1
|
Li TT, Zhao DY, Liang QL, Elsheikha HM, Wang M, Sun LX, Zhang ZW, Chen XQ, Zhu XQ, Wang JL. The antioxidant protein glutaredoxin 1 is essential for oxidative stress response and pathogenicity of Toxoplasma gondii. FASEB J 2023; 37:e22932. [PMID: 37115746 DOI: 10.1096/fj.202201275r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 03/22/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Glutaredoxins (Grxs) are ubiquitous antioxidant proteins involved in many molecular processes to protect cells against oxidative damage. Here, we study the roles of Grxs in the pathogenicity of Toxoplasma gondii. We show that Grxs are localized in the mitochondria (Grx1), cytoplasm (Grx2), and apicoplast (Grx3, Grx4), while Grx5 had an undetectable level of expression. We generated Δgrx1-5 mutants of T. gondii type I RH and type II Pru strains using CRISPR-Cas9 system. No significant differences in the infectivity were detected between four Δgrx (grx2-grx5) strains and their respective wild-type (WT) strains in vitro or in vivo. Additionally, no differences were detected in the production of reactive oxygen species, total antioxidant capacity, superoxide dismutase activity, and sensitivity to external oxidative stimuli. Interestingly, RHΔgrx1 or PruΔgrx1 exhibited significant differences in all the investigated aspects compared to the other grx2-grx5 mutant and WT strains. Transcriptome analysis suggests that deletion of grx1 altered the expression of genes involved in transport and metabolic pathways, signal transduction, translation, and obsolete oxidation-reduction process. The data support the conclusion that grx1 supports T. gondii resistance to oxidative killing and is essential for the parasite growth in cultured cells and pathogenicity in mice and that the active site CGFS motif was necessary for Grx1 activity.
Collapse
Affiliation(s)
- Ting-Ting Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu Province, Lanzhou, People's Republic of China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Sichuan Province, Chengdu, People's Republic of China
| | - Dan-Yu Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu Province, Lanzhou, People's Republic of China
| | - Qin-Li Liang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu Province, Lanzhou, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, UK
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu Province, Lanzhou, People's Republic of China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Sichuan Province, Chengdu, People's Republic of China
| | - Li-Xiu Sun
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu Province, Lanzhou, People's Republic of China
| | - Zhi-Wei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu Province, Lanzhou, People's Republic of China
| | - Xiao-Qing Chen
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, People's Republic of China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, People's Republic of China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province, People's Republic of China
| | - Jin-Lei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu Province, Lanzhou, People's Republic of China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Sichuan Province, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Song X, Yang X, Ying Z, Zhang H, Liu J, Liu Q. Identification and Function of Apicoplast Glutaredoxins in Neospora caninum. Int J Mol Sci 2021; 22:ijms222111946. [PMID: 34769376 PMCID: PMC8584781 DOI: 10.3390/ijms222111946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 01/09/2023] Open
Abstract
Glutaredoxins (GRXs), important components of the intracellular thiol redox system, are involved in multiple cellular processes. In a previous study, we identified five GRXs in the apicomplexan parasite, Neospora caninum. In the present study, we confirmed that the GRXs S14 and C5 are located in the apicoplast, which suggests unique functions for these proteins. Although single-gene deficiency did not affect the growth of parasites, a double knockout (Δgrx S14Δgrx C5) significantly reduced their reproductive capacity. However, there were no significant changes in redox indices (GSH/GSSG ratio, reactive oxygen species and hydroxyl radical levels) in double-knockout parasites, indicating that grx S14 and grx C5 are not essential for maintaining the redox balance in parasite cells. Key amino acid mutations confirmed that the Cys203 of grx S14 and Cys253/256 of grx C5 are important for parasite growth. Based on comparative proteomics, 79 proteins were significantly downregulated in double-knockout parasites, including proteins mainly involved in the electron transport chain, the tricarboxylic acid cycle and protein translation. Collectively, GRX S14 and GRX C5 coordinate the growth of parasites. However, considering their special localization, the unique functions of GRX S14 and GRX C5 need to be further studied.
