1
|
Bellini NK, Thiemann OH, Reyes-Batlle M, Lorenzo-Morales J, Costa AO. A history of over 40 years of potentially pathogenic free-living amoeba studies in Brazil - a systematic review. Mem Inst Oswaldo Cruz 2022; 117:e210373. [PMID: 35792751 PMCID: PMC9252135 DOI: 10.1590/0074-02760210373] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
Free-living amoeba (FLA) group includes the potentially pathogenic genera Acanthamoeba, Naegleria, Balamuthia, Sappinia, and Vermamoeba, causative agents of human infections (encephalitis, keratitis, and disseminated diseases). In Brazil, the first report on pathogenic FLA was published in the 70s and showed meningoencephalitis caused by Naegleria spp. FLA studies are emerging, but no literature review is available to investigate this trend in Brazil critically. Thus, the present work aims to integrate and discuss these data. Scopus, PubMed, and Web of Science were searched, retrieving studies from 1974 to 2020. The screening process resulted in 178 papers, which were clustered into core and auxiliary classes and sorted into five categories: wet-bench studies, dry-bench studies, clinical reports, environmental identifications, and literature reviews. The papers dating from the last ten years account for 75% (134/178) of the total publications, indicating the FLA topic has gained Brazilian interest. Moreover, 81% (144/178) address Acanthamoeba-related matter, revealing this genus as the most prevalent in all categories. Brazil’s Southeast, South, and Midwest geographic regions accounted for 96% (171/178) of the publications studied in the present work. To the best of our knowledge, this review is the pioneer in summarising the FLA research history in Brazil.
Collapse
Affiliation(s)
- Natália Karla Bellini
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Belo Horizonte, MG, Brasil
| | - Otavio Henrique Thiemann
- Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos, SP, Brasil.,Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP, Brasil
| | - María Reyes-Batlle
- Universidad de La Laguna, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Red de Investigación Cooperativa en Enfermedades Tropicales, Tenerife, Islas Canarias, Spain
| | - Jacob Lorenzo-Morales
- Universidad de La Laguna, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Red de Investigación Cooperativa en Enfermedades Tropicales, Tenerife, Islas Canarias, Spain.,Instituto de Salud Carlos III, Consorcio Centro de Investigación Biomédica en Red MP de Enfermedades Infecciosas, Madrid, Spain
| | - Adriana Oliveira Costa
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Belo Horizonte, MG, Brasil
| |
Collapse
|
2
|
Köhsler M, Leitsch D, Loufouma Mbouaka A, Wekerle M, Walochnik J. Transcriptional changes of proteins of the thioredoxin and glutathione systems in Acanthamoeba spp. under oxidative stress - an RNA approach. Parasite 2022; 29:24. [PMID: 35532265 PMCID: PMC9083255 DOI: 10.1051/parasite/2022025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
The thioredoxin (Trx) and the glutathione (GSH) systems represent important antioxidant systems in cells and in particular thioredoxin reductase (TrxR) has been shown to constitute a promising drug target in parasites. For the facultative protozoal pathogen Acanthamoeba, it was demonstrated that a bacterial TrxR as well as a TrxR, characteristic of higher eukaryotes, mammals and humans is expressed on the protein level. However, only bacterial TrxR is strongly induced by oxidative stress in Acanthamoeba castellanii. In this study, the impact of oxidative stress on key enzymes involved in the thioredoxin and the glutathione system of A. castellanii under different culture conditions and of clinical Acanthamoeba isolates was evaluated on the RNA level employing RT-qPCR. Additionally, the effect of auranofin, a thioredoxin reductase inhibitor, already established as a potential drug in other parasites, on target enzymes in A. castellanii was investigated. Oxidative stress induced by hydrogen peroxide led to significant stimulation of bacterial TrxR and thioredoxin, while diamide had a strong impact on all investigated enzymes. Different strains displayed distinct transcriptional responses, rather correlating to sensitivity against the respective stressor than to respective pathogenic potential. Culture conditions appear to have a major effect on transcriptional changes in A. castellanii. Treatment with auranofin led to transcriptional activation of the GSH system, indicating its role as a potential backup for the Trx system. Altogether, our data provide more profound insights into the complex redox system of Acanthamoeba, preparing the ground for further investigations on this topic.
