1
|
Blackwell AM, Jami-Alahmadi Y, Nasamu AS, Kudo S, Senoo A, Slam C, Tsumoto K, Wohlschlegel JA, Manuel Martinez Caaveiro J, Goldberg DE, Sigala PA. Malaria parasites require a divergent heme oxygenase for apicoplast gene expression and biogenesis. eLife 2024; 13:RP100256. [PMID: 39660822 PMCID: PMC11634067 DOI: 10.7554/elife.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.
Collapse
Affiliation(s)
- Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
| | - Armiyaw S Nasamu
- Departments of Medicine and Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Shota Kudo
- Department of Chemistry & Biotechnology, The University of TokyoTokyoJapan
| | - Akinobu Senoo
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu UniversityFukuokaJapan
| | - Celine Slam
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Kouhei Tsumoto
- Department of Chemistry & Biotechnology, The University of TokyoTokyoJapan
- Department of Bioengineering, University of TokyoTokyoJapan
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
| | | | - Daniel E Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Paul A Sigala
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
- Departments of Medicine and Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
2
|
Blackwell AM, Jami-Alahmadi Y, Nasamu AS, Kudo S, Senoo A, Slam C, Tsumoto K, Wohlschlegel JA, Caaveiro JMM, Goldberg DE, Sigala PA. Malaria parasites require a divergent heme oxygenase for apicoplast gene expression and biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596652. [PMID: 38853871 PMCID: PMC11160694 DOI: 10.1101/2024.05.30.596652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.
Collapse
Affiliation(s)
| | | | - Armiyaw S. Nasamu
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Shota Kudo
- Department of Chemistry & Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Akinobu Senoo
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Celine Slam
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Kouhei Tsumoto
- Department of Chemistry & Biotechnology, The University of Tokyo, Tokyo, Japan
- Department of Bioengineering, University of Tokyo, Tokyo, Japan
| | | | - Jose M. M. Caaveiro
- Department of Chemistry & Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Daniel E. Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
3
|
Chatterjee T, Tiwari A, Gupta R, Shukla H, Varshney A, Mishra S, Habib S. A Plasmodium apicoplast-targeted unique exonuclease/FEN exhibits interspecies functional differences attributable to an insertion that alters DNA-binding. Nucleic Acids Res 2024; 52:7843-7862. [PMID: 38888125 PMCID: PMC11260460 DOI: 10.1093/nar/gkae512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
The human malaria parasite Plasmodium falciparum genome is among the most A + T rich, with low complexity regions (LCRs) inserted in coding sequences including those for proteins targeted to its essential relict plastid (apicoplast). Replication of the apicoplast genome (plDNA), mediated by the atypical multifunctional DNA polymerase PfPrex, would require additional enzymatic functions for lagging strand processing. We identified an apicoplast-targeted, [4Fe-4S]-containing, FEN/Exo (PfExo) with a long LCR insertion and detected its interaction with PfPrex. Distinct from other known exonucleases across organisms, PfExo recognized a wide substrate range; it hydrolyzed 5'-flaps, processed dsDNA as a 5'-3' exonuclease, and was a bipolar nuclease on ssDNA and RNA-DNA hybrids. Comparison with the rodent P. berghei ortholog PbExo, which lacked the insertion and [4Fe-4S], revealed interspecies functional differences. The insertion-deleted PfExoΔins behaved like PbExo with a limited substrate repertoire because of compromised DNA binding. Introduction of the PfExo insertion into PbExo led to gain of activities that the latter initially lacked. Knockout of PbExo indicated essentiality of the enzyme for survival. Our results demonstrate the presence of a novel apicoplast exonuclease with a functional LCR that diversifies substrate recognition, and identify it as the candidate flap-endonuclease and RNaseH required for plDNA replication and maintenance.
