1
|
Escalante AA, Cepeda AS, Pacheco MA. Why Plasmodium vivax and Plasmodium falciparum are so different? A tale of two clades and their species diversities. Malar J 2022; 21:139. [PMID: 35505356 PMCID: PMC9066883 DOI: 10.1186/s12936-022-04130-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/18/2022] [Indexed: 11/29/2022] Open
Abstract
The global malaria burden sometimes obscures that the genus Plasmodium comprises diverse clades with lineages that independently gave origin to the extant human parasites. Indeed, the differences between the human malaria parasites were highlighted in the classical taxonomy by dividing them into two subgenera, the subgenus Plasmodium, which included all the human parasites but Plasmodium falciparum that was placed in its separate subgenus, Laverania. Here, the evolution of Plasmodium in primates will be discussed in terms of their species diversity and some of their distinct phenotypes, putative molecular adaptations, and host–parasite biocenosis. Thus, in addition to a current phylogeny using genome-level data, some specific molecular features will be discussed as examples of how these parasites have diverged. The two subgenera of malaria parasites found in primates, Plasmodium and Laverania, reflect extant monophyletic groups that originated in Africa. However, the subgenus Plasmodium involves species in Southeast Asia that were likely the result of adaptive radiation. Such events led to the Plasmodium vivax lineage. Although the Laverania species, including P. falciparum, has been considered to share “avian characteristics,” molecular traits that were likely in the common ancestor of primate and avian parasites are sometimes kept in the Plasmodium subgenus while being lost in Laverania. Assessing how molecular traits in the primate malaria clades originated is a fundamental science problem that will likely provide new targets for interventions. However, given that the genus Plasmodium is paraphyletic (some descendant groups are in other genera), understanding the evolution of malaria parasites will benefit from studying “non-Plasmodium” Haemosporida.
Collapse
Affiliation(s)
- Ananias A Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine [iGEM], Temple University, Philadelphia, PA, 19122-1801, USA.
| | - Axl S Cepeda
- Biology Department/Institute of Genomics and Evolutionary Medicine [iGEM], Temple University, Philadelphia, PA, 19122-1801, USA
| | - M Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine [iGEM], Temple University, Philadelphia, PA, 19122-1801, USA
| |
Collapse
|
2
|
Apicoplast phylogeny reveals the position of Plasmodium vivax basal to the Asian primate malaria parasite clade. Sci Rep 2019; 9:7274. [PMID: 31086239 PMCID: PMC6514274 DOI: 10.1038/s41598-019-43831-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/01/2019] [Indexed: 01/12/2023] Open
Abstract
The malaria parasite species, Plasmodium vivax infects not only humans, but also African apes. Human specific P. vivax has evolved from a single ancestor that originated from a parasite of African apes. Although previous studies have proposed phylogenetic trees positioning P. vivax (the common ancestor of human and African ape P. vivax) within the assemblages of Asian primate parasites, its position has not yet been robustly confirmed. We determined nearly complete apicoplast genome sequences from seven Asian primate parasites, Plasmodium cynomolgi (strains Ceylonensis and Berok), P. knowlesi P. fragile, P. fieldi, P. simiovale, P. hylobati, P. inui, and an African primate parasite, P. gonderi, that infects African guenon. Phylogenetic relationships of the Plasmodium species were analyzed using newly and previously determined apicoplast genome sequences. Multigene maximum likelihood analysis of 30 protein coding genes did not position P. vivax within the Asian primate parasite clade but positioned it basal to the clade, after the branching of an African guenon parasite, P. gonderi. The result does not contradict with the emerging notion that P. vivax phylogenetically originated from Africa. The result is also supported by phylogenetic analyses performed using massive nuclear genome data of seven primate Plasmodium species.
Collapse
|
3
|
Ruan W, Zhang LL, Feng Y, Zhang X, Chen HL, Lu QY, Yao LN, Hu W. Genetic diversity of Plasmodium Vivax revealed by the merozoite surface protein-1 icb5-6 fragment. Infect Dis Poverty 2017; 6:92. [PMID: 28578709 PMCID: PMC5458480 DOI: 10.1186/s40249-017-0302-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 04/12/2017] [Indexed: 02/04/2023] Open
Abstract
Background Plasmodium vivax remains a potential cause of morbidity and mortality for people living in its endemic areas. Understanding the genetic diversity of P. vivax from different regions is valuable for studying population dynamics and tracing the origins of parasites. The PvMSP-1 gene is highly polymorphic and has been used as a marker in many P. vivax population studies. The aim of this study was to investigate the genetic diversity of the PvMSP-1 gene icb5-6 fragment and to provide more genetic polymorphism data for further studies on P. vivax population structure and tracking of the origin of clinical cases. Methods Nested PCR and sequencing of the PvMSP-1 icb5-6 marker were performed to obtain the nucleotide sequences of 95 P. vivax isolates collected from Zhejiang province, China. To investigate the genetic diversity of PvMSP-1, the 95 nucleotide sequences of the PvMSP-1 icb5-6 fragment were genotyped and analyzed using DnaSP v5, MEGA software. Results The 95 P. vivax isolates collected from Zhejiang province were either indigenous cases or imported cases from different regions around the world. A total of 95 sequences ranging from 390 to 460 bp were obtained. The 95 sequences were genotyped into four allele-types (Sal I, Belem, R-III and R-IV) and 17 unique haplotypes. R-III and Sal I were the predominant allele-types. The haplotype diversity (Hd) and nucleotide diversity (Pi) were estimated to be 0.729 and 0.062, indicating that the PvMSP-1 icb5-6 fragment had the highest level of polymorphism due to frequent recombination processes and single nucleotide polymorphism. The values of dN/dS and Tajima’s D both suggested neutral selection for the PvMSP-1icb5-6 fragment. In addition, a rare recombinant style of R-IV type was identified. Conclusions This study presented high genetic diversity in the PvMSP-1 marker among P. vivax strains from around the world. The genetic data is valuable for expanding the polymorphism information on P. vivax, which could be helpful for further study on population dynamics and tracking the origin of P. vivax. Electronic supplementary material The online version of this article (doi:10.1186/s40249-017-0302-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Ruan
- Department of Communicable Diseases of Control and Prevention, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Ling-Ling Zhang
- Department of Communicable Diseases of Control and Prevention, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Yan Feng
- Department of Communicable Diseases of Control and Prevention, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Xuan Zhang
- Department of Communicable Diseases of Control and Prevention, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Hua-Liang Chen
- Department of Communicable Diseases of Control and Prevention, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Qiao-Yi Lu
- Department of Communicable Diseases of Control and Prevention, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Li-Nong Yao
- Department of Communicable Diseases of Control and Prevention, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China.
| | - Wei Hu
- School of Life Sciences, FuDan University, Shanghai, China.
| |
Collapse
|
4
|
López C, Yepes-Pérez Y, Hincapié-Escobar N, Díaz-Arévalo D, Patarroyo MA. What Is Known about the Immune Response Induced by Plasmodium vivax Malaria Vaccine Candidates? Front Immunol 2017; 8:126. [PMID: 28243235 PMCID: PMC5304258 DOI: 10.3389/fimmu.2017.00126] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022] Open
Abstract
Malaria caused by Plasmodium vivax continues being one of the most important infectious diseases around the world; P. vivax is the second most prevalent species and has the greatest geographic distribution. Developing an effective antimalarial vaccine is considered a relevant control strategy in the search for means of preventing the disease. Studying parasite-expressed proteins, which are essential in host cell invasion, has led to identifying the regions recognized by individuals who are naturally exposed to infection. Furthermore, immunogenicity studies have revealed that such regions can trigger a robust immune response that can inhibit sporozoite (hepatic stage) or merozoite (erythrocyte stage) invasion of a host cell and induce protection. This review provides a synthesis of the most important studies to date concerning the antigenicity and immunogenicity of both synthetic peptide and recombinant protein candidates for a vaccine against malaria produced by P. vivax.