Collapse
Affiliation(s)
- Martina Köhsler
-
Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna 1090 Vienna Austria
| | - David Leitsch
-
Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna 1090 Vienna Austria
| | - Alvie Loufouma Mbouaka
-
Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna 1090 Vienna Austria
| | - Maximilian Wekerle
-
Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna 1090 Vienna Austria
| | - Julia Walochnik
-
Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna 1090 Vienna Austria
| |
Collapse
|
3
|
Chan PP, Lin BY, Mak AJ, Lowe TM. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res 2021; 49:9077-9096. [PMID: 34417604 PMCID: PMC8450103 DOI: 10.1093/nar/gkab688] [Citation(s) in RCA: 582] [Impact Index Per Article: 194.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
tRNAscan-SE has been widely used for transfer RNA (tRNA) gene prediction for over twenty years, developed just as the first genomes were decoded. With the massive increase in quantity and phylogenetic diversity of genomes, the accurate detection and functional prediction of tRNAs has become more challenging. Utilizing a vastly larger training set, we created nearly one hundred specialized isotype- and clade-specific models, greatly improving tRNAscan-SE’s ability to identify and classify both typical and atypical tRNAs. We employ a new comparative multi-model strategy where predicted tRNAs are scored against a full set of isotype-specific covariance models, allowing functional prediction based on both the anticodon and the highest-scoring isotype model. Comparative model scoring has also enhanced the program's ability to detect tRNA-derived SINEs and other likely pseudogenes. For the first time, tRNAscan-SE also includes fast and highly accurate detection of mitochondrial tRNAs using newly developed models. Overall, tRNA detection sensitivity and specificity is improved for all isotypes, particularly those utilizing specialized models for selenocysteine and the three subtypes of tRNA genes encoding a CAU anticodon. These enhancements will provide researchers with more accurate and detailed tRNA annotation for a wider variety of tRNAs, and may direct attention to tRNAs with novel traits.
Collapse
Affiliation(s)
- Patricia P Chan
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Brian Y Lin
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Allysia J Mak
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Todd M Lowe
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
4
|
Leitsch D, Mbouaka AL, Köhsler M, Müller N, Walochnik J. An unusual thioredoxin system in the facultative parasite Acanthamoeba castellanii. Cell Mol Life Sci 2021; 78:3673-3689. [PMID: 33599799 PMCID: PMC8038987 DOI: 10.1007/s00018-021-03786-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 02/02/2021] [Indexed: 01/25/2023]
Abstract
The free-living amoeba Acanthamoeba castellanii occurs worldwide in soil and water and feeds on bacteria and other microorganisms. It is, however, also a facultative parasite and can cause serious infections in humans. The annotated genome of A. castellanii (strain Neff) suggests the presence of two different thioredoxin reductases (TrxR), of which one is of the small bacterial type and the other of the large vertebrate type. This combination is highly unusual. Similar to vertebrate TrxRases, the gene coding for the large TrxR in A. castellanii contains a UGA stop codon at the C-terminal active site, suggesting the presence of selenocysteine. We characterized the thioredoxin system in A. castellanii in conjunction with glutathione reductase (GR), to obtain a more complete understanding of the redox system in A. castellanii and the roles of its components in the response to oxidative stress. Both TrxRases localize to the cytoplasm, whereas GR localizes to the cytoplasm and the large organelle fraction. We could only identify one thioredoxin (Trx-1) to be indeed reduced by one of the TrxRases, i.e., by the small TrxR. This thioredoxin, in turn, could reduce one of the two peroxiredoxins tested and also methionine sulfoxide reductase A (MsrA). Upon exposure to hydrogen peroxide and diamide, only the small TrxR was upregulated in expression at the mRNA and protein levels, but not the large TrxR. Our results show that the small TrxR is involved in the A. castellanii's response to oxidative stress. The role of the large TrxR, however, remains elusive.
