1
|
Breloer M, Linnemann L. Strongyloides ratti infection in mice: immune response and immune modulation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220440. [PMID: 38008111 PMCID: PMC10676808 DOI: 10.1098/rstb.2022.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/09/2023] [Indexed: 11/28/2023] Open
Abstract
Strongyloides ratti is a natural parasite of wild rats and most laboratory mouse strains are also fully permissive. The infection can be divided into three distinct phases: the tissue migration of the infective third stage larvae during the first two days, the early intestinal establishment of S. ratti parasites molting to adults on days three to six and the later intestinal parasitic phase until the end of infection. Immunocompetent mice terminate the S. ratti infection after one month and are semi-resistant to a second infection. Employing the powerful tools of mouse immunology has facilitated a detailed analysis of the initiation, execution and regulation of the immune response to S. ratti. Here we review the information collected to date on the protective immune response to migrating S. ratti larvae in tissues and to adult parasites in the intestine. We show that depending on the phase of infection, a site-specific portfolio of immune effector mechanisms is required for infection control. In addition, we summarize the strategies employed by S. ratti to evade the immune system and survive long enough in its host to replicate despite an effective immune response. Selected murine studies using the closely related Strongyloides venezuelensis will be discussed. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Minka Breloer
- Section of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg 20359, Germany
- Department of Biology, University of Hamburg, Hamburg 20156, Germany
| | - Lara Linnemann
- Section of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg 20359, Germany
| |
Collapse
|
2
|
Berger CS, Laroche J, Maaroufi H, Martin H, Moon KM, Landry CR, Foster LJ, Aubin-Horth N. The parasite Schistocephalus solidus secretes proteins with putative host manipulation functions. Parasit Vectors 2021; 14:436. [PMID: 34454597 PMCID: PMC8400842 DOI: 10.1186/s13071-021-04933-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Manipulative parasites are thought to liberate molecules in their external environment, acting as manipulation factors with biological functions implicated in their host's physiological and behavioural alterations. These manipulation factors are part of a complex mixture called the secretome. While the secretomes of various parasites have been described, there is very little data for a putative manipulative parasite. It is necessary to study the molecular interaction between a manipulative parasite and its host to better understand how such alterations evolve. METHODS Here, we used proteomics to characterize the secretome of a model cestode with a complex life cycle based on trophic transmission. We studied Schistocephalus solidus during the life stage in which behavioural changes take place in its obligatory intermediate fish host, the threespine stickleback (Gasterosteus aculeatus). We produced a novel genome sequence and assembly of S. solidus to improve protein coding gene prediction and annotation for this parasite. We then described the whole worm's proteome and its secretome during fish host infection using LC-MS/MS. RESULTS A total of 2290 proteins were detected in the proteome of S. solidus, and 30 additional proteins were detected specifically in the secretome. We found that the secretome contains proteases, proteins with neural and immune functions, as well as proteins involved in cell communication. We detected receptor-type tyrosine-protein phosphatases, which were reported in other parasitic systems to be manipulation factors. We also detected 12 S. solidus-specific proteins in the secretome that may play important roles in host-parasite interactions. CONCLUSIONS Our results suggest that S. solidus liberates molecules with putative host manipulation functions in the host and that many of them are species-specific.