Collapse
Affiliation(s)
- Carolina López
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yoelis Yepes-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; MSc Programme in Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Natalia Hincapié-Escobar
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC) , Bogotá , Colombia
| | - Diana Díaz-Arévalo
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
5
|
Sutton PL, Luo Z, Divis PCS, Friedrich VK, Conway DJ, Singh B, Barnwell JW, Carlton JM, Sullivan SA. Characterizing the genetic diversity of the monkey malaria parasite Plasmodium cynomolgi. INFECTION GENETICS AND EVOLUTION 2016; 40:243-252. [PMID: 26980604 DOI: 10.1016/j.meegid.2016.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 01/05/2023]
Abstract
Plasmodium cynomolgi is a malaria parasite that typically infects Asian macaque monkeys, and humans on rare occasions. P. cynomolgi serves as a model system for the human malaria parasite Plasmodium vivax, with which it shares such important biological characteristics as formation of a dormant liver stage and a preference to invade reticulocytes. While genomes of three P. cynomolgi strains have been sequenced, genetic diversity of P. cynomolgi has not been widely investigated. To address this we developed the first panel of P. cynomolgi microsatellite markers to genotype eleven P. cynomolgi laboratory strains and 18 field isolates from Sarawak, Malaysian Borneo. We found diverse genotypes among most of the laboratory strains, though two nominally different strains were found to be genetically identical. We also investigated sequence polymorphism in two erythrocyte invasion gene families, the reticulocyte binding protein and Duffy binding protein genes, in these strains. We also observed copy number variation in rbp genes.
Collapse
Affiliation(s)
- Patrick L Sutton
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States
| | - Zunping Luo
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States
| | - Paul C S Divis
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, United Kingdom; Malaria Research Centre, Faculty of Medicine and Health Sciences, University Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Volney K Friedrich
- Department of Anthropology, New York University, 38 Waverly Place, New York, NY 10003, United States
| | - David J Conway
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, United Kingdom; Malaria Research Centre, Faculty of Medicine and Health Sciences, University Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Balbir Singh
- Malaria Research Centre, Faculty of Medicine and Health Sciences, University Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - John W Barnwell
- Laboratory Research and Development Unit, Malaria Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States
| | - Steven A Sullivan
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States.
| |
Collapse
|
6
|
Guimarães LO, Wunderlich G, Alves JMP, Bueno MG, Röhe F, Catão-Dias JL, Neves A, Malafronte RS, Curado I, Domingues W, Kirchgatter K. Merozoite surface protein-1 genetic diversity in Plasmodium malariae and Plasmodium brasilianum from Brazil. BMC Infect Dis 2015; 15:529. [PMID: 26572971 PMCID: PMC4647813 DOI: 10.1186/s12879-015-1238-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/20/2015] [Indexed: 01/23/2023] Open
Abstract
Background The merozoite surface protein 1 (MSP1) gene encodes the major surface antigen of invasive forms of the Plasmodium erythrocytic stages and is considered a candidate vaccine antigen against malaria. Due to its polymorphisms, MSP1 is also useful for strain discrimination and consists of a good genetic marker. Sequence diversity in MSP1 has been analyzed in field isolates of three human parasites: P. falciparum, P. vivax, and P. ovale. However, the extent of variation in another human parasite, P. malariae, remains unknown. This parasite shows widespread, uneven distribution in tropical and subtropical regions throughout South America, Asia, and Africa. Interestingly, it is genetically indistinguishable from P. brasilianum, a parasite known to infect New World monkeys in Central and South America. Methods Specific fragments (1 to 5) covering 60 % of the MSP1 gene (mainly the putatively polymorphic regions), were amplified by PCR in isolates of P. malariae and P. brasilianum from different geographic origin and hosts. Sequencing of the PCR-amplified products or cloned PCR fragments was performed and the sequences were used to construct a phylogenetic tree by the maximum likelihood method. Data were computed to give insights into the evolutionary and phylogenetic relationships of these parasites. Results Except for fragment 4, sequences from all other fragments consisted of unpublished sequences. The most polymorphic gene region was fragment 2, and in samples where this region lacks polymorphism, all other regions are also identical. The low variability of the P. malariae msp1 sequences of these isolates and the identification of the same haplotype in those collected many years apart at different locations is compatible with a low transmission rate. We also found greater diversity among P. brasilianum isolates compared with P. malariae ones. Lastly, the sequences were segregated according to their geographic origins and hosts, showing a strong genetic and geographic structure. Conclusions Our data show that there is a low level of sequence diversity and a possible absence of allelic dimorphism of MSP1 in these parasites as opposed to other Plasmodium species. P. brasilianum strains apparently show greater divergence in comparison to P. malariae, thus P. malariae could derive from P. brasilianum, as it has been proposed. Electronic supplementary material The online version of this article (doi:10.1186/s12879-015-1238-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lilian O Guimarães
- Núcleo de Estudos em Malária, Superintendência de Controle de Endemias/Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil.
| | - Gerhard Wunderlich
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil.
| | - João M P Alves
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil.
| | - Marina G Bueno
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, 05508-270, Brazil.
| | - Fabio Röhe
- Wildlife Conservation Society, Rio de Janeiro, RJ, 22461-000, Brazil.
| | - José L Catão-Dias
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, 05508-270, Brazil.
| | - Amanda Neves
- Laboratório de Protozoologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil.
| | - Rosely S Malafronte
- Laboratório de Protozoologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil. .,Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 01246-903, Brazil.
| | - Izilda Curado
- Laboratório de Imunoepidemiologia, Superintendência de Controle de Endemias, São Paulo, SP, 01027-000, Brazil.
| | - Wilson Domingues
- Laboratório de Soroepidemiologia e Imunobiologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil.
| | - Karin Kirchgatter
- Núcleo de Estudos em Malária, Superintendência de Controle de Endemias/Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
7
|
Roy SW. The Plasmodium gaboni genome illuminates allelic dimorphism of immunologically important surface antigens in P. falciparum. INFECTION GENETICS AND EVOLUTION 2015; 36:441-449. [PMID: 26296605 DOI: 10.1016/j.meegid.2015.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/07/2015] [Accepted: 08/09/2015] [Indexed: 12/27/2022]
Abstract
In the deadly human malaria parasite Plasmodium falciparum, several major merozoite surface proteins (MSPs) show a striking pattern of allelic diversity called allelic dimorphism (AD). In AD, the vast majority of observed alleles fall into two highly divergent allelic classes, with recombinant alleles being rare or not observed, presumably due to repression by natural selection (recombination suppression, or RS). The three AD loci, merozoite surface proteins (MSPs) 1, 2, and 6, along with MSP3, which also exhibits RS among four allelic classes, can be collectively called AD/RS. The causes of AD/RS and the evolutionary history of allelic diversity at these loci remain mysterious. The few available sequences from a single closely related chimpanzee parasite, P. reichenowi, have suggested that for 3/4 loci, AD/RS is an ancient state that has been retained in P. falciparum since well before the P. falciparum-P. reichenowi ancestor. On the other hand, based on comparative sequence analysis, we recently suggested that (i) AD/RS P. falciparum loci have undergone interallelic recombination over longer evolutionary times (on the timescale of recent speciation events), and thus (ii) AD/RS may be a recent phenomenon. The recent publication of genomic sequencing efforts for P. gaboni, an outgroup to P. falciparum and P. reichenowi, allows for improved reconstruction of the evolutionary history of these loci. In this work, I report genic sequence for P. gaboni for all four AD/RS P. falciparum loci (MSP1, 2, 3, and 6). Comparison of these sequences with available P. falciparum and P. reichenowi data strengthens the evidence for interallelic recombination over the evolutionary history of these species and also strengthens the case that AD/RS at these loci is ancient. Combined with previous results, these data provide evidence that AD/RS at different loci has evolved at several different times in the evolutionary history of P. falciparum: (i) before the P. gaboni-P. falciparum divergence, for much of MSP1 and MSP3; (ii) between the P. gaboni-P. falciparum and P. reichenowi-P. falciparum divergences, for the 5' end of the AD region of MSP6 and block 3 of MSP1; (iii) near the P. reichenowi-P. falciparum divergence, for the 3' end of the AD region of MSP6; and (iv) after the P. reichenowi-P. falciparum divergence, for MSP2. Based on these results, I suggest a new hypothesis for long-term evolutionary maintenance of AD/RS by recombination within allelic groups.