Collapse
Affiliation(s)
- David Leitsch
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria.
| | - Alvie Loufouma Mbouaka
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Martina Köhsler
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Norbert Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| |
Collapse
|
5
|
Escrig JI, Hahn HJ, Debnath A. Activity of Auranofin against Multiple Genotypes of Naegleria fowleri and Its Synergistic Effect with Amphotericin B In Vitro. ACS Chem Neurosci 2020; 11:2464-2471. [PMID: 32392039 DOI: 10.1021/acschemneuro.0c00165] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Primary amebic meningoencephalitis, caused by brain infection with a free-living ameba, Naegleria fowleri, leads to extensive inflammation of the brain and death within 3-7 days after symptoms begin. Treatment of primary amebic meningoencephalitis relies on amphotericin B in combination with other drugs, but use of amphotericin B is associated with severe adverse effects. Despite a fatality rate of over 97%, economic incentive to invest in development of antiamebic drugs by the pharmaceutical industry is lacking. Development of safe and rapidly acting drugs remains a critical unmet need to avert future deaths. Since FDA-approved anti-inflammatory and antiarthritic drug auranofin is a known inhibitor of selenoprotein synthesis and thioredoxin reductase and the genome of N. fowleri encodes genes for both selenocysteine biosynthesis and thioredoxin reductases, we tested the effect of auranofin against N. fowleri strains of different genotypes from the USA, Europe, and Australia. Auranofin was equipotent against all tested strains with an EC50 of 1-2 μM. Our growth inhibition study at different time points demonstrated that auranofin is fast-acting, and ∼90% growth inhibition was achieved within 16 h of drug exposure. A short exposure of N. fowleri to auranofin led to the accumulation of intracellular reactive oxygen species. This is consistent with auranofin's role in inhibiting antioxidant pathways. Further, combination of auranofin and amphotericin B led to 95% of growth inhibition with 2-9-fold dose reduction for amphotericin B and 3-20-fold dose reduction for auranofin. Auranofin has the potential to be repurposed for the treatment of primary amebic meningoencephalitis.
Collapse
Affiliation(s)
- Jose Ignacio Escrig
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0756, United States
| | - Hye Jee Hahn
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0756, United States
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0756, United States
| |
Collapse
|
6
|
Castañeda-Ovando A, Segovia-Cruz JA, Flores-Aguilar JF, Rodríguez-Serrano GM, Salazar-Pereda V, Ramírez-Godínez J, Contreras-López E, Jaimez-Ordaz J, González-Olivares LG. Serine-enriched minimal medium enhances conversion of selenium into selenocysteine by Streptococcus thermophilus. J Dairy Sci 2019; 102:6781-6789. [PMID: 31155253 DOI: 10.3168/jds.2019-16365] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/07/2019] [Indexed: 11/19/2022]
Abstract
Selenium is included in selenoprotein sequences, which participate in enzymatic processes necessary to preserve optimal health. Some lactic acid bacteria carry out the biotransformation of inorganic selenium in their metabolism. The complete biochemical mechanism of selenium biotransformation is still unknown; however, it is known that both the selenocysteine synthesis process and its subsequent incorporation into selenoproteins include serine as part of the action of seryl-RNAt synthetase. Therefore, the aim of this work was to determine the effect of serine during the biotransformation of selenium and the subsequence growth of Streptococcus thermophilus in a minimal medium. Two culture media were prepared, one enriched with the minimum inhibitory concentration of selenite (as Na2SeO3) and the other as a mixture of the minimum inhibitory concentration of selenite and serine. The absorbed selenium concentration was measured by inductively coupled plasma, and the selenocysteine identification was performed by reverse-phase HPLC. In the second culture medium, decreases in both times, the adaptation and the logarithmic phase, were observed. According to the results, it was possible to establish that the presence of serine allowed the biotransformation of selenite into selenocysteine by Strep. thermophilus.