Collapse
Affiliation(s)
- Tribeni Chatterjee
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anupama Tiwari
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ritika Gupta
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Himadri Shukla
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Aastha Varshney
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Saman Habib
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
4
|
Mamudu CO, Tebamifor ME, Sule MO, Dokunmu TM, Ogunlana OO, Iheagwam FN. Apicoplast-Resident Processes: Exploiting the Chink in the Armour of Plasmodium falciparum Parasites. Adv Pharmacol Pharm Sci 2024; 2024:9940468. [PMID: 38765186 PMCID: PMC11101256 DOI: 10.1155/2024/9940468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/25/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024] Open
Abstract
The discovery of a relict plastid, also known as an apicoplast (apicomplexan plastid), that houses housekeeping processes and metabolic pathways critical to Plasmodium parasites' survival has prompted increased research on identifying potent inhibitors that can impinge on apicoplast-localised processes. The apicoplast is absent in humans, yet it is proposed to originate from the eukaryote's secondary endosymbiosis of a primary symbiont. This symbiotic relationship provides a favourable microenvironment for metabolic processes such as haem biosynthesis, Fe-S cluster synthesis, isoprenoid biosynthesis, fatty acid synthesis, and housekeeping processes such as DNA replication, transcription, and translation, distinct from analogous mammalian processes. Recent advancements in comprehending the biology of the apicoplast reveal it as a vulnerable organelle for malaria parasites, offering numerous potential targets for effective antimalarial therapies. We provide an overview of the metabolic processes occurring in the apicoplast and discuss the organelle as a viable antimalarial target in light of current advances in drug discovery. We further highlighted the relevance of these metabolic processes to Plasmodium falciparum during the different stages of the lifecycle.
Collapse
Affiliation(s)
- Collins Ojonugwa Mamudu
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
| | - Mercy Eyitomi Tebamifor
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
| | - Mary Ohunene Sule
- Confluence University of Science and Technology, Osara, Kogi, Nigeria
| | - Titilope Modupe Dokunmu
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
| | - Olubanke Olujoke Ogunlana
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster, Covenant University, Ota, Nigeria
| | - Franklyn Nonso Iheagwam
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster, Covenant University, Ota, Nigeria
| |
Collapse
|
5
|
Czernecki D, Nourisson A, Legrand P, Delarue M. Reclassification of family A DNA polymerases reveals novel functional subfamilies and distinctive structural features. Nucleic Acids Res 2023; 51:4488-4507. [PMID: 37070157 PMCID: PMC10201439 DOI: 10.1093/nar/gkad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023] Open
Abstract
Family A DNA polymerases (PolAs) form an important and well-studied class of extant polymerases participating in DNA replication and repair. Nonetheless, despite the characterization of multiple subfamilies in independent, dedicated works, their comprehensive classification thus far is missing. We therefore re-examine all presently available PolA sequences, converting their pairwise similarities into positions in Euclidean space, separating them into 19 major clusters. While 11 of them correspond to known subfamilies, eight had not been characterized before. For every group, we compile their general characteristics, examine their phylogenetic relationships and perform conservation analysis in the essential sequence motifs. While most subfamilies are linked to a particular domain of life (including phages), one subfamily appears in Bacteria, Archaea and Eukaryota. We also show that two new bacterial subfamilies contain functional enzymes. We use AlphaFold2 to generate high-confidence prediction models for all clusters lacking an experimentally determined structure. We identify new, conserved features involving structural alterations, ordered insertions and an apparent structural incorporation of a uracil-DNA glycosylase (UDG) domain. Finally, genetic and structural analyses of a subset of T7-like phages indicate a splitting of the 3'-5' exo and pol domains into two separate genes, observed in PolAs for the first time.