Collapse
Affiliation(s)
- Scott William Roy
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA 94132, USA.
| |
Collapse
|
8
|
Gupta B, Reddy BPN, Fan Q, Yan G, Sirichaisinthop J, Sattabongkot J, Escalante AA, Cui L. Molecular Evolution of PvMSP3α Block II in Plasmodium vivax from Diverse Geographic Origins. PLoS One 2015; 10:e0135396. [PMID: 26266539 PMCID: PMC4534382 DOI: 10.1371/journal.pone.0135396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/21/2015] [Indexed: 11/29/2022] Open
Abstract
Block II of Plasmodium vivax merozoite surface protein 3α (PvMSP3α) is conserved and has been proposed as a potential candidate for a malaria vaccine. The present study aimed to compare sequence diversity in PvMSP3a block II at a local microgeographic scale in a village as well as from larger geographic regions (countries and worldwide). Blood samples were collected from asymptomatic carriers of P. vivax in a village at the western border of Thailand and PvMSP3α was amplified and sequenced. For population genetic analysis, 237 PvMSP3α block II sequences from eleven P. vivax endemic countries were analyzed. PvMSP3α sequences from 20 village-level samples revealed two length variant types with one type containing a large deletion in block I. In contrast, block II was relatively conserved; especially, some non-synonymous mutations were extensively shared among 11 parasite populations. However, the majority of the low-frequency synonymous variations were population specific. The conserved pattern of nucleotide diversity in block II sequences was probably due to functional/structural constraints, which were further supported by the tests of neutrality. Notably, a small region in block II that encodes a predicted B cell epitope was highly polymorphic and showed signs of balancing selection, signifying that this region might be influenced by the immune selection and may serve as a starting point for designing multi-antigen/stage epitope based vaccines against this parasite.
Collapse
Affiliation(s)
- Bhavna Gupta
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, United States of America
| | - B. P. Niranjan Reddy
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA 92697, United States of America
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Ananias A. Escalante
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States of America
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, United States of America
- * E-mail:
| |
Collapse
|
9
|
Chan CW, Sakihama N, Tachibana SI, Idris ZM, Lum JK, Tanabe K, Kaneko A. Plasmodium vivax and Plasmodium falciparum at the crossroads of exchange among islands in Vanuatu: implications for malaria elimination strategies. PLoS One 2015; 10:e0119475. [PMID: 25793260 PMCID: PMC4368729 DOI: 10.1371/journal.pone.0119475] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/20/2015] [Indexed: 01/09/2023] Open
Abstract
Understanding the transmission and movement of Plasmodium parasites is crucial for malaria elimination and prevention of resurgence. Located at the limit of malaria transmission in the Pacific, Vanuatu is an ideal candidate for elimination programs due to low endemicity and the isolated nature of its island setting. We analyzed the variation in the merozoite surface protein 1 (msp1) and the circumsporozoite protein (csp) of P. falciparum and P. vivax populations to examine the patterns of gene flow and population structures among seven sites on five islands in Vanuatu. Genetic diversity was in general higher in P. vivax than P. falciparum from the same site. In P. vivax, high genetic diversity was likely maintained by greater extent of gene flow among sites and among islands. Consistent with the different patterns of gene flow, the proportion of genetic variance found among islands was substantially higher in P. falciparum (28.81–31.23%) than in P. vivax (-0.53–3.99%). Our data suggest that the current island-by-island malaria elimination strategy in Vanuatu, while adequate for P. falciparum elimination, might need to be complemented with more centrally integrated measures to control P. vivax movement across islands.
Collapse
Affiliation(s)
- Chim W Chan
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Naoko Sakihama
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shin-Ichiro Tachibana
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Zulkarnain Md Idris
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - J Koji Lum
- Laboratory of Evolutionary Anthropology and Health, Binghamton University, Binghamton, New York, United States of America; Department of Anthropology, Binghamton University, Binghamton, New York, United States of America; Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Kazuyuki Tanabe
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Akira Kaneko
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Japan; Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
10
|
Heterogeneous genetic diversity pattern in Plasmodium vivax genes encoding merozoite surface proteins (MSP) -7E, -7F and -7L. Malar J 2014; 13:495. [PMID: 25496322 PMCID: PMC4300842 DOI: 10.1186/1475-2875-13-495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/10/2014] [Indexed: 11/15/2022] Open
Abstract
Background The msp-7 gene has become differentially expanded in the Plasmodium genus; Plasmodium vivax has the highest copy number of this gene, several of which encode antigenic proteins in merozoites. Methods DNA sequences from thirty-six Colombian clinical isolates from P. vivax (pv) msp-7E, −7F and -7L genes were analysed for characterizing and studying the genetic diversity of these pvmsp-7 members which are expressed during the intra-erythrocyte stage; natural selection signals producing the variation pattern so observed were evaluated. Results The pvmsp-7E gene was highly polymorphic compared to pvmsp-7F and pvmsp-7L which were seen to have limited genetic diversity; pvmsp-7E polymorphism was seen to have been maintained by different types of positive selection. Even though these copies seemed to be species-specific duplications, a search in the Plasmodium cynomolgi genome (P. vivax sister taxon) showed that both species shared the whole msp-7 repertoire. This led to exploring the long-term effect of natural selection by comparing the orthologous sequences which led to finding signatures for lineage-specific positive selection. Conclusions The results confirmed that the P. vivax msp-7 family has a heterogeneous genetic diversity pattern; some members are highly conserved whilst others are highly diverse. The results suggested that the 3′-end of these genes encode MSP-7 proteins’ functional region whilst the central region of pvmsp-7E has evolved rapidly. The lineage-specific positive selection signals found suggested that mutations occurring in msp-7s genes during host switch may have succeeded in adapting the ancestral P. vivax parasite population to humans. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-495) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Roy SW, Ferreira MU. A new model for the origins of allelic dimorphism in Plasmodium falciparum. Parasitol Int 2014; 64:229-37. [PMID: 25251164 DOI: 10.1016/j.parint.2014.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/11/2014] [Accepted: 09/12/2014] [Indexed: 11/17/2022]
Abstract
In his landmark 1987 study of the merozoite surface protein-1 locus in Plasmodium falciparum, Kazuyuki Tanabe and coauthors introduced the phenomenon of allelic dimorphism, in which antigenic diversity is arranged into two maximally diverged haplotypes. Further work has extended this finding to other loci in P. falciparum. Each of the loci at which allelic dimorphism is observed encodes major surface antigens of blood-stage malaria parasites, and is consequently a major vaccine target, thus understanding the origins and implications of allelic dimorphism is of crucial importance. Here we examine the essential features of allelic dimorphism in dimorphic malarial surface antigens. From sequence analysis, we conclude that the ancestral population may have been recombining/multimorphic rather than dimorphic. We hypothesize a pathway to allelic dimorphism in which an ancestral allele-rich recombining population could have undergone a severe population bottleneck, putatively caused by the lateral transfer of P. falciparum from apes to humans. This bottleneck produced a reduction in allelic diversity, favoring the survival of the most divergent alleles, which in turn led to recombination suppression by strong natural selection against recombinants.