Collapse
Affiliation(s)
- A Castañeda-Ovando
- Chemistry Department, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo km. 4.5, Mineral de la Reforma, Hgo., C.P. 42184, México
| | - J A Segovia-Cruz
- Chemistry Department, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo km. 4.5, Mineral de la Reforma, Hgo., C.P. 42184, México
| | - J F Flores-Aguilar
- Chemistry Department, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo km. 4.5, Mineral de la Reforma, Hgo., C.P. 42184, México
| | - G M Rodríguez-Serrano
- Biotechnology Department, Universidad Autónoma Metropolitana, Unidad Iztapalapa, AP 55-355 México D.F., México
| | - V Salazar-Pereda
- Chemistry Department, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo km. 4.5, Mineral de la Reforma, Hgo., C.P. 42184, México
| | - J Ramírez-Godínez
- Chemistry Department, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo km. 4.5, Mineral de la Reforma, Hgo., C.P. 42184, México
| | - E Contreras-López
- Chemistry Department, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo km. 4.5, Mineral de la Reforma, Hgo., C.P. 42184, México
| | - J Jaimez-Ordaz
- Chemistry Department, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo km. 4.5, Mineral de la Reforma, Hgo., C.P. 42184, México
| | - L G González-Olivares
- Chemistry Department, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo km. 4.5, Mineral de la Reforma, Hgo., C.P. 42184, México.
| |
Collapse
|
7
|
Samba-Louaka A, Delafont V, Rodier MH, Cateau E, Héchard Y. Free-living amoebae and squatters in the wild: ecological and molecular features. FEMS Microbiol Rev 2019; 43:415-434. [DOI: 10.1093/femsre/fuz011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Free-living amoebae are protists frequently found in water and soils. They feed on other microorganisms, mainly bacteria, and digest them through phagocytosis. It is accepted that these amoebae play an important role in the microbial ecology of these environments. There is a renewed interest for the free-living amoebae since the discovery of pathogenic bacteria that can resist phagocytosis and of giant viruses, underlying that amoebae might play a role in the evolution of other microorganisms, including several human pathogens. Recent advances, using molecular methods, allow to bring together new information about free-living amoebae. This review aims to provide a comprehensive overview of the newly gathered insights into (1) the free-living amoeba diversity, assessed with molecular tools, (2) the gene functions described to decipher the biology of the amoebae and (3) their interactions with other microorganisms in the environment.
Collapse
Affiliation(s)
- Ascel Samba-Louaka
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| | - Vincent Delafont
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| | - Marie-Hélène Rodier
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
- Laboratoire de Parasitologie et Mycologie, CHU La Milétrie, 2 rue de la Milétrie, 86021 Poitiers Cedex, France
| | - Estelle Cateau
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
- Laboratoire de Parasitologie et Mycologie, CHU La Milétrie, 2 rue de la Milétrie, 86021 Poitiers Cedex, France
| | - Yann Héchard
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| |
Collapse
|
8
|
Peroutka-Bigus N, Bellaire BH. Antiparasitic Activity of Auranofin against Pathogenic Naegleria fowleri. J Eukaryot Microbiol 2019; 66:684-688. [PMID: 30520183 DOI: 10.1111/jeu.12706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/09/2018] [Accepted: 11/20/2018] [Indexed: 11/30/2022]
Abstract
We report that the gold containing antirheumatoid drug auranofin is amoebicidal against human pathogenic Naegleria fowleri. Treatment of N. fowleri cultures at biologically relevant concentrations of 0.75-3.0 μg/ml auranofin reduced amoeba counts, metabolic activity, and increased cell permeability. These results suggest that the addition of auranofin may benefit the treatment of N. fowleri-infected patients afflicted by the rapidly fatal disease primary amoebic meningoencephalitis.