Collapse
Affiliation(s)
- Xingju Song
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (X.S.); (X.Y.); (Z.Y.); (H.Z.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Xu Yang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (X.S.); (X.Y.); (Z.Y.); (H.Z.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Zhu Ying
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (X.S.); (X.Y.); (Z.Y.); (H.Z.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Heng Zhang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (X.S.); (X.Y.); (Z.Y.); (H.Z.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (X.S.); (X.Y.); (Z.Y.); (H.Z.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (X.S.); (X.Y.); (Z.Y.); (H.Z.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
3
|
Song X, Yang X, Xue Y, Yang C, Wu K, Liu J, Liu Q. Glutaredoxin 1 Deficiency Leads to Microneme Protein-Mediated Growth Defects in Neospora caninum. Front Microbiol 2020; 11:536044. [PMID: 32983074 PMCID: PMC7487798 DOI: 10.3389/fmicb.2020.536044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/14/2020] [Indexed: 11/13/2022] Open
Abstract
Neospora caninum is an obligate intracellular protozoan parasite that infects a wide range of mammalian species and causes spontaneous abortion in cattle. N. caninum is exposed to oxidative stress during its life cycle. Oxidoreductase is crucial for parasite response to the environmental stresses. Glutaredoxins (Grxs) are small oxidoreductases of the thioredoxin family proteins that catalyze thiol-disulfide exchange reactions by utilizing electrons from the tripeptide glutathione (γGlu-Cys-Gly; GSH). Grxs are key elements in redox signaling and cell signal transduction. However, Grxs are an unexplored set of oxidoreductases in N. caninum. Here, we identified two cytoplasm located glutaredoxin domain-containing proteins (NcGrx1 and NcGrx3) in N. caninum. To better understand the functions of these Grx proteins, we generated NcGrx1 and NcGrx3 deficiency and overexpression strains. The deletion or overexpression of NcGrx3 had no significant effect on the growth of N. caninum in vitro and in vivo. NcGrx1 knockout parasites displayed a significant growth defect, which was due to the influence on invasion and egress abilities. Moreover, NcGrx1 deficiency decreased the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) (GSH/GSSG ratio), caused a significant accumulation of hydroxyl radical in parasites, and an increase in apoptotic cells under oxidative stress (H2O2) condition. To determine the cause of growth defects in ΔNcGrx1, we examined the transcription levels of various invasion-egress related genes as measured by qPCR. We found a significant decrease in MIC1, MIC4, and MIC6 genes. Further investigation found that the secretion of MIC1, MIC4, and MIC6 proteins was significantly affected. Collectively, Ncgrx1 is important for microneme protein-mediated parasite growth, and maybe a potential intervention target for the N. caninum.
Collapse
Affiliation(s)
- Xingju Song
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xu Yang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yangfei Xue
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Congshan Yang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kaijian Wu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Ebersoll S, Bogacz M, Günter LM, Dick TP, Krauth-Siegel RL. A tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione metabolism in trypanosomes. eLife 2020; 9:53227. [PMID: 32003744 PMCID: PMC7046469 DOI: 10.7554/elife.53227] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Trypanosomes have a trypanothione redox metabolism that provides the reducing equivalents for numerous essential processes, most being mediated by tryparedoxin (Tpx). While the biosynthesis and reduction of trypanothione are cytosolic, the molecular basis of the thiol redox homeostasis in the single mitochondrion of these parasites has remained largely unknown. Here we expressed Tpx-roGFP2, roGFP2-hGrx1 or roGFP2 in either the cytosol or mitochondrion of Trypanosoma brucei. We show that the novel Tpx-roGFP2 is a superior probe for the trypanothione redox couple and that the mitochondrial matrix harbors a trypanothione system. Inhibition of trypanothione biosynthesis by the anti-trypanosomal drug Eflornithine impairs the ability of the cytosol and mitochondrion to cope with exogenous oxidative stresses, indicating a direct link between both thiol systems. Tpx depletion abolishes the cytosolic, but only partially affects the mitochondrial sensor response to H2O2. This strongly suggests that the mitochondrion harbors some Tpx and, another, as yet unidentified, oxidoreductase.