Collapse
Affiliation(s)
- Scott W Roy
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Cutts JC, Powell R, Agius PA, Beeson JG, Simpson JA, Fowkes FJI. Immunological markers of Plasmodium vivax exposure and immunity: a systematic review and meta-analysis. BMC Med 2014; 12:150. [PMID: 25199532 PMCID: PMC4172944 DOI: 10.1186/s12916-014-0150-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/12/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Identifying Plasmodium vivax antigen-specific antibodies associated with P. vivax infection and protective immunity is key to the development of serosurveillance tools and vaccines for malaria. Antibody targets of P. vivax can be identified by seroepidemiological studies of individuals living in P. vivax-endemic areas, and is an important strategy given the limited ability to culture P. vivax in vitro. There have been numerous studies investigating the association between P. vivax antibody responses and P. vivax infection, but there has been no standardization of results to enable comparisons across populations. METHODS We performed a systematic review with meta-analysis of population-based, cross-sectional, case-control, and cohort studies of individuals living in P. vivax-endemic areas. We searched 6 databases and identified 18 studies that met predefined inclusion and quality criteria, and examined the association between antibody responses to P. vivax antigens and P. vivax malaria. RESULTS The majority of studies were published in South America (all from Brazil) and the rest from geographically diverse areas in the Asia-Pacific region. Considerable heterogeneity in estimates was observed, but IgG responses to PvCSP, PvMSP-119, PvMSP-9RIRII, and PvAMA1 were associated with increased odds of P. vivax infection in geographically diverse populations. Potential sources of heterogeneity included study design, different transmission intensities and transmigrant populations. Protective associations were observed for antibodies to PvMSP-119, PvMSP-1NT, PvMSP-3α and PvMSP-9NT antigens, but only in single geographical locations. CONCLUSIONS This systematic review revealed several antigen-specific antibodies that were associated with active infection and protective immunity, which may be useful biomarkers. However, more studies are needed on additional antigens, particularly cohort studies to increase the body of evidence for protective immunity. More studies representing diverse geographical regions encompassing varying P. vivax endemicities are needed to validate the generalizability of the findings and to provide a solid evidence base for the use of P. vivax antigens in vaccines and serosurveillance tools.
Collapse
|
13
|
Cerritos R, González-Cerón L, Nettel JA, Wegier A. Genetic structure of Plasmodium vivax using the merozoite surface protein 1 icb5-6 fragment reveals new hybrid haplotypes in southern Mexico. Malar J 2014; 13:35. [PMID: 24472213 PMCID: PMC3923247 DOI: 10.1186/1475-2875-13-35] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/22/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium vivax is a protozoan parasite with an extensive worldwide distribution, being highly prevalent in Asia as well as in Mesoamerica and South America. In southern Mexico, P. vivax transmission has been endemic and recent studies suggest that these parasites have unique biological and genetic features. The msp1 gene has shown high rate of nucleotide substitutions, deletions, insertions, and its mosaic structure reveals frequent events of recombination, maybe between highly divergent parasite isolates. METHODS The nucleotide sequence variation in the polymorphic icb5-6 fragment of the msp1 gene of Mexican and worldwide isolates was analysed. To understand how genotype diversity arises, disperses and persists in Mexico, the genetic structure and genealogical relationships of local isolates were examined. To identify new sequence hybrids and their evolutionary relationships with other P. vivax isolates circulating worldwide two haplotype networks were constructed questioning that two portions of the icb5-6 have different evolutionary history. RESULTS Twelve new msp1 icb5-6 haplotypes of P. vivax from Mexico were identified. These nucleotide sequences show mosaic structure comprising three partially conserved and two variable subfragments and resulted into five different sequence types. The variable subfragment sV1 has undergone recombination events and resulted in hybrid sequences and the haplotype network allocated the Mexican haplotypes to three lineages, corresponding to the Sal I and Belem types, and other more divergent group. In contrast, the network from icb5-6 fragment but not sV1 revealed that the Mexican haplotypes belong to two separate lineages, none of which are closely related to Sal I or Belem sequences. CONCLUSIONS These results suggest that the new hybrid haplotypes from southern Mexico were the result of at least three different recombination events. These rearrangements likely resulted from the recombination between haplotypes of highly divergent lineages that are frequently distributed in South America and Asia and diversified rapidly.
Collapse
Affiliation(s)
| | - Lilia González-Cerón
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, México.
| | | | | |
Collapse
|
14
|
Characteristic age distribution of Plasmodium vivax infections after malaria elimination on Aneityum Island, Vanuatu. Infect Immun 2013; 82:243-52. [PMID: 24166950 DOI: 10.1128/iai.00931-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resurgence is a major concern after malaria elimination. After the initiation of the elimination program on Aneityum Island in 1991, microscopy showed that Plasmodium falciparum disappeared immediately, whereas P. vivax disappeared from 1996 onward, until P. vivax cases were reported in January 2002. By conducting malariometric surveys of the entire population of Aneityum, we investigated the age distribution of individuals with parasites during this epidemic in the context of antimalarial antibody levels and parasite antigen diversity. In July 2002, P. vivax infections were detected by microscopy in 22/759 individuals: 20/298 born after the beginning of the elimination program in 1991, 2/126 born between 1982 and 1991, and none of 335 born before 1982. PCR increased the number of infections detected to 77, distributed among all age groups. Prevalences were 12.1%, 16.7%, and 6.0%, respectively (P < 0.001). In November, a similar age pattern was found, but with fewer infections: 6/746 and 39/741 individuals were found to be infected by microscopy and PCR, respectively. The frequencies of antibody responses to P. vivax were significantly higher in individuals born before 1991 than in younger age groups and were similar to those on Malakula Island, an area of endemicity. Remarkably low antigen diversity (h, 0.15) of P. vivax infections was observed on Aneityum compared with the other islands (h, 0.89 to 1.0). A P. vivax resurgence was observed among children and teenagers on Aneityum, an age distribution similar to those before elimination and on islands where P. vivax is endemic, suggesting that in the absence of significant exposure, immunity may persist, limiting infection levels in adults. The limited parasite gene pool on islands may contribute to this protection.
Collapse
|
15
|
Tonkin ML, Arredondo SA, Loveless BC, Serpa JJ, Makepeace KA, Sundar N, Petrotchenko EV, Miller LH, Grigg ME, Boulanger MJ. Structural and Biochemical Characterization of Plasmodium falciparum 12 (Pf12) Reveals a Unique Interdomain Organization and the Potential for an Antiparallel Arrangement with Pf41. J Biol Chem 2013; 288:12805-17. [DOI: 10.1074/jbc.m113.455667] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
16
|
Genetic diversity and natural selection of Duffy binding protein of Plasmodium vivax Korean isolates. Acta Trop 2013; 125:67-74. [PMID: 23031445 DOI: 10.1016/j.actatropica.2012.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 09/19/2012] [Accepted: 09/22/2012] [Indexed: 11/23/2022]
Abstract
Plasmodium vivax Duffy binding protein (PvDBP) is a micronemal type I membrane protein that plays an essential role in erythrocyte invasion of merozoites. PvDBP is a prime blood stage vaccine candidate antigen against P. vivax, but its polymorphic nature represents a major obstacle to the successful design of a protective vaccine against vivax malaria. In this study, we analyzed the genetic polymorphism and natural selection at the N-terminal cysteine-rich region of PvDBP (PvDBPII) among 70 P. vivax isolates collected from Korean patients during 2005-2010. Seventeen single nucleotide polymorphisms (SNP), which resulted in 14 non-synonymous and 3 synonymous mutations, were found in PvDBPII among the Korean P. vivax isolates. Sequence analyses revealed that 13 different PvDBPII haplotypes, which were clustered into 3 distinct clades, were identified in Korean P. vivax isolates. The difference between the rates of nonsynomyous and synonymous mutations suggested that the region has evolved under natural selection. High selective pressure preferentially acted on regions identified or predicted to be B- and T-cell epitopes and MHC binding regions of PvDBPII. Recombination may also contribute to genetic diversity of PvDBPII. Our results suggest that PvDBPII of Korean P. vivax isolates display a limited genetic polymorphism and are under selective pressure. These results have significant implications for understanding the nature of the P. vivax population circulating in Korea and provide useful information for development of malaria vaccines based on this antigen.