Collapse
Affiliation(s)
- Dariusz Czernecki
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
- Sorbonne Université, Collège Doctoral, ED 515, 75005 Paris, France
| | - Antonin Nourisson
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
- Sorbonne Université, Collège Doctoral, ED 515, 75005 Paris, France
| | - Pierre Legrand
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
- Synchrotron SOLEIL, L’Orme des Merisiers, 91190 Saint-Aubin, France
| | - Marc Delarue
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
| |
Collapse
|
6
|
Chheda PR, Nieto N, Kaur S, Beck JM, Beck JR, Honzatko R, Kerns RJ, Nelson SW. Promising antimalarials targeting apicoplast DNA polymerase from Plasmodium falciparum. Eur J Med Chem 2022; 243:114751. [DOI: 10.1016/j.ejmech.2022.114751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 09/04/2022] [Indexed: 11/25/2022]
|
7
|
Nieto NS, Parrott EE, Nelson SW. Ribonucleotide Misincorporation and Reverse Transcriptase Activities of Plasmodium falciparum Apicoplast DNA Polymerase. Biochemistry 2022; 61:2742-2750. [DOI: 10.1021/acs.biochem.2c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicholas S. Nieto
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa50011, United States
| | - Eric E. Parrott
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa50011, United States
| | - Scott W. Nelson
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa50011, United States
| |
Collapse
|
8
|
Kumari A, Yadav A, Lahiri I. Transient State Kinetics of Plasmodium falciparum Apicoplast DNA Polymerase Suggests the Involvement of Accessory Factors for Efficient and Accurate DNA Synthesis. Biochemistry 2022; 61:2319-2333. [PMID: 36251801 DOI: 10.1021/acs.biochem.2c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmodium, the causative agent of malaria, belongs to the phylum Apicomplexa. Most apicomplexans, including Plasmodium, contain an essential nonphotosynthetic plastid called the apicoplast that harbors its own genome that is replicated by a dedicated organellar replisome. This replisome employs a single DNA polymerase (apPol), which is expected to perform both replicative and translesion synthesis. Unlike other replicative polymerases, no processivity factor for apPol has been identified. While preliminary structural and biochemical studies have provided an overall characterization of apPol, the kinetic mechanism of apPol's activity remains unknown. We have used transient state methods to determine the kinetics of replicative and translesion synthesis by apPol and show that apPol has low processivity and efficiency while copying undamaged DNA. Moreover, while apPol can bypass oxidatively damaged lesions, the bypass is error-prone. Taken together, our results raise the following question─how does a polymerase with low processivity, efficiency, and fidelity (for translesion synthesis) faithfully replicate the apicoplast organellar DNA within the hostile environment of the human host? We hypothesize that interactions with putative components of the apicoplast replisome and/or an as-yet-undiscovered processivity factor transform apPol into an efficient and accurate enzyme.
Collapse
Affiliation(s)
- Anamika Kumari
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Anjali Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Indrajit Lahiri
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India.,Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
9
|
Martins-Duarte ÉS, Sheiner L, Reiff SB, de Souza W, Striepen B. Replication and partitioning of the apicoplast genome of Toxoplasma gondii is linked to the cell cycle and requires DNA polymerase and gyrase. Int J Parasitol 2021; 51:493-504. [PMID: 33581138 PMCID: PMC8113025 DOI: 10.1016/j.ijpara.2020.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/30/2020] [Accepted: 11/08/2020] [Indexed: 10/26/2022]
Abstract
Apicomplexans are the causative agents of numerous important infectious diseases including malaria and toxoplasmosis. Most of them harbour a chloroplast-like organelle called the apicoplast that is essential for the parasites' metabolism and survival. While most apicoplast proteins are nuclear encoded, the organelle also maintains its own genome, a 35 kb circle. In this study we used Toxoplasma gondii to identify and characterise essential proteins involved in apicoplast genome replication and to understand how apicoplast genome segregation unfolds over time. We demonstrated that the DNA replication enzymes Prex, DNA gyrase and DNA single stranded binding protein localise to the apicoplast. We show in knockdown experiments that apicoplast DNA Gyrase A and B, and Prex are required for apicoplast genome replication and growth of the parasite. Analysis of apicoplast genome replication by structured illumination microscopy in T. gondii tachyzoites showed that apicoplast nucleoid division and segregation initiate at the beginning of S phase and conclude during mitosis. Thus, the replication and division of the apicoplast nucleoid is highly coordinated with nuclear genome replication and mitosis. Our observations highlight essential components of apicoplast genome maintenance and shed light on the timing of this process in the context of the overall parasite cell cycle.
Collapse
Affiliation(s)
- Érica S Martins-Duarte
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Núcleo de Biologia Estrutural e Bioimagens (CENABIO) - Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Biomagens (INBEB), Rio de Janeiro, RJ, Brazil.