Collapse
Affiliation(s)
- Chloé Suzanne Berger
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Ressources Aquatiques Québec (RAQ), Institut Des Sciences de La Mer de Rimouski, Quebec, Canada
| | - Jérôme Laroche
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
| | - Halim Maaroufi
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
| | - Hélène Martin
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Département de Biochimie, Microbiologie Et Bioinformatique, Université Laval, Quebec, QC Canada
| | - Kyung-Mee Moon
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 Canada
| | - Christian R. Landry
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Département de Biochimie, Microbiologie Et Bioinformatique, Université Laval, Quebec, QC Canada
- PROTEO, Le Réseau Québécois de Recherche Sur La Fonction, la structure et l’ingénierie des protéines, Université Laval, Quebec, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Quebec, Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 Canada
| | - Nadia Aubin-Horth
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Ressources Aquatiques Québec (RAQ), Institut Des Sciences de La Mer de Rimouski, Quebec, Canada
| |
Collapse
|
3
|
Characterization of Litopenaeus vannamei secreted protein acidic and rich in cysteine -like in WSSV infection. J Invertebr Pathol 2021; 183:107593. [PMID: 33961881 DOI: 10.1016/j.jip.2021.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is an extracellular and non-structural glycoprotein. In shrimp, a significant function of SPARC in WSSV infection remains unclear. In this study, the full-length cDNA sequence of a secreted protein acidic and rich in cysteine -like was cloned from shrimp Litopenaeus vannamei (named as LvSPARC-L). LvSPARC-L contained an open reading frame of 1002 bp, encoding 333 amino acids. Bioinformatics analysis showed that LvSPARC-L contained a SPARC Ca2+-binding region in the C-terminus, a Kazal-type serine protease inhibitor domain and a BUD22 domain. Tissue distribution assay indicated that LvSPARC-L generally expressed in all tissues selected with a higher expression in hemocyte, stomach and pleoplod. In hepatopancreas and intestine, the relative expression of LvSPARC-L was significantly up-regulated following the WSSV challenge. Besides, the relative expression of viral immediately early gene IE1 and a late gene VP28 was significantly increased in the LvSPARCL-silenced shrimp. Furthermore, the relative expression of LvP53 and LvCaspase3 was extremely decreased in the stomach of dsLvSPARC-L treated shrimp, while that of LvP38 was not affected significantly. All data together suggest that LvSPARC-L might play an antiviral role by regulating apoptosis.
Collapse
|
4
|
Ditgen D, Anandarajah EM, Reinhardt A, Younis AE, Witt S, Hansmann J, Lorenz E, García-Hernández M, Paclik D, Soblik H, Jolodar A, Seeberger PH, Liebau E, Brattig NW. Comparative characterization of two galectins excreted-secreted from intestine-dwelling parasitic versus free-living females of the soil-transmitted nematode Strongyloides. Mol Biochem Parasitol 2018; 225:73-83. [PMID: 30179636 DOI: 10.1016/j.molbiopara.2018.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/01/2018] [Accepted: 08/23/2018] [Indexed: 12/27/2022]
Abstract
Helminths are complex pathogens that ensure their long-term survival by influencing the immune responses of their host. Excretory/secretory products (ESP) can exert immunoregulatory effects which foster parasite survival. Galectins represent a widespread group of β-galactoside-binding proteins which are involved in a multitude of biological processes operative in parasite-host interaction. We had earlier identified seven galectins in Strongyloides ratti, four of them detected in the ESP of distinct developmental stages of the parasite. In the present report, we focused on the characterization of two of them, Sr-galectin-1 (Sr-Gal-1) and Sr-galectin-3 (Sr-Gal-3). While Sr-Gal-3 expression was strongest in parasitic females, Sr-Gal-1 was predominantly expressed in free-living females. Both proteins were cloned and recombinantly expressed in an E. coli expression system. Their glycan-binding activity was verified by haemagglutination and glycan array analysis. Furthermore, primary immunological activities of the Sr-galectins were initially investigated by the application of an in vitro mucosal 3D-culture model, comprising of mucosa-associated epithelial and dendritic cells. The Sr-galectins stimulated preferentially the release of the type 2 cytokines thymic stromal lymphopoietin and IL-22, a first indication for immunoregulatory activity. In addition, the Sr-galectins dose-dependently fostered cell migration. Our results confirm the importance of these carbohydrate-binding proteins in host-parasite-interaction by indicating possible interaction with the host mucosa-associated cells.