Collapse
|
17
|
Pacheco MA, Elango AP, Rahman AA, Fisher D, Collins WE, Barnwell JW, Escalante AA. Evidence of purifying selection on merozoite surface protein 8 (MSP8) and 10 (MSP10) in Plasmodium spp. INFECTION GENETICS AND EVOLUTION 2012; 12:978-86. [PMID: 22414917 DOI: 10.1016/j.meegid.2012.02.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/16/2012] [Accepted: 02/18/2012] [Indexed: 01/08/2023]
Abstract
Evidence for natural selection, positive or negative, on gene encoding antigens may indicate variation or functional constraints that are immunologically relevant. Most malaria surface antigens with high genetic diversity have been reported to be under positive-diversifying selection. However, antigens with limited genetic variation are usually ignored in terms of the role that natural selection may have in generating such patterns. We investigated orthologous genes encoding two merozoite proteins, MSP8 and MSP10, among several mammalian Plasmodium spp. These antigens, together with MSP1, are among the few MSPs that have two epidermal growth factor-like domains (EGF) at the C-terminal. Those EGF are relatively conserved (low levels of genetic polymorphism) and have been proposed to act as ligands during the invasion of RBCs. We use several evolutionary genetic methods to detect patterns consistent with natural selection acting on MSP8 and MSP10 orthologs in the human parasites Plasmodium falciparum and P. vivax, as well as closely related malarial species found in non-human primates (NHPs). Overall, these antigens have low polymorphism in the human parasites in comparison with the orthologs from other Plasmodium spp. We found that the MSP10 gene polymorphism in P. falciparum only harbor non-synonymous substitutions, a pattern consistent with a gene under positive selection. Evidence of purifying selection was found on the polymorphism observed in both orthologs from P. cynomolgi, a non-human primate parasite closely related to P. vivax, but it was not conclusive in the human parasite. Yet, using phylogenetic base approaches, we found evidence for purifying selection on both MSP8 and MSP10 in the lineage leading to P. vivax. Such antigens evolving under strong functional constraints could become valuable vaccine candidates. We discuss how comparative approaches could allow detecting patterns consistent with negative selection even when there is low polymorphism in the extant populations.
Collapse
Affiliation(s)
- M Andreína Pacheco
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | | | | | | | | | | | | |
Collapse
|
18
|
Badu K, Afrane YA, Larbi J, Stewart VA, Waitumbi J, Angov E, Ong'echa JM, Perkins DJ, Zhou G, Githeko A, Yan G. Marked variation in MSP-119 antibody responses to malaria in western Kenyan highlands. BMC Infect Dis 2012; 12:50. [PMID: 22380785 PMCID: PMC3306741 DOI: 10.1186/1471-2334-12-50] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 03/01/2012] [Indexed: 11/25/2022] Open
Abstract
Background Assessment of malaria endemicity at different altitudes and transmission intensities, in the era of dwindling vector densities in the highlands, will provide valuable information for malaria control and surveillance. Measurement of serum anti-malarial antibodies is a useful marker of malaria exposure that indicates long-term transmission potential. We studied the serologic evidence of malaria endemicity at two highland sites along a transmission intensity cline. An improved understanding of the micro-geographic variation in malaria exposure in the highland ecosystems will be relevant in planning effective malaria control. Methods Total IgG levels to Plasmodium falciparum MSP-119 were measured in an age-stratified cohort (< 5, 5-14 and ≥ 15 years) in 795 participants from an uphill and valley bottom residents during low and high malaria transmission seasons. Antibody prevalence and level was compared between different localities. Regression analysis was performed to examine the association between antibody prevalence and parasite prevalence. Age-specific MSP-119 seroprevalence data was fitted to a simple reversible catalytic model to investigate the relationship between parasite exposure and age. Results Higher MSP-119 seroprevalence and density were observed in the valley residents than in the uphill dwellers. Adults (> 15 years) recorded high and stable immune response in spite of changing seasons. Lower responses were observed in children (≤ 15 years), which, fluctuated with changing seasons particularly in the valley residents. In the uphill population, annual seroconversion rate (SCR) was 8.3% and reversion rate was 3.0%, with seroprevalence reaching a plateau of 73.3% by age of 20. Contrary, in the valley bottom population, the annual SCR was 35.8% and the annual seroreversion rate was 3.5%, and seroprevalence in the population had reached 91.2% by age 10. Conclusion The study reveals the micro-geographic variation in malaria endemicity in the highland eco-system; this validates the usefulness of sero-epidemiological tools in assessing malaria endemicity in the era of decreasing sensitivity of conventional tools.
Collapse
Affiliation(s)
- Kingsley Badu
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ju HL, Kang JM, Moon SU, Kim JY, Lee HW, Lin K, Sohn WM, Lee JS, Kim TS, Na BK. Genetic polymorphism and natural selection of Duffy binding protein of Plasmodium vivax Myanmar isolates. Malar J 2012; 11:60. [PMID: 22380592 PMCID: PMC3358247 DOI: 10.1186/1475-2875-11-60] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/01/2012] [Indexed: 11/27/2022] Open
Abstract
Background Plasmodium vivax Duffy binding protein (PvDBP) plays an essential role in erythrocyte invasion and a potential asexual blood stage vaccine candidate antigen against P. vivax. The polymorphic nature of PvDBP, particularly amino terminal cysteine-rich region (PvDBPII), represents a major impediment to the successful design of a protective vaccine against vivax malaria. In this study, the genetic polymorphism and natural selection at PvDBPII among Myanmar P. vivax isolates were analysed. Methods Fifty-four P. vivax infected blood samples collected from patients in Myanmar were used. The region flanking PvDBPII was amplified by PCR, cloned into Escherichia coli, and sequenced. The polymorphic characters and natural selection of the region were analysed using the DnaSP and MEGA4 programs. Results Thirty-two point mutations (28 non-synonymous and four synonymous mutations) were identified in PvDBPII among the Myanmar P. vivax isolates. Sequence analyses revealed that 12 different PvDBPII haplotypes were identified in Myanmar P. vivax isolates and that the region has evolved under positive natural selection. High selective pressure preferentially acted on regions identified as B- and T-cell epitopes of PvDBPII. Recombination may also be played a role in the resulting genetic diversity of PvDBPII. Conclusions PvDBPII of Myanmar P. vivax isolates displays a high level of genetic polymorphism and is under selective pressure. Myanmar P. vivax isolates share distinct types of PvDBPII alleles that are different from those of other geographical areas. These results will be useful for understanding the nature of the P. vivax population in Myanmar and for development of PvDBPII-based vaccine.