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, 120 University Place Glasgow, United Kingdom
| | - Sarah B Reiff
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Wanderley de Souza
- Núcleo de Biologia Estrutural e Bioimagens (CENABIO) - Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Biomagens (INBEB), Rio de Janeiro, RJ, Brazil; Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Boris Striepen
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA. USA
| |
Collapse
|
10
|
Sharma M, Narayanan N, Nair DT. The proofreading activity of Pfprex from Plasmodium falciparum can prevent mutagenesis of the apicoplast genome by oxidized nucleotides. Sci Rep 2020; 10:11157. [PMID: 32636411 PMCID: PMC7341739 DOI: 10.1038/s41598-020-67853-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/11/2020] [Indexed: 01/28/2023] Open
Abstract
The DNA polymerase module of the Pfprex enzyme (PfpPol) is responsible for duplication of the genome of the apicoplast organelle in the malaria parasite. We show that PfpPol can misincorporate oxidized nucleotides such as 8oxodGTP opposite dA. This event gives rise to transversion mutations that are known to lead to adverse physiological outcomes. The apicoplast genome is particularly vulnerable to the harmful effects of 8oxodGTP due to very high AT content (~ 87%). We show that the proofreading activity of PfpPol has the unique ability to remove the oxidized nucleotide from the primer terminus. Due to this property, the proofreading domain of PfpPol is able to prevent mutagenesis of the AT-rich apicoplast genome and neutralize the deleterious genotoxic effects of ROS generated in the apicoplast due to normal metabolic processes. The proofreading activity of the Pfprex enzyme may, therefore, represent an attractive target for therapeutic intervention. Also, a survey of DNA repair pathways shows that the observed property of Pfprex constitutes a novel form of dynamic error correction wherein the repair of promutagenic damaged nucleotides is concomitant with DNA replication.
Collapse
Affiliation(s)
- Minakshi Sharma
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Kalinga Institute of Industrial Technology, Patia, Bhubaneshwar, Odisha, 751024, India
| | - Naveen Narayanan
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Manipal Academy of Higher Education, Madhav Nagar, Manipal, 576104, India
| | - Deepak T Nair
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| |
Collapse
|
11
|
Harman A, Barth C. The Dictyostelium discoideum homologue of Twinkle, Twm1, is a mitochondrial DNA helicase, an active primase and promotes mitochondrial DNA replication. BMC Mol Biol 2018; 19:12. [PMID: 30563453 PMCID: PMC6299598 DOI: 10.1186/s12867-018-0114-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 11/07/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND DNA replication requires contributions from various proteins, such as DNA helicases; in mitochondria Twinkle is important for maintaining and replicating mitochondrial DNA. Twinkle helicases are predicted to also possess primase activity, as has been shown in plants; however this activity appears to have been lost in metazoans. Given this, the study of Twinkle in other organisms is required to better understand the evolution of this family and the roles it performs within mitochondria. RESULTS Here we describe the characterization of a Twinkle homologue, Twm1, in the amoeba Dictyostelium discoideum, a model organism for mitochondrial genetics and disease. We show that Twm1 is important for mitochondrial function as it maintains mitochondrial DNA copy number in vivo. Twm1 is a helicase which unwinds DNA resembling open forks, although it can act upon substrates with a single 3' overhang, albeit less efficiently. Furthermore, unlike human Twinkle, Twm1 has primase activity in vitro. Finally, using a novel in bacterio approach, we demonstrated that Twm1 promotes DNA replication. CONCLUSIONS We conclude that Twm1 is a replicative mitochondrial DNA helicase which is capable of priming DNA for replication. Our results also suggest that non-metazoan Twinkle could function in the initiation of mitochondrial DNA replication. While further work is required, this study has illuminated several alternative processes of mitochondrial DNA maintenance which might also be performed by the Twinkle family of helicases.
Collapse
Affiliation(s)
- Ashley Harman
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC Australia
- Present Address: Cell Biology Unit, Children’s Medical Research Institute, University of Sydney, Westmead, NSW Australia
| | - Christian Barth
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC Australia
| |
Collapse
|
12
|
Milton ME, Nelson SW. Replication and maintenance of the Plasmodium falciparum apicoplast genome. Mol Biochem Parasitol 2016; 208:56-64. [PMID: 27338018 DOI: 10.1016/j.molbiopara.2016.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/14/2016] [Accepted: 06/19/2016] [Indexed: 12/18/2022]
Abstract
Members of the phylum Apicomplexa are responsible for many devastating diseases including malaria (Plasmodium spp.), toxoplasmosis (Toxoplasma gondii), babesiosis (Babesia bovis), and cyclosporiasis (Cyclospora cayetanensis). Most Apicomplexans contain a unique and essential organelle called the apicoplast. Derived from an ancient chloroplast, the apicoplast replicates and maintains a 35 kilobase (kb) circular genome. Due to its essential nature within the parasite, drugs targeted to proteins involved in DNA replication and repair of the apicoplast should be potent and specific. This review summarizes the current knowledge surrounding the replication and repair of the Plasmodium falciparum apicoplast genome and identifies several putative proteins involved in replication and repair pathways.