Collapse
Affiliation(s)
| | - Marta Bogacz
- Biochemie-Zentrum der Universität Heidelberg, Heidelberg, Germany
| | - Lina M Günter
- Biochemie-Zentrum der Universität Heidelberg, Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
5
|
Franco J, Scarone L, Comini MA. Novel distamycin analogues that block the cell cycle of African trypanosomes with high selectivity and potency. Eur J Med Chem 2020; 189:112043. [PMID: 31978782 DOI: 10.1016/j.ejmech.2020.112043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/03/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Polyamides-based compounds related to the Streptomycetal distamycin and netropsin are potent cytostatic molecules that bind to AT-rich regions of the minor groove of the DNA, hence interfering with DNA replication and transcription. Recently, derivatives belonging to this scaffold have been reported to halt the proliferation of deadly African trypanosomes by different and unrelated mechanisms. Here we describe the synthesis and preliminary characterization of the anti-trypanosomal mode of action of new potent and selective distamycin analogues. Two tri-heterocyclic derivatives containing a central N-methyl pyrrole ring (16 and 17) displayed high activity (EC50 < 20 nM) and selectivity (selectivity index >5000 with respect to mammalian macrophages) against the infective form of T. brucei. Both compounds caused cell cycle arrest by blocking the replication of the mitochondrial DNA but without affecting its integrity. This mode of action clearly differs from that reported for classical minor groove binder (MGB) drugs, which induce the degradation of the mitochondrial DNA. In line with this, in vitro assays suggest that 16 and 17 have a comparatively lower affinity for different template DNAs than the MGB drug diminazene. Therapeutic efficacy studies and stability assays suggest that the pharmacological properties of the hits should be optimized. The compounds can be rated as excellent scaffolds for the design of highly potent and selective anti-T. brucei agents.
Collapse
Affiliation(s)
- Jaime Franco
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay; Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Laura Scarone
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
| | - Marcelo A Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
6
|
Currier RB, Ulrich K, Leroux AE, Dirdjaja N, Deambrosi M, Bonilla M, Ahmed YL, Adrian L, Antelmann H, Jakob U, Comini MA, Krauth-Siegel RL. An essential thioredoxin-type protein of Trypanosoma brucei acts as redox-regulated mitochondrial chaperone. PLoS Pathog 2019; 15:e1008065. [PMID: 31557263 PMCID: PMC6783113 DOI: 10.1371/journal.ppat.1008065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/08/2019] [Accepted: 09/02/2019] [Indexed: 12/22/2022] Open
Abstract
Most known thioredoxin-type proteins (Trx) participate in redox pathways, using two highly conserved cysteine residues to catalyze thiol-disulfide exchange reactions. Here we demonstrate that the so far unexplored Trx2 from African trypanosomes (Trypanosoma brucei) lacks protein disulfide reductase activity but functions as an effective temperature-activated and redox-regulated chaperone. Immunofluorescence microscopy and fractionated cell lysis revealed that Trx2 is located in the mitochondrion of the parasite. RNA-interference and gene knock-out approaches showed that depletion of Trx2 impairs growth of both mammalian bloodstream and insect stage procyclic parasites. Procyclic cells lacking Trx2 stop proliferation under standard culture conditions at 27°C and are unable to survive prolonged exposure to 37°C, indicating that Trx2 plays a vital role that becomes augmented under heat stress. Moreover, we found that Trx2 contributes to the in vivo infectivity of T. brucei. Remarkably, a Trx2 version, in which all five cysteines were replaced by serine residues, complements for the wildtype protein in conditional knock-out cells and confers parasite infectivity in the mouse model. Characterization of the recombinant protein revealed that Trx2 can coordinate an iron sulfur cluster and is highly sensitive towards spontaneous oxidation. Moreover, we discovered that both wildtype and mutant Trx2 protect other proteins against thermal aggregation and preserve their ability to refold upon return to non-stress conditions. Activation of the chaperone function of Trx2 appears to be triggered by temperature-mediated structural changes and inhibited by oxidative disulfide bond formation. Our studies indicate that Trx2 acts as a novel chaperone in the unique single mitochondrion of T. brucei and reveal a new perspective regarding the physiological function of thioredoxin-type proteins in trypanosomes.