Collapse
Affiliation(s)
- Hye-Lim Ju
- Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Koepfli C, Ross A, Kiniboro B, Smith TA, Zimmerman PA, Siba P, Mueller I, Felger I. Multiplicity and diversity of Plasmodium vivax infections in a highly endemic region in Papua New Guinea. PLoS Negl Trop Dis 2011; 5:e1424. [PMID: 22206027 PMCID: PMC3243695 DOI: 10.1371/journal.pntd.0001424] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/21/2011] [Indexed: 11/19/2022] Open
Abstract
Plasmodium vivax is highly endemic in the lowlands of Papua New Guinea and accounts for a large proportion of the malaria cases in children less than 5 years of age. We collected 2117 blood samples at 2-monthly intervals from a cohort of 268 children aged 1 to 4.5 years and estimated the diversity and multiplicity of P. vivax infection. All P. vivax clones were genotyped using the merozoite surface protein 1 F3 fragment (msp1F3) and the microsatellite MS16 as molecular markers. High diversity was observed with msp1F3 (HE = 88.1%) and MS16 (HE = 97.8%). Of the 1162 P. vivax positive samples, 74% harbored multi-clone infections with a mean multiplicity of 2.7 (IQR = 1–3). The multiplicity of P. vivax infection increased slightly with age (P = 0.02), with the strongest increase in very young children. Intensified efforts to control malaria can benefit from knowledge of the diversity and MOI both for assessing the endemic situation and monitoring the effects of interventions. The parasite Plasmodium vivax is the second most frequent cause of malaria in humans. In the Maprik area in lowland Papua New Guinea, P. vivax and P. falciparum are sympatric each with a prevalence of around 50%. Longitudinal samples from 268 children aged 1 to 4.5 years over 16 months were collected. The 1162 blood samples positive for P. vivax were genotyped for two size-polymorphic molecular markers. A very high parasite diversity was observed. The number of co-infecting parasite clones per carrier (multiplicity) was nearly twice as high for P. vivax as for P. falciparum despite the similar prevalences of the species. The P. vivax multiplicity increased with age, with the strongest increase in young children below 1.5. This is likely to be a consequence of fast acquisition of immunity against P. vivax malaria and also of relapses, the release of long-lasting, silent liver stages to the blood stream. This is the first dataset from a highly endemic setting that presents data on a large number of individual P. vivax clones genotyped with highly diverse markers.
Collapse
Affiliation(s)
- Cristian Koepfli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Thomas A. Smith
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Peter A. Zimmerman
- Centre for Global Health and Disease, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Peter Siba
- PNG Institute of Medical Research, Goroka, Papua New Guinea
| | - Ivo Mueller
- PNG Institute of Medical Research, Goroka, Papua New Guinea
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Barcelona Centre for International Health Research, Barcelona, Spain
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
21
|
Premaratne PH, Aravinda BR, Escalante AA, Udagama PV. Genetic diversity of Plasmodium vivax Duffy Binding Protein II (PvDBPII) under unstable transmission and low intensity malaria in Sri Lanka. INFECTION GENETICS AND EVOLUTION 2011; 11:1327-39. [PMID: 21554998 DOI: 10.1016/j.meegid.2011.04.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/21/2011] [Accepted: 04/21/2011] [Indexed: 11/28/2022]
Abstract
Elucidating the genetic diversity of the Duffy Binding Protein II (PvDBPII), a leading vaccine candidate for vivax malaria, in different geographical settings is vital. In Sri Lanka malaria transmission is unstable with low intensity. A relatively high level of allelic diversity, with 27 polymorphic nucleotides and 33 (aa) haplotypes was detected among the PvdbpII gene in 100 local Plasmodium vivax isolates collected from two hypoendemic areas, and from a non endemic area of the country. Mutations, recombination and balancing selection seem to maintain the observed local allelic diversity of PvdbpII. Lack of gene flow was evidenced by high Fst values between the two endemic study sites. Some of the aa polymorphisms may alter the binding and expression capacity of predicted T cell epitopes in PvDBPII. Of the 8 binding inhibitory linear B cell epitopes, 2 (H2 and M1) in the vicinity of the exact binding region of PvDBPII appeared to be highly conserved in Sri Lankan, Iran and Colombian isolates, while H3, M2, M3 and L3 neutralizing epitopes seem to be polymorphic globally, with H1 and L2 conserved in Colombian, South Korean and Iran isolates. In comparison to the reference Sal-1 strain, among 402 world-wide isolates (302 global and 100 local), 121 aa polymorphisms and 138 haplotypes were recorded of which 3 aa polymorphisms and 21 haplotypes seem to be unique to Sri Lanka. PvdbpII phylogeny suggests that local P. vivax parasites represent a sample of the global population. The ubiquitous presence of some PvDBPII aa haplotypes among both local and global P. vivax isolates may aid future vaccination strategies based on PvDBPII.
Collapse
Affiliation(s)
- Prasad H Premaratne
- Department of Zoology, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka
| | | | | | | |
Collapse
|
22
|
Worldwide sequence conservation of transmission-blocking vaccine candidate Pvs230 in Plasmodium vivax. Vaccine 2011; 29:4308-15. [PMID: 21514344 DOI: 10.1016/j.vaccine.2011.04.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 03/17/2011] [Accepted: 04/07/2011] [Indexed: 11/21/2022]
Abstract
Pfs230, surface protein of gametocyte/gamete of the human malaria parasite, Plasmodium falciparum, is a prime candidate of malaria transmission-blocking vaccine. Plasmodium vivax has an ortholog of Pfs230 (Pvs230), however, there has been no study in any aspects on Pvs230 to date. To investigate whether Pvs230 can be a vivax malaria transmission-blocking vaccine, we performed evolutionary and population genetic analysis of the Pvs230 gene (pvs230: PVX_003905). Our analysis of Pvs230 and its orthologs in eight Plasmodium species revealed two distinctive parts: an interspecies variable part (IVP) containing species-specific oligopeptide repeats at the N-terminus and a 7.5kb interspecies conserved part (ICP) containing 14 cysteine-rich domains. Pvs230 was closely related to its orthologs, Pks230 and Pcys230, in monkey malaria parasites. Analysis of 113 pvs230 sequences obtained from worldwide, showed that nucleotide diversity is remarkably low in the non-repeat 8-kb region of pvs230 (θπ=0.00118) with 77 polymorphic nucleotide sites, 40 of which results in amino acid replacements. A signature of purifying selection but not of balancing selection was seen on pvs230. Functional and/or structural constraints may limit the level of polymorphism in pvs230. The observed limited polymorphism in pvs230 should ground for utilization of Pvs230 as an effective transmission-blocking vaccine.
Collapse
|
23
|
Valderrama-Aguirre A, Zúñiga-Soto E, Mariño-Ramírez L, Moreno LÁ, Escalante AA, Arévalo-Herrera M, Herrera S. Polymorphism of the Pv200L fragment of merozoite surface protein-1 of Plasmodium vivax in clinical isolates from the Pacific coast of Colombia. Am J Trop Med Hyg 2011; 84:64-70. [PMID: 21292880 DOI: 10.4269/ajtmh.2011.09-0517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Merozoite surface protein 1 (MSP-1) is a polymorphic malaria protein with functional domains involved in parasite erythrocyte interaction. Plasmodium vivax MSP-1 has a fragment (Pv200L) that has been identified as a potential subunit vaccine because it is highly immunogenic and induces partial protection against infectious parasite challenge in vaccinated monkeys. To determine the extent of genetic polymorphism and its effect on the translated protein, we sequenced the Pv200L coding region from isolates of 26 P. vivax-infected patients in a malaria-endemic area of Colombia. The extent of nucleotide diversity (π) in these isolates (0.061 ± 0.004) was significantly lower (P ≤ 0.001) than that observed in Thai and Brazilian isolates; 0.083 ± 0.006 and 0.090 ± 0.006, respectively. We found two new alleles and several previously unidentified dimorphic substitutions and significant size polymorphism. The presence of highly conserved blocks in this fragment has important implications for the development of Pv200L as a subunit vaccine candidate.