Collapse
Affiliation(s)
- Morgan E Milton
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames IA 50011, USA
| | - Scott W Nelson
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames IA 50011, USA.
| |
Collapse
|
13
|
SSP3 is a novel Plasmodium yoelii sporozoite surface protein with a role in gliding motility. Infect Immun 2014; 82:4643-53. [PMID: 25156733 DOI: 10.1128/iai.01800-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Plasmodium sporozoites develop within oocysts in the mosquito midgut wall and then migrate to the salivary glands. After transmission, they embark on a complex journey to the mammalian liver, where they infect hepatocytes. Proteins on the sporozoite surface likely mediate multiple steps of this journey, yet only a few sporozoite surface proteins have been described. Here, we characterize a novel, conserved sporozoite surface protein (SSP3) in the rodent malaria parasite Plasmodium yoelii. SSP3 is a putative type I transmembrane protein unique to Plasmodium. By using epitope tagging and SSP3-specific antibodies in conjunction with immunofluorescence microscopy, we showed that SSP3 is expressed in mosquito midgut oocyst sporozoites, exhibiting an intracellular localization. In sporozoites derived from the mosquito salivary glands, however, SSP3 localized predominantly to the sporozoite surface as determined by immunoelectron microscopy. However, the ectodomain of SSP3 appeared to be inaccessible to antibodies in nonpermeabilized salivary gland sporozoites. Antibody-induced shedding of the major surface protein circumsporozoite protein (CSP) exposed the SSP3 ectodomain to antibodies in some sporozoites. Targeted deletion of SSP3 adversely affected in vitro sporozoite gliding motility, which, surprisingly, impacted neither their cell traversal capacity, host cell invasion in vitro, nor infectivity in vivo. Together, these data reveal a previously unappreciated complexity of the Plasmodium sporozoite surface proteome and the roles of surface proteins in distinct biological activities of sporozoites.
Collapse
|
14
|
Lindner SE, Sartain MJ, Hayes K, Harupa A, Moritz RL, Kappe SHI, Vaughan AM. Enzymes involved in plastid-targeted phosphatidic acid synthesis are essential for Plasmodium yoelii liver-stage development. Mol Microbiol 2014; 91:679-93. [PMID: 24330260 DOI: 10.1111/mmi.12485] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2013] [Indexed: 02/03/2023]
Abstract
Malaria parasites scavenge nutrients from their host but also harbour enzymatic pathways for de novo macromolecule synthesis. One such pathway is apicoplast-targeted type II fatty acid synthesis, which is essential for late liver-stage development in rodent malaria. It is likely that fatty acids synthesized in the apicoplast are ultimately incorporated into membrane phospholipids necessary for exoerythrocytic merozoite formation. We hypothesized that these synthesized fatty acids are being utilized for apicoplast-targeted phosphatidic acid synthesis, the phospholipid precursor. Phosphatidic acid is typically synthesized in a three-step reaction utilizing three enzymes: glycerol 3-phosphate dehydrogenase, glycerol 3-phosphate acyltransferase and lysophosphatidic acid acyltransferase. The Plasmodium genome is predicted to harbour genes for both apicoplast- and cytosol/endoplasmic reticulum-targeted phosphatidic acid synthesis. Our research shows that apicoplast-targeted Plasmodium yoelii glycerol 3-phosphate dehydrogenase and glycerol 3-phosphate acyltransferase are expressed only during liver-stage development and deletion of the encoding genes resulted in late liver-stage growth arrest and lack of merozoite differentiation. However, the predicted apicoplast-targeted lysophosphatidic acid acyltransferase gene was refractory to deletion and was expressed solely in the endoplasmic reticulum throughout the parasite life cycle. Our results suggest that P. yoelii has an incomplete apicoplast-targeted phosphatidic acid synthesis pathway that is essential for liver-stage maturation.