Collapse
Affiliation(s)
- D Ditgen
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Department of Molecular Physiology, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - E M Anandarajah
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Department of Molecular Physiology, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - A Reinhardt
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - A E Younis
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Zoology Department, Faculty of Science, Aswan University, Aswan, Egypt
| | - S Witt
- Cellular Parasitology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - J Hansmann
- Translational Center Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - E Lorenz
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany
| | - M García-Hernández
- Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autonóma de Nuevo León (UANL), Monterrey, Mexico; Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany
| | - D Paclik
- Medical Department, Devision of Hepatology and Gastroenterology, Charité Campus Virchow Klinikum, Berlin, Germany
| | - H Soblik
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; GALENpharma GmbH, 24109, Kiel, Germany
| | - A Jolodar
- School of Veterinary Medicine, Shahid Chamran University of Ahvaz, IR, Iran
| | - P H Seeberger
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - E Liebau
- Department of Molecular Physiology, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - N W Brattig
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany
| |
Collapse
|
5
|
The Untapped Pharmacopeic Potential of Helminths. Trends Parasitol 2018; 34:828-842. [PMID: 29954660 DOI: 10.1016/j.pt.2018.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023]
Abstract
The dramatic rise in immunological disorders that occurs with socioeconomic development is associated with alterations in microbial colonization and reduced exposure to helminths. Excretory-secretory (E/S) helminth products contain a mixture of proteins and low-molecular-weight molecules representing the primary interface between parasite and host. Research has shown great pharmacopeic potential for helminth-derived products in animal disease models and even in clinical trials. Although in its infancy, the translation of worm-derived products into therapeutics is highly promising. Here, we focus on important key aspects in the development of immunomodulatory drugs, also highlighting novel approaches that hold great promise for future development of innovative research strategies.
Collapse
|
6
|
Eichenberger RM, Sotillo J, Loukas A. Immunobiology of parasitic worm extracellular vesicles. Immunol Cell Biol 2018; 96:704-713. [PMID: 29808496 DOI: 10.1111/imcb.12171] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022]
Abstract
Helminth parasites (worms) have evolved a vast array of strategies to manipulate their vertebrate hosts. Extracellular vesicles (EVs) are secreted by all helminth species investigated thus far, and their salient roles in parasite-host interactions are being revealed. Parasite EVs directly interact with various cell types from their hosts, including immune cells, and roles for their molecular cargo in both regulation and promotion of inflammation in the host have been reported. Despite the growing body of literature on helminth EVs, limited availability of genetic manipulation tools for helminth research has precluded detailed investigation of specific molecular interactions between parasite EVs and host target cells. Here, we review the current state of the field and discuss innovative strategies targeting helminth EVs for the discovery and development of new therapeutic strategies, placing particular emphasis on both anti-helminth vaccines and EV small RNAs for treating noninfectious inflammatory diseases.
Collapse
Affiliation(s)
- Ramon M Eichenberger
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Javier Sotillo
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
- ParaGen Bio Laboratories, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
- ParaGen Bio Laboratories, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| |
Collapse
|
7
|
Wu J, Zhang JR, Jiang XQ, Cao XG. Correlation between secreted protein acidic and rich in cysteine protein expression and the prognosis of postoperative patients exhibiting esophageal squamous cell carcinoma. Mol Med Rep 2017; 16:3401-3406. [PMID: 28713937 DOI: 10.3892/mmr.2017.6959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 04/27/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the association between the expression level of secreted protein acidic and rich in cysteine (SPARC) and the prognosis of postoperative patients with esophageal squamous cell carcinoma (ESCC). The expression level of SPARC was detected in the 89 ESCC tissue cases and 100 healthy esophageal mucosa cases, which served as the controls. Immunohistochemistry and reverse transcription‑polymerase chain reaction (RT‑PCR) were employed to evaluate the SPARC expression in cases with ESCC. RT‑PCR demonstrated that the positive rates of SPARC mRNA expression in ESCC were 71.91% (64/89). The positive rates of normal esophageal mucosa mRNA expression were 15.00% (15/100), which were significantly lower than that in the ESCC tissue samples. The difference was statistically significant (P<0.001). Immunohistochemical staining indicated that the positive expression rate of SPARC protein in the ESCC tissue samples was significantly higher than that in the esophageal mucosa tissue samples (65.17 vs. 8.00%; P<0.001). The expression of SPARC protein was negatively correlated with lymph node metastasis (P<0.05), which was not associated with the pathologic gross morphology, tumor differentiation degree or other clinical features. The survival of patients with ESCC was not associated with the expression level of SPARC protein (P>0.05), but was associated with the tumor location (P<0.05), differentiation (P<0.001) and staging (P<0.05). Thus, SPARC mRNA and protein were highly expressed in ESCC, and negatively correlated with lymph node metastasis, which was not associated with postoperative survival of ESCC patients. Thus, detection of SPARC mRNA and protein expression levels may facilitate early diagnosis and prognosis assessment of ESCC.