Collapse
|
24
|
Yang Z, Huang J. De novo origin of new genes with introns in Plasmodium vivax. FEBS Lett 2011; 585:641-4. [PMID: 21241695 DOI: 10.1016/j.febslet.2011.01.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/08/2011] [Accepted: 01/11/2011] [Indexed: 11/26/2022]
Abstract
The origin of new genes is critical for organisms adapting to new niches. Here, we present evidence for a recent de novo origin of at least 13 protein-coding genes in the genome of Plasmodium vivax. Although recently de novo originated genes have often been suggested to be initially intronless, five of the genes identified in our analysis contain introns in their coding regions. Further investigations revealed that these introns likely evolved from previously intergenic regions together with the coding sequences. We discuss the potential mechanisms for intron formation in these genes and propose that intronization be considered in the formation of de novo originated genes.
Collapse
Affiliation(s)
- Zefeng Yang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | | |
Collapse
|
25
|
Zeyrek FY, Tachibana SI, Yuksel F, Doni N, Palacpac N, Arisue N, Horii T, Coban C, Tanabe K. Limited polymorphism of the Plasmodium vivax merozoite surface protein 1 gene in isolates from Turkey. Am J Trop Med Hyg 2011; 83:1230-7. [PMID: 21118926 DOI: 10.4269/ajtmh.2010.10-0353] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The 200-kD merozoite surface protein of Plasmodium vivax (PvMSP-1) is one of the leading vaccine candidates against P. vivax malaria. However, the gene encoding PvMSP-1 (pvmsp1) is highly polymorphic and is a major obstacle to effective vaccine development. To further understand polymorphism in pvmsp1, we obtained 30 full-length pvmsp1 sequences from southeastern Turkey. Comparative analysis of sequences from Turkey and other areas showed substantially limited polymorphism. Substitutions were found at 280 and 162 amino acid sites in samples from other regions and those from Turkey, respectively. Eight substitutions were unique to Turkey. In one of them, D/E at position 1706 in the C-terminal 19-kD region, the K/E change at 1709 was the only polymorphism previously known. Limited diversity was also observed in microsatellites. Data suggest a recent population bottleneck in Turkey that may have obscured a signature for balancing selection in the C-terminal 42-kD region, which was otherwise detectable in other areas.
Collapse
Affiliation(s)
- Fadile Yildiz Zeyrek
- Department of Microbiology, Harran University Medical Faculty, Sanliurfa, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Garamszegi LZ. The evolution of virulence in primate malaria parasites based on Bayesian reconstructions of ancestral states. Int J Parasitol 2010; 41:205-12. [PMID: 20920506 DOI: 10.1016/j.ijpara.2010.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/11/2010] [Accepted: 08/27/2010] [Indexed: 11/28/2022]
Abstract
Plasmodium parasites, the causative agents of malaria, are generally considered as harmful parasites, but many of them cause mild symptoms. Little is known about the evolutionary history and phylogenetic constraints that generate this interspecific variation in virulence due to uncertainties about the phylogenetic associations of parasites. Here, to account for such phylogenetic uncertainty, phylogenetic methods based on Bayesian statistics were followed in combination with sequence data from five genes to estimate the ancestral state of virulence in primate Plasmodium parasites. When recent parasites were categorised according to the damage caused to the host, Bayesian estimates of ancestral states indicated that the acquisition of a harmful host exploitation strategy is more likely to be a recent evolutionary event than a result of an ancient change in a character state altering virulence. On the contrary, there was more evidence for moderate host exploitation having a deep origin along the phylogenetic tree. Moreover, the evolution of host severity is determined by the phylogenetic relationships of parasites, as severity gains did not appear randomly on the evolutionary tree. Such phylogenetic constraints can be mediated by the acquisition of virulence genes. As the impact of a parasite on a host is the result of both the parasite's investment in reproduction and host sensitivity, virulence was also estimated by calculating peak parasitemia after eliminating host effects. A directional random-walk evolutionary model showed that the ancestral primate malarias reproduced at very low parasitemia in their hosts. Consequently, the extreme variation in the outcome of malaria infection in different host species can be better understood in light of the phylogeny of parasites.
Collapse
Affiliation(s)
- László Zsolt Garamszegi
- Department of Evolutionary Ecology, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, c/Americo Vespucio, s/n, 41092 Sevilla, Spain.
| |
Collapse
|
27
|
Birkenmeyer L, Muerhoff AS, Dawson GJ, Desai SM. Isolation and characterization of the MSP1 genes from Plasmodium malariae and Plasmodium ovale. Am J Trop Med Hyg 2010; 82:996-1003. [PMID: 20519591 DOI: 10.4269/ajtmh.2010.09-0022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The merozoite surface protein 1 (MSP1) is the principal surface antigen of the blood stage form of the Plasmodium parasite. Antibodies recognizing MSP1 are frequently detected following Plasmodium infection, making this protein a significant component of malaria vaccines and diagnostic tests. Although the MSP1 gene sequence has been reported for Plasmodium falciparum and Plasmodium vivax, this gene has not been identified for the other two major human-infectious species, Plasmodium malariae and Plasmodium ovale. MSP1 genes from these two species were isolated from Cameroon blood donor samples. The genes are similar in size to known MSP1 genes and encode proteins with interspecies conserved domains homologous to those identified in other Plasmodium species. Sequence and phylogenetic analysis of all available Plasmodium MSP1 amino acid sequences clearly shows that the Po and Pm MSP1 sequences are truly unique within the Plasmodium genus and not simply Pf or Pv variants.
Collapse
Affiliation(s)
- Larry Birkenmeyer
- Abbott Diagnostics, Infectious Diseases R&D, Dept. 09NB, Bldg. AP20, 100 Abbott Park Road, Abbott Park, IL 60064-6015, USA.
| | | | | | | |
Collapse
|
28
|
Pacheco MA, Ryan EM, Poe AC, Basco L, Udhayakumar V, Collins WE, Escalante AA. Evidence for negative selection on the gene encoding rhoptry-associated protein 1 (RAP-1) in Plasmodium spp. INFECTION GENETICS AND EVOLUTION 2010; 10:655-61. [PMID: 20363375 DOI: 10.1016/j.meegid.2010.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 03/25/2010] [Accepted: 03/26/2010] [Indexed: 11/18/2022]
Abstract
Assessing how natural selection, negative or positive, operates on genes with low polymorphism is challenging. We investigated the genetic diversity of orthologous genes encoding the rhoptry-associated protein 1 (RAP-1), a low polymorphic protein of malarial parasites that is involved in erythrocyte invasion. We applied evolutionary genetic methods to study the polymorphism in RAP-1 from Plasmodium falciparum (n=32) and Plasmodium vivax (n=6), the two parasites responsible for most human malaria morbidity and mortality, as well as RAP-1 orthologous in closely related malarial species found in non-human primates (NHPs). Overall, genes encoding RAP-1 are highly conserved in all Plasmodium spp. included in this investigation. We found no evidence for natural selection, positive or negative, acting on the gene encoding RAP-1 in P. falciparum or P. vivax. However, we found evidence that the orthologous genes in non-human primate parasites (Plasmodium cynomolgi, Plasmodium inui, and Plasmodium knowlesi) are under purifying (negative) selection. We discuss the importance of considering negative selection while studying genes encoding proteins with low polymorphism and how selective pressures may differ among orthologous genes in closely related malarial parasites species.