Collapse
Affiliation(s)
- Scott E Lindner
- Seattle Biomedical Research Institute, Seattle, WA, 98109, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Bhowmick K, Dhar SK. Plasmodium falciparum single-stranded DNA-binding protein (PfSSB) interacts with PfPrex helicase and modulates its activity. FEMS Microbiol Lett 2013; 351:78-87. [PMID: 24267922 DOI: 10.1111/1574-6968.12343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/09/2013] [Accepted: 11/18/2013] [Indexed: 11/29/2022] Open
Abstract
Plasmodium falciparum (Pf) apicoplast is an essential organelle harbouring a ~35-kb circular genome. Prokaryotic nature of this organelle and its components makes it an attractive therapeutic target. The single-stranded DNA-binding protein (SSB) and multidomain protein PfPrex are important apicoplast replication proteins. However, regulation of these proteins through protein-protein interaction remains largely unknown. Here, we report that P. falciparum single-stranded DNA-binding protein (PfSSB) interacts with PfPrex helicase and modulates its activity. N-terminal domain of PfSSB is involved in this interaction, whereas C-terminal domain plays a pivotal role in the modulation of helicase activity. These results further, to our knowledge, understand apicoplast DNA replication.
Collapse
Affiliation(s)
- Krishanu Bhowmick
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
16
|
Wingert BM, Parrott EE, Nelson SW. Fidelity, mismatch extension, and proofreading activity of the Plasmodium falciparum apicoplast DNA polymerase. Biochemistry 2013; 52:7723-30. [PMID: 24147857 DOI: 10.1021/bi400708m] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plasmodium falciparum, a parasitic organism and one of the causative agents of malaria, contains an unusual organelle called the apicoplast. The apicoplast is a nonphotosynthetic plastid responsible for supplying the parasite with isoprenoid units and is therefore indispensable. Like mitochondria and the chloroplast, the apicoplast contains its own genome and harbors the enzymes responsible for its replication. In this report, we determine the relative probabilities of nucleotide misincorporation by the apicoplast polymerase (apPOL), examine the kinetics and sequence dependence of mismatch extension, and determine the rates of mismatch removal by the 3' to 5' proofreading activity of the DNA polymerase. While the intrinsic polymerase fidelity varies by >50-fold for the 12 possible nucleotide misincorporations, the most dominant selection step for overall polymerase fidelity is conducted at the level of mismatch extension, which varies by >350-fold. The efficiency of mismatch extension depends on both the nature of the DNA mismatch and the templating base. The proofreading activity of the 12 possible mismatches varies <3-fold. The data for these three determinants of polymerase-induced mutations indicate that the overall mutation frequency of apPOL is highly dependent on both the intrinsic fidelity of the polymerase and the identity of the template surrounding the potential mismatch.
Collapse
Affiliation(s)
- Bentley M Wingert
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| | | | | |
Collapse
|
17
|
Schoenfeld TW, Murugapiran SK, Dodsworth JA, Floyd S, Lodes M, Mead DA, Hedlund BP. Lateral gene transfer of family A DNA polymerases between thermophilic viruses, aquificae, and apicomplexa. Mol Biol Evol 2013; 30:1653-64. [PMID: 23608703 DOI: 10.1093/molbev/mst078] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bioinformatics and functional screens identified a group of Family A-type DNA Polymerase (polA) genes encoded by viruses inhabiting circumneutral and alkaline hot springs in Yellowstone National Park and the US Great Basin. The proteins encoded by these viral polA genes (PolAs) shared no significant sequence similarity with any known viral proteins but were remarkably similar to PolAs encoded by two of three families of the bacterial phylum Aquificae and by several apicoplast-targeted PolA-like proteins found in the eukaryotic phylum Apicomplexa, which includes the obligate parasites Plasmodium, Babesia, and Toxoplasma. The viral gene products share signature elements previously associated only with Aquificae and Apicomplexa PolA-like proteins and were similar to proteins encoded by prophage elements of a variety of otherwise unrelated Bacteria, each of which additionally encoded a prototypical bacterial PolA. Unique among known viral DNA polymerases, the viral PolA proteins of this study share with the Apicomplexa proteins large amino-terminal domains with putative helicase/primase elements but low primary sequence similarity. The genomic context and distribution, phylogeny, and biochemistry of these PolA proteins suggest that thermophilic viruses transferred polA genes to the Apicomplexa, likely through secondary endosymbiosis of a virus-infected proto-apicoplast, and to the common ancestor of two of three Aquificae families, where they displaced the orthologous cellular polA gene. On the basis of biochemical activity, gene structure, and sequence similarity, we speculate that the xenologous viral-type polA genes may have functions associated with diversity-generating recombination in both Bacteria and Apicomplexa.