Collapse
Affiliation(s)
- Rachel B. Currier
- Biochemie-Zentrum der Universität Heidelberg (BZH), Heidelberg, Germany
| | - Kathrin Ulrich
- Biochemie-Zentrum der Universität Heidelberg (BZH), Heidelberg, Germany
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Natalie Dirdjaja
- Biochemie-Zentrum der Universität Heidelberg (BZH), Heidelberg, Germany
| | - Matías Deambrosi
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Mariana Bonilla
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | | - Lorenz Adrian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
- Fachgebiet Geobiotechnologie, Technische Universität Berlin, Berlin, Germany
| | - Haike Antelmann
- Institut für Biologie-Mikrobiologie, Freie Universität Berlin, Berlin, Germany
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Marcelo A. Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | |
Collapse
|
7
|
Ulrich K, Jakob U. The role of thiols in antioxidant systems. Free Radic Biol Med 2019; 140:14-27. [PMID: 31201851 PMCID: PMC7041647 DOI: 10.1016/j.freeradbiomed.2019.05.035] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/04/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
The sulfur biochemistry of the thiol group endows cysteines with a number of highly specialized and unique features that enable them to serve a variety of different functions in the cell. Typically highly conserved in proteins, cysteines are predominantly found in functionally or structurally crucial regions, where they act as stabilizing, catalytic, metal-binding and/or redox-regulatory entities. As highly abundant low molecular weight thiols, cysteine thiols and their oxidized disulfide counterparts are carefully balanced to maintain redox homeostasis in various cellular compartments, protect organisms from oxidative and xenobiotic stressors and partake actively in redox-regulatory and signaling processes. In this review, we will discuss the role of protein thiols as scavengers of hydrogen peroxide in antioxidant enzymes, use thiol peroxidases to exemplify how protein thiols contribute to redox signaling, provide an overview over the diverse set of low molecular weight thiol-based redox systems found in biology, and illustrate how thiol-based redox systems have evolved not only to protect against but to take full advantage of a world full of molecular oxygen.
Collapse
Affiliation(s)
- Kathrin Ulrich
- Department of Molecular, Cellular, and Developmental Biology, University of Michgan, Ann Arbor, MI, 48109, USA
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michgan, Ann Arbor, MI, 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
8
|
Manta B, Möller MN, Bonilla M, Deambrosi M, Grunberg K, Bellanda M, Comini MA, Ferrer-Sueta G. Kinetic studies reveal a key role of a redox-active glutaredoxin in the evolution of the thiol-redox metabolism of trypanosomatid parasites. J Biol Chem 2018; 294:3235-3248. [PMID: 30593501 DOI: 10.1074/jbc.ra118.006366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/27/2018] [Indexed: 12/11/2022] Open
Abstract
Trypanosomes are flagellated protozoan parasites (kinetoplastids) that have a unique redox metabolism based on the small dithiol trypanothione (T(SH)2). Although GSH may still play a biological role in trypanosomatid parasites beyond being a building block of T(SH)2, most of its functions are replaced by T(SH)2 in these organisms. Consequently, trypanosomes have several enzymes adapted to using T(SH)2 instead of GSH, including the glutaredoxins (Grxs). However, the mechanistic basis of Grx specificity for T(SH)2 is unknown. Here, we combined fast-kinetic and biophysical approaches, including NMR, MS, and fluorescent tagging, to study the redox function of Grx1, the only cytosolic redox-active Grx in trypanosomes. We observed that Grx1 reduces GSH-containing disulfides (including oxidized trypanothione) in very fast reactions (k > 5 × 105 m-1 s-1). We also noted that disulfides without a GSH are much slower oxidants, suggesting a strongly selective binding of the GSH molecule. Not surprisingly, oxidized Grx1 was also reduced very fast by T(SH)2 (4.8 × 106 m-1 s-1); however, GSH-mediated reduction was extremely slow (39 m-1 s-1). This kinetic selectivity in the reduction step of the catalytic cycle suggests that Grx1 uses preferentially a dithiol mechanism, forming a disulfide on the active site during the oxidative half of the catalytic cycle and then being rapidly reduced by T(SH)2 in the reductive half. Thus, the reduction of glutathionylated substrates avoids GSSG accumulation in an organism lacking GSH reductase. These findings suggest that Grx1 has played an important adaptive role during the rewiring of the thiol-redox metabolism of kinetoplastids.