Collapse
Affiliation(s)
- M Andreína Pacheco
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, United States
| | | | | | | | | | | | | |
Collapse
|
29
|
Sawai H, Otani H, Arisue N, Palacpac N, de Oliveira Martins L, Pathirana S, Handunnetti S, Kawai S, Kishino H, Horii T, Tanabe K. Lineage-specific positive selection at the merozoite surface protein 1 (msp1) locus of Plasmodium vivax and related simian malaria parasites. BMC Evol Biol 2010; 10:52. [PMID: 20167126 PMCID: PMC2832629 DOI: 10.1186/1471-2148-10-52] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 02/19/2010] [Indexed: 11/10/2022] Open
Abstract
Background The 200 kDa merozoite surface protein 1 (MSP-1) of malaria parasites, a strong vaccine candidate, plays a key role during erythrocyte invasion and is a target of host protective immune response. Plasmodium vivax, the most widespread human malaria parasite, is closely related to parasites that infect Asian Old World monkeys, and has been considered to have become a parasite of man by host switch from a macaque malaria parasite. Several Asian monkey parasites have a range of natural hosts. The same parasite species shows different disease manifestations among host species. This suggests that host immune responses to P. vivax-related malaria parasites greatly differ among host species (albeit other factors). It is thus tempting to invoke that a major immune target parasite protein such as MSP-1 underwent unique evolution, depending on parasite species that exhibit difference in host range and host specificity. Results We performed comparative phylogenetic and population genetic analyses of the gene encoding MSP-1 (msp1) from P. vivax and nine P. vivax-related simian malaria parasites. The inferred phylogenetic tree of msp1 significantly differed from that of the mitochondrial genome, with a striking displacement of P. vivax from a position close to P. cynomolgi in the mitochondrial genome tree to an outlier of Asian monkey parasites. Importantly, positive selection was inferred for two ancestral branches, one leading to P. inui and P. hylobati and the other leading to P. vivax, P. fieldi and P. cynomolgi. This ancestral positive selection was estimated to have occurred three to six million years ago, coinciding with the period of radiation of Asian macaques. Comparisons of msp1 polymorphisms between P. vivax, P. inui and P. cynomolgi revealed that while some positively selected amino acid sites or regions are shared by these parasites, amino acid changes greatly differ, suggesting that diversifying selection is acting species-specifically on msp1. Conclusions The present results indicate that the msp1 locus of P. vivax and related parasite species has lineage-specific unique evolutionary history with positive selection. P. vivax and related simian malaria parasites offer an interesting system toward understanding host species-dependent adaptive evolution of immune-target surface antigen genes such as msp1.
Collapse
Affiliation(s)
- Hiromi Sawai
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mitsui H, Arisue N, Sakihama N, Inagaki Y, Horii T, Hasegawa M, Tanabe K, Hashimoto T. Phylogeny of Asian primate malaria parasites inferred from apicoplast genome-encoded genes with special emphasis on the positions of Plasmodium vivax and P. fragile. Gene 2010; 450:32-8. [DOI: 10.1016/j.gene.2009.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/20/2009] [Accepted: 10/01/2009] [Indexed: 11/25/2022]
|
31
|
Garamszegi LZ. Patterns of co-speciation and host switching in primate malaria parasites. Malar J 2009; 8:110. [PMID: 19463162 PMCID: PMC2689253 DOI: 10.1186/1475-2875-8-110] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 05/22/2009] [Indexed: 12/11/2022] Open
Abstract
Background The evolutionary history of many parasites is dependent on the evolution of their hosts, leading to an association between host and parasite phylogenies. However, frequent host switches across broad phylogenetic distances may weaken this close evolutionary link, especially when vectors are involved in parasites transmission, as is the case for malaria pathogens. Several studies suggested that the evolution of the primate-infective malaria lineages may be constrained by the phylogenetic relationships of their hosts, and that lateral switches between distantly related hosts may have been occurred. However, no systematic analysis has been quantified the degree of phylogenetic association between primates and their malaria parasites. Methods Here phylogenetic approaches have been used to discriminate statistically between events due to co-divergence, duplication, extinction and host switches that can potentially cause historical association between Plasmodium parasites and their primate hosts. A Bayesian reconstruction of parasite phylogeny based on genetic information for six genes served as basis for the analyses, which could account for uncertainties about the evolutionary hypotheses of malaria parasites. Results Related lineages of primate-infective Plasmodium tend to infect hosts within the same taxonomic family. Different analyses testing for congruence between host and parasite phylogenies unanimously revealed a significant association between the corresponding evolutionary trees. The most important factor that resulted in this association was host switching, but depending on the parasite phylogeny considered, co-speciation and duplication may have also played some additional role. Sorting seemed to be a relatively infrequent event, and can occur only under extreme co-evolutionary scenarios. The concordance between host and parasite phylogenies is heterogeneous: while the evolution of some malaria pathogens is strongly dependent on the phylogenetic history of their primate hosts, the congruent evolution is less emphasized for other parasite lineages (e.g. for human malaria parasites). Estimation of ancestral states of host use along the phylogenetic tree of parasites revealed that lateral transfers across distantly related hosts were likely to occur in several cases. Parasites cannot infect all available hosts, and they should preferentially infect hosts that provide a similar environment for reproduction. Marginally significant evidence suggested that there might be a consistent variation within host ranges in terms of physiology. Conclusion The evolution of primate malarias is constrained by the phylogenetic associations of their hosts. Some parasites can preserve a great flexibility to infect hosts across a large phylogenetic distance, thus host switching can be an important factor in mediating host ranges observed in nature. Due to this inherent flexibility and the potential exposure to various vectors, the emergence of new malaria disease in primates including humans cannot be predicted from the phylogeny of parasites.
Collapse
Affiliation(s)
- László Zsolt Garamszegi
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, c/Americo Vespucio, s/n, 41092, Sevilla, Spain.
| |
Collapse
|
32
|
Carlton JM, Escalante AA, Neafsey D, Volkman SK. Comparative evolutionary genomics of human malaria parasites. Trends Parasitol 2008; 24:545-50. [PMID: 18938107 DOI: 10.1016/j.pt.2008.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/10/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
Abstract
The parasites Plasmodium falciparum and Plasmodium vivax are responsible for the majority of human malaria cases worldwide. Despite many similarities in their biology, they frequently are studied in isolation. With the completion of the P. vivax genome and the generation of an initial P. falciparum genetic diversity map, attempts are being made to infer inter- and intra-species genome evolution. Here, we briefly review our current knowledge of comparative evolutionary genomics of the two species in the light of several presentations at the Molecular Approaches to Malaria 2008 meeting in Lorne, Australia and ask the question: can evolutionary genomics of one species inform the other?
Collapse
Affiliation(s)
- Jane M Carlton
- Department of Medical Parasitology, New York University Langone Medical Center, New York, NY 10010, USA.
| | | | | | | |
Collapse
|
33
|
Thakur A, Alam MT, Sharma YD. Genetic diversity in the C-terminal 42 kDa region of merozoite surface protein-1 of Plasmodium vivax (PvMSP-1(42)) among Indian isolates. Acta Trop 2008; 108:58-63. [PMID: 18823930 DOI: 10.1016/j.actatropica.2008.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 08/26/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
Abstract
Plasmodium vivax merozoite surface protein 1 (PvMSP-1) is a leading malaria vaccine candidate. This protein is processed to give rise to various sized fragments during merozoite maturation. Here, we describe the analysis of genetic diversity in the 42 kDa C-terminal part of this protein among 33 Indian P. vivax isolates. A total of 27 haplotypes with 72 mutations and 0.0212+/-0.0005S.D. over all pi nucleotide diversity were observed among the isolates. Twenty-six of 27 haplotypes reported here were new as they have not been reported so far from any other country. The difference between non-synonymous (dN) and synonymous (dS) mutations was found to be positive (0.0081+/-0.0051) for the entire 42 kDa region. Further analysis revealed that 33 kDa (MSP-1(33)) fragment of the MSP-1(42) was highly polymorphic with pi nucleotide diversity 0.0290+/-0.0007S.D. The dN-dS for this region of MSP-1 was also positive (0.0114+/-0.0071S.E.). On the other hand, there was no non-synonymous mutation in the 19 kDa (MSP-1(19)) fragment of the MSP-1(42) and thus it was highly conserved. In conclusion, MSP-1(33) fragment was highly polymorphic and appeared to be under diversifying selection whereas there was no selection at MSP-1(19) region among the isolates. Present study will be helpful for the development of PvMSP-1 based vaccine against P. vivax malaria.
Collapse
|