Collapse
|
18
|
Lindner SE, Mikolajczak SA, Vaughan AM, Moon W, Joyce BR, Sullivan WJ, Kappe SHI. Perturbations of Plasmodium Puf2 expression and RNA-seq of Puf2-deficient sporozoites reveal a critical role in maintaining RNA homeostasis and parasite transmissibility. Cell Microbiol 2013; 15:1266-83. [PMID: 23356439 DOI: 10.1111/cmi.12116] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 12/30/2022]
Abstract
Malaria's cycle of infection requires parasite transmission between a mosquito vector and a mammalian host. We here demonstrate that the Plasmodium yoelii Pumilio-FBF family member Puf2 allows the sporozoite to remain infectious in the mosquito salivary glands while awaiting transmission. Puf2 mediates this solely through its RNA-binding domain (RBD) likely by stabilizing or hastening the degradation of specific mRNAs. Puf2 traffics to sporozoite cytosolic granules, which are negative for several markers of stress granules and P-bodies, and disappear rapidly after infection of hepatocytes. In contrast to previously described Plasmodium berghei pbpuf2(-) parasites, pypuf2(-) sporozoites have no apparent defect in host infection when tested early in salivary gland residence, but become progressively non-infectious and prematurely transform into EEFs during prolonged salivary gland residence. The premature overexpression of Puf2 in oocysts causes striking deregulation of sporozoite maturation and infectivity while extension of Puf2 expression in liverstages causes no defect, suggesting that the presence of Puf2 alone is not sufficient for its functions. Finally, by conducting the first comparative RNA-seq analysis of Plasmodium sporozoites, we find that Puf2 may play a role in directly or indirectly maintaining the homeostasis of specific transcripts. These findings uncover requirements for maintaining a window of opportunity for the malaria parasite to accommodate the unpredictable moment of transmission from mosquito to mammalian host.
Collapse
Affiliation(s)
- Scott E Lindner
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
The HU protein is important for apicoplast genome maintenance and inheritance in Toxoplasma gondii. EUKARYOTIC CELL 2012; 11:905-15. [PMID: 22611021 DOI: 10.1128/ec.00029-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The apicoplast, a chloroplast-like organelle, is an essential cellular component of most apicomplexan parasites, including Plasmodium and Toxoplasma. The apicoplast maintains its own genome, a 35-kb DNA molecule that largely encodes proteins required for organellar transcription and translation. Interference with apicoplast genome maintenance and function is a validated target for drug therapy for malaria and toxoplasmosis. However, the many proteins required for genome maintenance and inheritance remain largely unstudied. Here we genetically characterize a nucleus-encoded homolog to the bacterial HU protein in Toxoplasma gondii. In bacteria, HU is a DNA-binding structural protein with fundamental roles in transcription, replication initiation, and DNA repair. Immunofluorescence assays reveal that in T. gondii this protein localizes to the apicoplast. We have found that the HU protein from Toxoplasma can successfully complement bacterial ΔhupA mutants, supporting a similar function. We were able to construct a genetic knockout of HU in Toxoplasma. This Δhu mutant is barely viable and exhibits significant growth retardation. Upon further analysis of the mutant phenotype, we find that this mutant has a dramatically reduced apicoplast genome copy number and, furthermore, suffers defects in the segregation of the apicoplast organelle. Our findings not only show that the HU protein is important for Toxoplasma cell biology but also demonstrate the importance of the apicoplast genome in the biogenesis of the organelle.
Collapse
|