasites and in humans is poorly understood. To develop IgG-based monoclonal antibodies (mAbs) specific for Le(x), we harvested splenocytes from S. mansoni-infected Swiss Webster mice at Week 10 postinfection, when peak IgG responses to glycan antigens occur, and generated a panel of hybridomas secreting anti-glycan IgG that recognize periodate-sensitive epitopes in soluble egg antigens of the parasites, and also recognizes a neoglycoprotein containing a pentasaccharide with the Le(x) sequence. One murine mAb, an IgG3 designated F8A1.1, bound to glycoproteins and glycolipids from schistosome adults and human promyelocytic leukemic HL-60 cells that express Le(x) antigens, as assessed by a wide variety of approaches including immunofluorescence staining, confocal microscopy, flow cytometry and western blotting, as well as overlay assays of glycolipids after thin-layer chromatography. In contrast, F8A1.1 bound weakly to cercariae, 3-h schistosomula and human Jurkat cells. We also directly compared the glycan specificity of F8A1.1 with commercially available anti-CD15 IgG1 (clone W6D3) using a defined glycan microarray. The results demonstrated that F8A1.1 recognized glycans expressing Le(x) epitopes in a terminal nonreducing position, whereas anti-CD15 bound to glycans with multiple repeats of Le(x) epitopes, but not to glycans with a single, terminal Le(x) epitope. Our results show that F8A1.1 recognizes terminal Le(x) epitopes and can be used for identification, immunolocalization, immunoprecipitation and purification of Le(x)-containing glycoconjugates from schistosomes and mammalian cells.
Collapse
Affiliation(s)
- Msano Mandalasi
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Nelum Dorabawila
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - David F Smith
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd #4001, Atlanta, GA 30322, USA
| | - Jamie Heimburg-Molinaro
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd #4001, Atlanta, GA 30322, USA
| | - Richard D Cummings
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd #4001, Atlanta, GA 30322, USA
| | - A Kwame Nyame
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| |
Collapse
|
12
|
Tundup S, Srivastava L, Harn Jr. DA. Polarization of host immune responses by helminth-expressed glycans. Ann N Y Acad Sci 2012; 1253:E1-E13. [DOI: 10.1111/j.1749-6632.2012.06618.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
14
|
Lei JH, Guan F, Xu H, Chen L, Su BT, Zhou Y, Wang T, Li YL, Liu WQ. Application of an immunomagnetic bead ELISA based on IgY for detection of circulating antigen in urine of mice infected with Schistosoma japonicum. Vet Parasitol 2011; 187:196-202. [PMID: 22336770 DOI: 10.1016/j.vetpar.2011.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 12/01/2011] [Accepted: 12/16/2011] [Indexed: 11/25/2022]
Abstract
Schistosomiasis is an important zoonosis and some livestock especially bovine and swine play a crucial role on the disease transmission in endemic areas. The gold standard for animal Schistosoma japonicum infection is fecal examination although indirect agglutination assay (IHA) is so far mostly used in field survey and laboratory examination. Lack of sensitivity, poor practicality and high false positivity limit the use of those methods for routine veterinary detection as well as human diagnosis. A novel immunomagnetic bead ELISA based on IgY (egg yolk immunoglobulin) was developed for detection of circulating schistosomal antigen (CSA) in sera of hosts infected with S. japonicum. To assess the application of this method for diagnosis of domestic animal schistosomiasis with urine sample, the immunomagnetic bead ELISA based on IgY (IgY-IMB-ELISA) was employed in the present study to detect CSA in urine of murine schistosomiasis with either light (10 S. japonicum cercariae infection per mouse) or heavy infection (30 S. japonicum cercariae infection per mouse). The results showed that the CSA levels in urine of heavily and lightly infected mice reached a peak in 8 and 10 weeks after infection, respectively, remaining at a constant plateau in both groups by the end of the experiment (14 weeks after infection). The CSA level in urine of heavily infected mice was much higher than that of lightly infected mice from 8 to 14 weeks after infection. The effect of praziquantel treatment on the CSA level in urine of heavily infected mice was also investigated. It was found that the CSA level in urine of heavily infected mice with treatment was much lower than that of untreated mice at 4 weeks post-treatment, although still higher than that of control mice, and then gradually descended to the background level by 8 weeks after treatment. Our findings suggested that the IgY-IMB-ELISA may be an efficient and practical tool in non-invasive diagnosis of schistosome infection based on antigen detection, and evaluation of the efficacy of chemotherapy as well.