Collapse
Affiliation(s)
- Bruno Manta
- From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.,the Laboratorio de Fisicoquímica Biológica and
| | - Matías N Möller
- the Laboratorio de Fisicoquímica Biológica and.,the Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay, and
| | - Mariana Bonilla
- From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.,the Laboratorio de Fisicoquímica Biológica and.,Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Matías Deambrosi
- From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.,Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Karin Grunberg
- From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.,the Laboratorio de Fisicoquímica Biológica and
| | - Massimo Bellanda
- the Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova 35131, Italy
| | - Marcelo A Comini
- From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Gerardo Ferrer-Sueta
- the Laboratorio de Fisicoquímica Biológica and .,the Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay, and
| |
Collapse
|
9
|
Bogacz M, Krauth-Siegel RL. Tryparedoxin peroxidase-deficiency commits trypanosomes to ferroptosis-type cell death. eLife 2018; 7:37503. [PMID: 30047863 PMCID: PMC6117152 DOI: 10.7554/elife.37503] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/24/2018] [Indexed: 01/19/2023] Open
Abstract
Tryparedoxin peroxidases, distant relatives of glutathione peroxidase 4 in higher eukaryotes, are responsible for the detoxification of lipid-derived hydroperoxides in African trypanosomes. The lethal phenotype of procyclic Trypanosoma brucei that lack the enzymes fulfils all criteria defining a form of regulated cell death termed ferroptosis. Viability of the parasites is preserved by α-tocopherol, ferrostatin-1, liproxstatin-1 and deferoxamine. Without protecting agent, the cells display, primarily mitochondrial, lipid peroxidation, loss of the mitochondrial membrane potential and ATP depletion. Sensors for mitochondrial oxidants and chelatable iron as well as overexpression of a mitochondrial iron-superoxide dismutase attenuate the cell death. Electron microscopy revealed mitochondrial matrix condensation and enlarged cristae. The peroxidase-deficient parasites are subject to lethal iron-induced lipid peroxidation that probably originates at the inner mitochondrial membrane. Taken together, ferroptosis is an ancient cell death program that can occur at individual subcellular membranes and is counterbalanced by evolutionary distant thiol peroxidases. Plants, animals and fungi all belong to a group of organisms known as eukaryotes. Their cells host a variety of compartments, with each having a specific role. For example, mitochondria are tasked with providing the energy that powers most of the processes that keep the cell alive. Membranes delimit these compartments, as well as the cells themselves. Iron is an element needed for chemical reactions that are essential for the cell to survive. Yet, the byproducts of these reactions can damage – ‘oxidize’ – the lipid molecules that form the cell’s membranes, including the one around mitochondria. Unless enzymes known as peroxidases come to repair the oxidized lipids, the cell dies in a process called ferroptosis. Scientists know that this death mechanism is programmed into the cells of humans and other complex eukaryotes. However, Bogacz and Krauth-Siegel wanted to know if ferroptosis also exists in creatures that appeared early in the evolution of eukaryotes, such as the trypanosome Trypanosoma brucei. This single-cell parasite causes sleeping sickness in humans and a disease called nagana in horses and cattle. Before it infects a mammal, T. brucei goes through an ‘insect stage’ where it lives in the tsetse fly; there, it relies on its mitochondrion to produce energy. Bogacz and Krauth-Siegel now show that if the parasites in the insect stage do not have a specific type of peroxidases, they die within a few hours. In particular, problems in the membranes of the mitochondrion stop the compartment from working properly. These peroxidases-free trypanosomes fare better if they are exposed to molecules that prevent iron from taking part in the reactions that can harm lipids. They also survive more if they are forced to create large amounts of an enzyme that relies on iron to protect the mitochondrion against oxidation. Finally, using drugs that prevent ferroptosis in human cells completely rescues these trypanosomes. Taken together, the results suggest that ferroptosis is an ancient cell death program which exists in T. brucei; and that, in the insect stage of the parasite's life cycle, this process first damages the mitochondrion. This last finding could be particularly relevant because the role of mitochondria in ferroptosis in mammals is highly debated. Yet, most of the research is done in cells that do not rely on this cellular compartment to get their energy. During their life cycle, trypanosomes are either dependent on their mitochondria, or they can find their energy through other sources: this could make them a good organism in which to dissect the precise mechanisms of ferroptosis.