Collapse
Affiliation(s)
- Jian Wu
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224005, P.R. China
| | - Jin-Rong Zhang
- Department of Laboratory Medicine, The People's Hospital of Dafeng, Yancheng, Jiangsu 224100, P.R. China
| | - Xue-Qiu Jiang
- Department of Laboratory Medicine, The People's Hospital of Dafeng, Yancheng, Jiangsu 224100, P.R. China
| | - Xu-Guang Cao
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224005, P.R. China
| |
Collapse
|
8
|
Tsubokawa D, Hatta T, Kikuchi T, Maeda H, Mikami F, Alim MA, Maruyama H, Tsuji N. Venestatin, a Ca ++-binding protein from the parasitic nematode Strongyloides venezuelensis, is involved in the larval migration process. Int J Parasitol 2017; 47:501-509. [PMID: 28347664 DOI: 10.1016/j.ijpara.2017.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 11/16/2022]
Abstract
The secretory EF-hand Ca++-binding proteins act as calcium signaling molecules for control of cell functions, but those proteins from parasitic helminths are poorly understood. Here, we have identified and characterized an EF-hand Ca++-binding protein from the rodent nematode, Strongyloides venezuelensis, termed 'venestatin', which is highly conserved in Strongyloides spp. Canonical two EF-hand domains and a signal peptide are present in venestatin. A gel mobility shift assay and Ruthenium red staining indicated that the recombinant venestatin possesses binding ability with Ca++ ions. Endogenous venestatin was seemingly localized in the hypodermis and gut of the worms and was found in the excretory-secretory products. Quantitative reverse transcription-PCR data showed that venestatin-specific transcript was upregulated in the parasitic stages of S. venezuelensis, and the upregulation occurred promptly after larval invasion through the host's skin, but not in the case of in vitro incubation. Immunization of mice with recombinant venestatin caused a 55% reduction in larval migration to the lungs, and lung hemorrhaging was mild compared with non-immunized groups, suggesting that anti-venestatin sera may interfere with larval migration from skin to lung. Our results suggest that venestatin is secreted from the hypodermis and gut of S. venezuelensis, and has pivotal roles in larval migration.
Collapse
Affiliation(s)
- Daigo Tsubokawa
- Department of Molecular and Cellular Parasitology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan; Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Takeshi Hatta
- Department of Molecular and Cellular Parasitology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan; Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Taisei Kikuchi
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara Kiyotake, Miyazaki 899-1692, Japan
| | - Hiroki Maeda
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Fusako Mikami
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - M Abdul Alim
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Haruhiko Maruyama
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara Kiyotake, Miyazaki 899-1692, Japan
| | - Naotoshi Tsuji
- Department of Molecular and Cellular Parasitology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan; Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan.
| |
Collapse
|
9
|
Nascimento Santos L, Carvalho Pacheco LG, Silva Pinheiro C, Alcantara-Neves NM. Recombinant proteins of helminths with immunoregulatory properties and their possible therapeutic use. Acta Trop 2017; 166:202-211. [PMID: 27871775 DOI: 10.1016/j.actatropica.2016.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/13/2016] [Accepted: 11/15/2016] [Indexed: 02/06/2023]
Abstract
The inverse relationship between helminth infections and the development of immune-mediated diseases is a cornerstone of the hygiene hypothesis and studies were carried out to elucidate the mechanisms by which helminth-derived molecules can suppress immunological disorders. These studies have fostered the idea that parasitic worms may be used as a promising therapeutic alternative for prevention and treatment of immune-mediated diseases. We discuss the current approaches for identification of helminth proteins with potential immunoregulatory properties, including the strategies based on high-throughput technologies. We also explore the methodological approaches and expression systems used for production of the recombinant forms of more than 20 helminth immunomodulatory proteins, besides their performances when evaluated as immunotherapeutic molecules to treat different immune-mediated conditions, including asthma and inflammatory bowel diseases. Finally, we discuss the perspectives of using these parasite-derived recombinant molecules as tools for future immunotherapy and immunoprophylaxis of human inflammatory diseases.
Collapse
|