Collapse
Affiliation(s)
- Jia-hui Lei
- Department of Parasitology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li JV, Saric J, Wang Y, Keiser J, Utzinger J, Holmes E. Chemometric analysis of biofluids from mice experimentally infected with Schistosoma mansoni. Parasit Vectors 2011; 4:179. [PMID: 21929782 PMCID: PMC3183007 DOI: 10.1186/1756-3305-4-179] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/19/2011] [Indexed: 12/13/2022] Open
Abstract
Background The urinary metabolic fingerprint of a patent Schistosoma mansoni infection in the mouse has been characterized using spectroscopic methods. However, the temporal dynamics of metabolic alterations have not been studied at the systems level. Here, we investigated the systems metabolic changes in the mouse upon S. mansoni infection by modeling the sequence of metabolic events in urine, plasma and faecal water. Methods Ten female NMRI mice, aged 5 weeks, were infected with 80 S. mansoni cercariae each. Ten age- and sex-matched mice remained uninfected and served as a control group. Urine, plasma and faecal samples were collected 1 day before, and on eight time points until day 73 post-infection. Biofluid samples were subjected to 1H nuclear magnetic resonance (NMR) spectroscopy and multivariate statistical analyses. Results Differences between S. mansoni-infected and uninfected control mice were found from day 41 onwards. One of the key metabolic signatures in urine and faecal extracts was an alteration in several gut bacteria-related metabolites, whereas the plasma reflected S. mansoni infection by changes in metabolites related to energy homeostasis, such as relatively higher levels of lipids and decreased levels of glucose. We identified 12 urinary biomarkers of S. mansoni infection, among which hippurate, phenylacetylglycine (PAG) and 2-oxoadipate were particularly robust with regard to disease progression. Thirteen plasma metabolites were found to differentiate infected from control mice, with the lipid components, D-3-hydroxybutyrate and glycerophosphorylcholine showing greatest consistency. Faecal extracts were highly variable in chemical composition and therefore only five metabolites were found discriminatory of infected mice, of which 5-aminovalerate was the most stable and showed a positive correlation with urinary PAG. Conclusions The composite metabolic signature of S. mansoni in the mouse derived from perturbations in urinary, faecal and plasma composition showed a coherent response in altered energy metabolism and in gut microbial activity. Our findings provide new mechanistic insight into host-parasite interactions across different compartments and identified a set of temporally robust biomarkers of S. mansoni infection, which might assist in derivation of diagnostic assays or metrics for monitoring therapeutic response.
Collapse
Affiliation(s)
- Jia V Li
- Section of Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | | | | | | | | | | |
Collapse
|
16
|
Meevissen MHJ, Yazdanbakhsh M, Hokke CH. Schistosoma mansoni egg glycoproteins and C-type lectins of host immune cells: molecular partners that shape immune responses. Exp Parasitol 2011; 132:14-21. [PMID: 21616068 DOI: 10.1016/j.exppara.2011.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/22/2011] [Accepted: 05/10/2011] [Indexed: 01/13/2023]
Abstract
Schistosome eggs and egg-derived molecules are potent immunomodulatory agents. There is increasing evidence that the interplay between egg glycoproteins and host C-type lectins plays an important role in shaping immune responses during schistosomiasis. As most experiments in this field so far have been performed using complex protein/glycoprotein mixtures or synthetic model glycoconjugates, it is still largely unclear which individual moieties of schistosome eggs are immunologically active. In this review we will discuss molecular aspects of Schistosoma mansoni egg glycoproteins, their interactions with C-type lectins, and the relevance to schistosome egg immunobiology.
Collapse
Affiliation(s)
- Moniek H J Meevissen
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
17
|
Abstract
Both helminth infections and contact with allergens result in development of a Th2 type of immune response in the affected individual. In this context, the hygiene hypothesis suggests that reduced prevalence of parasitic infections and successful vaccination strategies are causative for an increase of allergies in industrialized countries. It is therefore of interest to study glycans and their role as immunogenic structures in both parasitic infections and allergies. In the present paper we review information on the different types of glycan structure present in proteins from plant and animal food, insect venom and helminth parasites, and their role as diagnostic markers. In addition, the application of these glycan structures as immunomodulators in novel immunotherapeutic strategies is discussed.
Collapse
|
18
|
Metabolite-biomarker investigations in the life cycle of and infection with Schistosoma. Parasitology 2010; 137:1425-35. [PMID: 20550753 DOI: 10.1017/s0031182010000545] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Schistosome infection is endemic in many Third World countries and affects an estimated 200 million individuals. Over the last few years, a number of investigations have focused on small molecule biomarkers of this infection. These studies were aimed at discovering key molecules relating to the life cycle of the parasite or deciphering metabolic change in the host during infection. In this review these studies are further divided into targeted approaches to find compounds and fingerprinting techniques i.e. metabonomics. A species-specific metabolite or group of biomarkers of the infection have yet to be discovered. For this reason a critical discussion contrasting with established diagnostic methods and future prospects are also provided.