Collapse
Affiliation(s)
- Marta Bogacz
- Biochemie-Zentrum der Universität Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
10
|
Manta B, Bonilla M, Fiestas L, Sturlese M, Salinas G, Bellanda M, Comini MA. Polyamine-Based Thiols in Trypanosomatids: Evolution, Protein Structural Adaptations, and Biological Functions. Antioxid Redox Signal 2018; 28:463-486. [PMID: 29048199 DOI: 10.1089/ars.2017.7133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE Major pathogenic enterobacteria and protozoan parasites from the phylum Euglenozoa, such as trypanosomatids, are endowed with glutathione (GSH)-spermidine (Sp) derivatives that play important roles in signaling and metal and thiol-redox homeostasis. For some Euglenozoa lineages, the GSH-Sp conjugates represent the main redox cosubstrates around which entire new redox systems have evolved. Several proteins underwent molecular adaptations to synthesize and utilize the new polyamine-based thiols. Recent Advances: The genomes of closely related organisms have recently been sequenced, which allows mining and analysis of gene sequences that belong to these peculiar redox systems. Similarly, the three-dimensional structures of several of these proteins have been solved, which allows for comparison with their counterparts in classical redox systems that rely on GSH/glutaredoxin and thioredoxin. CRITICAL ISSUES The evolutionary and structural aspects related to the emergence and use of GSH-Sp conjugates in Euglenozoa are reviewed focusing on unique structural specializations that proteins developed to use N1,N8-bisglutathionylspermidine (trypanothione) as redox cosubstrate. An updated overview on the biochemical and biological significance of the major enzymatic activities is also provided. FUTURE DIRECTIONS A thiol-redox system strictly dependent on trypanothione is a feature unique to trypanosomatids. The physicochemical properties of the polyamine-GSH conjugates were a major driving force for structural adaptation of proteins that use these thiols as ligand and redox cofactor. In fact, the structural differences of indispensable components of this system can be exploited toward selective drug development. Future research should clarify whether additional cellular processes are regulated by the trypanothione system. Antioxid. Redox Signal. 28, 463-486.
Collapse
Affiliation(s)
- Bruno Manta
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay .,2 Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica , Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Mariana Bonilla
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay .,2 Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica , Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Lucía Fiestas
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay
| | - Mattia Sturlese
- 3 Department of Chemical Sciences, Università degli Studi di Padova , Padova, Italy
| | - Gustavo Salinas
- 4 Worm Biology Lab, Institut Pasteur de Montevideo , Montevideo, Uruguay .,5 Departamento de Biociencias, Facultad de Química, Universidad de la República , Montevideo, Uruguay
| | - Massimo Bellanda
- 3 Department of Chemical Sciences, Università degli Studi di Padova , Padova, Italy
| | - Marcelo A Comini
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay
| |
Collapse
|
11
|
Ebersoll S, Musunda B, Schmenger T, Dirdjaja N, Bonilla M, Manta B, Ulrich K, Comini MA, Krauth-Siegel RL. A glutaredoxin in the mitochondrial intermembrane space has stage-specific functions in the thermo-tolerance and proliferation of African trypanosomes. Redox Biol 2018; 15:532-547. [PMID: 29413965 PMCID: PMC5975080 DOI: 10.1016/j.redox.2018.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/23/2018] [Indexed: 12/30/2022] Open
Abstract
Trypanosoma brucei glutaredoxin 2 (Grx2) is a dithiol glutaredoxin that is specifically located in the mitochondrial intermembrane space. Bloodstream form parasites lacking Grx2 or both, Grx2 and the cytosolic Grx1, are viable in vitro and infectious to mice suggesting that neither oxidoreductase is needed for survival or infectivity to mammals. A 37 °C to 39 °C shift changes the cellular redox milieu of bloodstream cells to more oxidizing conditions and induces a significantly stronger growth arrest in wildtype parasites compared to the mutant cells. Grx2-deficient cells ectopically expressing the wildtype form of Grx2 with its C31QFC34 active site, but not the C34S mutant, regain the sensitivity of the parental strain, indicating that the physiological role of Grx2 requires both active site cysteines. In the procyclic insect stage of the parasite, Grx2 is essential. Both alleles can be replaced if procyclic cells ectopically express authentic or C34S, but not C31S/C34S Grx2, pointing to a redox role that relies on a monothiol mechanism. RNA-interference against Grx2 causes a virtually irreversible proliferation defect. The cells adopt an elongated morphology but do not show any significant alteration in the cell cycle. The growth retardation is attenuated by high glucose concentrations. Under these conditions, procyclic cells obtain ATP by substrate level phosphorylation suggesting that Grx2 might regulate a respiratory chain component. Bloodstream T. brucei lacking glutaredoxin 2 are fully viable in vitro and in vivo. A temperature rise shifts the cellular redox state to more oxidizing conditions. Glutaredoxin 2-deficiency confers bloodstream cells with thermo-tolerance. The insect stage requires redox-active glutaredoxin 2 for viability and morphology.