Collapse
Affiliation(s)
- Nathan Peroutka-Bigus
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, College of Veterinary Medicine, Ames, Iowa, 50011.,Interdepartmental Microbiology, Iowa State University, Ames, Iowa, 50011
| | - Bryan H Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, College of Veterinary Medicine, Ames, Iowa, 50011.,Interdepartmental Microbiology, Iowa State University, Ames, Iowa, 50011
| |
Collapse
|
9
|
Serrão VHB, Silva IR, da Silva MTA, Scortecci JF, de Freitas Fernandes A, Thiemann OH. The unique tRNASec and its role in selenocysteine biosynthesis. Amino Acids 2018; 50:1145-1167. [DOI: 10.1007/s00726-018-2595-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/26/2018] [Indexed: 12/26/2022]
|
10
|
Mariotti M. SECISearch3 and Seblastian: In-Silico Tools to Predict SECIS Elements and Selenoproteins. Methods Mol Biol 2018; 1661:3-16. [PMID: 28917033 DOI: 10.1007/978-1-4939-7258-6_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The computational identification of selenoprotein genes is complicated by the dual meaning of the UGA codon as stop and selenocysteine. SECIS elements are RNA structures essential for selenocysteine incorporation, which have been used as markers for selenoprotein genes in many bioinformatics studies. The most widely used tool for eukaryotic SECIS finding has been recently improved to its third generation, SECISearch3. This program is also a component of Seblastian, a pipeline for the identification of selenoprotein genes that employs SECIS finding as the first step. This chapter constitutes a practical guide to use SECISearch3 and Seblastian, which can be run via webservers at http://seblastian.crg.eu / or http://gladyshevlab.org/SelenoproteinPredictionServer/ .
Collapse
Affiliation(s)
- Marco Mariotti
- Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA. .,Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, Spain.
| |
Collapse
|
11
|
Recurrent horizontal transfer of arsenite methyltransferase genes facilitated adaptation of life to arsenic. Sci Rep 2017; 7:7741. [PMID: 28798375 PMCID: PMC5552862 DOI: 10.1038/s41598-017-08313-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022] Open
Abstract
The toxic metalloid arsenic has been environmentally ubiquitous since life first arose nearly four billion years ago and presents a challenge for the survival of all living organisms. Its bioavailability has varied dramatically over the history of life on Earth. As life spread, biogeochemical and climate changes cyclically increased and decreased bioavailable arsenic. To elucidate the history of arsenic adaptation across the tree of life, we reconstructed the phylogeny of the arsM gene that encodes the As(III) S-adenosylmethionine (SAM) methyltransferase. Our results suggest that life successfully moved into arsenic-rich environments in the late Archean Eon and Proterozoic Eon, respectively, by the spread of arsM genes. The arsM genes of bacterial origin have been transferred to other kingdoms of life on at least six occasions, and the resulting domesticated arsM genes promoted adaptation to environmental arsenic. These results allow us to peer into the history of arsenic adaptation of life on our planet and imply that dissemination of genes encoding diverse adaptive functions to toxic chemicals permit adaptation to changes in concentrations of environmental toxins over evolutionary history.
Collapse
|
12
|
Evolution of selenophosphate synthetases: emergence and relocation of function through independent duplications and recurrent subfunctionalization. Genome Res 2015; 25:1256-67. [PMID: 26194102 PMCID: PMC4561486 DOI: 10.1101/gr.190538.115] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/16/2015] [Indexed: 01/19/2023]
Abstract
Selenoproteins are proteins that incorporate selenocysteine (Sec), a nonstandard amino acid encoded by UGA, normally a stop codon. Sec synthesis requires the enzyme Selenophosphate synthetase (SPS or SelD), conserved in all prokaryotic and eukaryotic genomes encoding selenoproteins. Here, we study the evolutionary history of SPS genes, providing a map of selenoprotein function spanning the whole tree of life. SPS is itself a selenoprotein in many species, although functionally equivalent homologs that replace the Sec site with cysteine (Cys) are common. Many metazoans, however, possess SPS genes with substitutions other than Sec or Cys (collectively referred to as SPS1). Using complementation assays in fly mutants, we show that these genes share a common function, which appears to be distinct from the synthesis of selenophosphate carried out by the Sec- and Cys- SPS genes (termed SPS2), and unrelated to Sec synthesis. We show here that SPS1 genes originated through a number of independent gene duplications from an ancestral metazoan selenoprotein SPS2 gene that most likely already carried the SPS1 function. Thus, in SPS genes, parallel duplications and subsequent convergent subfunctionalization have resulted in the segregation to different loci of functions initially carried by a single gene. This evolutionary history constitutes a remarkable example of emergence and evolution of gene function, which we have been able to trace thanks to the singular features of SPS genes, wherein the amino acid at a single site determines unequivocally protein function and is intertwined to the evolutionary fate of the entire selenoproteome.
Collapse
|