Collapse
|
19
|
Hewitson JP, Grainger JR, Maizels RM. Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Mol Biochem Parasitol 2009; 167:1-11. [PMID: 19406170 PMCID: PMC2706953 DOI: 10.1016/j.molbiopara.2009.04.008] [Citation(s) in RCA: 540] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 04/17/2009] [Accepted: 04/21/2009] [Indexed: 11/28/2022]
Abstract
Helminths are masterful immunoregulators. A characteristic feature of helminth infection is a Th2-dominated immune response, but stimulation of immunoregulatory cell populations, such as regulatory T cells and alternatively activated macrophages, is equally common. Typically, Th1/17 immunity is blocked and productive effector responses are muted, allowing survival of the parasite in a "modified Th2" environment. Drug treatment to clear the worms reverses the immunoregulatory effects, indicating that a state of active suppression is maintained by the parasite. Hence, research has focussed on "excretory-secretory" products released by live parasites, which can interfere with every aspect of host immunity from initial recognition to end-stage effector mechanisms. In this review, we survey our knowledge of helminth secreted molecules, and summarise current understanding of the growing number of individual helminth mediators that have been shown to target key receptors or pathways in the mammalian immune system.
Collapse
Affiliation(s)
| | | | - Rick M. Maizels
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| |
Collapse
|
20
|
Sparbier K, Wenzel T, Dihazi H, Blaschke S, Müller GA, Deelder A, Flad T, Kostrzewa M. Immuno-MALDI-TOF MS: New perspectives for clinical applications of mass spectrometry. Proteomics 2009; 9:1442-50. [DOI: 10.1002/pmic.200800616] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Mass spectrometric detection of urinary oligosaccharides as markers of Schistosoma mansoni infection. Trans R Soc Trop Med Hyg 2007; 102:79-83. [PMID: 17996914 DOI: 10.1016/j.trstmh.2007.09.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 09/20/2007] [Accepted: 09/20/2007] [Indexed: 11/20/2022] Open
Abstract
Current diagnosis of schistosomiasis is still not ideal. In the present study we evaluated a targeted affinity approach using mAb 114-4D12, reactive with a unique Schistosoma mansoni-specific glycan epitope, combined with matrix-assisted laser-desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry. For nine of 11 urine samples (1ml) from Egyptian individuals with different intensities of infection, a characteristic MALDI-TOF mass spectrum was observed, representing a series of fuco-oligosaccharides that are produced by schistosome eggs. The identification of these small molecule markers may lead to a new egg-load-related assay for light infections in schistosomiasis.
Collapse
|
22
|
Hokke CH, Deelder AM, Hoffmann KF, Wuhrer M. Glycomics-driven discoveries in schistosome research. Exp Parasitol 2007; 117:275-83. [PMID: 17659278 DOI: 10.1016/j.exppara.2007.06.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 05/31/2007] [Accepted: 06/01/2007] [Indexed: 10/23/2022]
Abstract
Schistosome glycans and glycoconjugates play a prominent role in the parasite's biology, in particular in the interaction with the human host. A large amount of structural data regarding glycosylation of different schistosome life stages and glycoconjugate subsets has been collected in the last decade, but many significant gaps in our knowledge of the schistosomal glycome remain. Here we will present a concise review of the already available data guided by a selection of recently generated stage-specific glycan profiles, and discuss implications and prospects of glycomics studies of schistosomes.
Collapse
Affiliation(s)
- Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | |
Collapse
|
23
|
Hokke CH, Fitzpatrick JM, Hoffmann KF. Integrating transcriptome, proteome and glycome analyses of Schistosoma biology. Trends Parasitol 2007; 23:165-74. [PMID: 17336161 DOI: 10.1016/j.pt.2007.02.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 01/10/2007] [Accepted: 02/14/2007] [Indexed: 01/11/2023]
Abstract
Publication of the transcriptomes of Schistosoma mansoni and Schistosoma japonicum, in conjunction with the sequencing and assembly of their genomes, has generated a comprehensive picture of Schistosoma transcriptional and genomic diversity. Subsequently, researchers who study conjugal and developmental biology, tegumental composition and larval or egg, secretory and excretory products have used these data, in combination with the latest '-omics' technologies, to extend large-scale screens of the schistosome transcriptome, proteome and glycome. In this article, we review these postgenomic investigations and contend that the generated datasets provide a plethora of novel drug, vaccine and immunomodulatory targets that might be useful for developing new antischistosome agents.
Collapse
Affiliation(s)
- Cornelis H Hokke
- Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|