Collapse
Affiliation(s)
- Samantha Ebersoll
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Blessing Musunda
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Torsten Schmenger
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Natalie Dirdjaja
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Mariana Bonilla
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay
| | - Bruno Manta
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay
| | - Kathrin Ulrich
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Marcelo A Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay
| | - R Luise Krauth-Siegel
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
12
|
Ulrich K, Finkenzeller C, Merker S, Rojas F, Matthews K, Ruppert T, Krauth-Siegel RL. Stress-Induced Protein S-Glutathionylation and S-Trypanothionylation in African Trypanosomes-A Quantitative Redox Proteome and Thiol Analysis. Antioxid Redox Signal 2017; 27:517-533. [PMID: 28338335 PMCID: PMC5567454 DOI: 10.1089/ars.2016.6947] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIMS Trypanosomatids have a unique trypanothione-based thiol redox metabolism. The parasite-specific dithiol is synthesized from glutathione and spermidine, with glutathionylspermidine as intermediate catalyzed by trypanothione synthetase. In this study, we address the oxidative stress response of African trypanosomes with special focus on putative protein S-thiolation. RESULTS Challenging bloodstream Trypanosoma brucei with diamide, H2O2 or hypochlorite results in distinct levels of reversible overall protein S-thiolation. Quantitative proteome analyses reveal 84 proteins oxidized in diamide-stressed parasites. Fourteen of them, including several essential thiol redox proteins and chaperones, are also enriched when glutathione/glutaredoxin serves as a reducing system indicating S-thiolation. In parasites exposed to H2O2, other sets of proteins are modified. Only three proteins are S-thiolated under all stress conditions studied in accordance with a highly specific response. H2O2 causes primarily the formation of free disulfides. In contrast, in diamide-treated cells, glutathione, glutathionylspermidine, and trypanothione are almost completely protein bound. Remarkably, the total level of trypanothione is decreased, whereas those of glutathione and glutathionylspermidine are increased, indicating partial hydrolysis of protein-bound trypanothione. Depletion of trypanothione synthetase exclusively induces protein S-glutathionylation. Total mass analyses of a recombinant peroxidase treated with T(SH)2 and either diamide or hydrogen peroxide verify protein S-trypanothionylation as stable modification. INNOVATION Our data reveal for the first time that trypanosomes employ protein S-thiolation when exposed to exogenous and endogenous oxidative stresses and trypanothione, despite its dithiol character, forms protein-mixed disulfides. CONCLUSION The stress-specific responses shown here emphasize protein S-trypanothionylation and S-glutathionylation as reversible protection mechanism in these parasites. Antioxid. Redox Signal. 27, 517-533.
Collapse
Affiliation(s)
- Kathrin Ulrich
- 1 Biochemie-Zentrum der Universität Heidelberg (BZH) , Heidelberg, Germany
| | | | - Sabine Merker
- 2 Zentrum für Molekularbiologie der Universität Heidelberg (ZMBH) , Heidelberg, Germany
| | - Federico Rojas
- 3 Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh , Edinburgh, United Kingdom
| | - Keith Matthews
- 3 Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh , Edinburgh, United Kingdom
| | - Thomas Ruppert
- 2 Zentrum für Molekularbiologie der Universität Heidelberg (ZMBH) , Heidelberg, Germany
| | | |
Collapse
|
13
|
Franco J, Sardi F, Szilágyi L, Kövér KE, Fehér K, Comini MA. Diglycosyl diselenides alter redox homeostasis and glucose consumption of infective African trypanosomes. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:303-313. [PMID: 28826037 PMCID: PMC5565762 DOI: 10.1016/j.ijpddr.2017.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 12/16/2022]
Abstract
With the aim to develop compounds able to target multiple metabolic pathways and, thus, to lower the chances of drug resistance, we investigated the anti-trypanosomal activity and selectivity of a series of symmetric diglycosyl diselenides and disulfides. Of 18 compounds tested the fully acetylated forms of di-β-D-glucopyranosyl and di-β-D-galactopyranosyl diselenides (13 and 15, respectively) displayed strong growth inhibition against the bloodstream stage of African trypanosomes (EC50 0.54 μM for 13 and 1.49 μM for 15) although with rather low selectivity (SI < 10 assayed with murine macrophages). Nonacetylated versions of the same sugar diselenides proved to be, however, much less efficient or completely inactive to suppress trypanosome growth. Significantly, the galactosyl (15), and to a minor extent the glucosyl (13), derivative inhibited glucose catabolism but not its uptake. Both compounds induced redox unbalance in the pathogen. In vitro NMR analysis indicated that diglycosyl diselenides react with glutathione, under physiological conditions, via formation of selenenylsulfide bonds. Our results suggest that non-specific cellular targets as well as actors of the glucose and the redox metabolism of the parasite may be affected. These molecules are therefore promising leads for the development of novel multitarget antitrypanosomal agents. Acetylated diglycosyl diselenides inhibit the proliferation of infective Trypanosoma brucei. A galactosyl derivative impairs parasite' glucose consumption and redox homeostasis. Diglycosyl diselenides react covalently with glutathione under mild conditions.. Acetylated diglycosyl diselenides represent multitarget antitrypanosomal candidates.
Collapse
Affiliation(s)
- Jaime Franco
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay; Cátedra de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de La República, Gral. Flores 2124, 11800 Montevideo, Uruguay
| | - Florencia Sardi
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
| | - László Szilágyi
- Department of Chemistry, Faculty of Science and Technology, University of Debrecen, H-4010 Debrecen, Pf. 20, Hungary
| | - Katalin E Kövér
- Department of Chemistry, Faculty of Science and Technology, University of Debrecen, H-4010 Debrecen, Pf. 20, Hungary
| | - Krisztina Fehér
- Department of Organic and Macromolecular Chemistry, University of Gent, Krijgslaan 281 S4, B-9000 Gent, Belgium.
| | - Marcelo A Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay.
| |
Collapse
|
14
|
Song X, Yan M, Hu D, Wang Y, Wang N, Gu X, Peng X, Yang G. Molecular characterization and serodiagnostic potential of a novel dithiol glutaredoxin 1 from Echinococcus granulosus. Parasit Vectors 2016; 9:456. [PMID: 27535033 PMCID: PMC4989415 DOI: 10.1186/s13071-016-1741-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/04/2016] [Indexed: 01/21/2023] Open
Abstract
Background The larval stage of Echinococcus granulosus is the etiological agent of cystic echinococcosis (CE), which causes serious morbidity and mortality in many areas. There is no reliable method to monitor sheep CE. Here, we characterize E. granulosus glutaredoxin 1 (Eg-Grx1) and report an improved immunodiagnostic method for CE. Methods We cloned and expressed recombinant Eg-Grx1 and generated antibodies. We analyzed the location of the protein in different parasite stages by fluorescence immunohistochemistry, detected the immunogenicity of recombinant Eg-Grx1, and developed an indirect ELISA (iELISA) for CE serodiagnosis. Results Eg-Grx1 is a classic dithiol Grx with several GSH-binding motifs. Native Eg-Grx1 protein was distributed in the tegument of protoscoleces, the whole germinal layer, and the parenchymatous tissue of adult worms. Recombinant Eg-Grx1 exhibited good immunoreactivity to CE-infected sheep serum. An iELISA using this antigen showed specificity of 64.3 % (9/14) and sensitivity of 1:3200, and the diagnostic accordance rate was 97.9 % (47/48) compared with the results of necropsy. Conclusion We characterized a novel Grx (Eg-Grx1) from a parasitic helminth and present a comprehensive analysis of the sequence and structure of this protein. The recombinant Eg-Grx1 protein showed good potential serodiagnostic performance, and we established an iELISA method, which may contribute to the surveillance of sheep CE in epidemic areas.
Collapse
Affiliation(s)
- Xingju Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Min Yan
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dandan Hu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ning Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Ya'an, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|