1
|
Etzensperger R, Benninger M, Pozzi B, Rehmann R, Naguleswaran A, Schumann G, Van Den Abbeele J, Roditi I. Split-Cre-mediated GFP expression as a permanent marker for flagellar fusion of Trypanosoma brucei in its tsetse fly host. mBio 2024:e0337524. [PMID: 39688410 DOI: 10.1128/mbio.03375-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Trypanosomes have different ways of communicating with each other. While communication via quorum sensing, or by the release and uptake of extracellular vesicles, is widespread in nature, the phenomenon of flagellar fusion has only been observed in Trypanosoma brucei. We showed previously that a small proportion of procyclic culture forms (corresponding to insect midgut forms) can fuse their flagella and exchange cytosolic and membrane proteins. This happens reproducibly in cell culture. It was not known, however, if flagellar fusion also occurs in the tsetse fly host, and at what stage of the life cycle. We have developed a split-Cre-Lox system to permanently label trypanosomes that undergo flagellar fusion. Specifically, we engineered trypanosomes to contain a GFP gene flanked by Lox sites in the reverse orientation to the promoter. In addition, the cells expressed inactive halves of the Cre recombinase, either N-terminal Cre residues 1-244 (N-Cre) or C-terminal Cre residues 245-343 (C-Cre). Upon flagellar fusion, these Cre halves were exchanged between trypanosomes, forming functional full Cre and flipping reverse-GFP into its forward orientation. We showed that cells that acquired the second half Cre through flagellar fusion were permanently modified and that the cells and their progeny constitutively expressed GFP. When tsetse flies were co-infected with N-Cre and C-Cre cells, GFP-positive trypanosomes were observed in the midgut and proventriculus 28-34 days post-infection. These results show that flagellar fusion not only happens in culture but also during the natural life cycle of trypanosomes in their tsetse fly host. IMPORTANCE We have established a procedure to permanently label pairs of trypanosomes that transiently fuse their flagella and exchange proteins. When this occurs, a reporter gene is permanently flipped from the "off" to the "on" position, resulting in the production of green fluorescent protein. Crucially, green trypanosomes can be detected in tsetse flies co-infected with the two cell lines, proving that flagellar fusion occurs in the host. To our knowledge, we are the first to describe a split-Cre-Lox system for lineage tracing and selection in trypanosomes. In addition to its use in trypanosomes, this system could be adapted for other parasites and in other contexts. For example, it could be used to determine whether flagellar fusion occurs in related parasites such as Leishmania and Trypanosoma cruzi or to monitor whether intracellular parasites and their hosts exchange proteins.
Collapse
Affiliation(s)
| | | | - Berta Pozzi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Ruth Rehmann
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Trypanosoma Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Seyed N, Taheri T, Rafati S. Live attenuated-nonpathogenic Leishmania and DNA structures as promising vaccine platforms against leishmaniasis: innovations can make waves. Front Microbiol 2024; 15:1326369. [PMID: 38633699 PMCID: PMC11021776 DOI: 10.3389/fmicb.2024.1326369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Leishmaniasis is a vector-borne disease caused by the protozoan parasite of Leishmania genus and is a complex disease affecting mostly tropical regions of the world. Unfortunately, despite the extensive effort made, there is no vaccine available for human use. Undoubtedly, a comprehensive understanding of the host-vector-parasite interaction is substantial for developing an effective prophylactic vaccine. Recently the role of sandfly saliva on disease progression has been uncovered which can make a substantial contribution in vaccine design. In this review we try to focus on the strategies that most probably meet the prerequisites of vaccine development (based on the current understandings) including live attenuated/non-pathogenic and subunit DNA vaccines. Innovative approaches such as reverse genetics, CRISP/R-Cas9 and antibiotic-free selection are now available to promisingly compensate for intrinsic drawbacks associated with these platforms. Our main goal is to call more attention toward the prerequisites of effective vaccine development while controlling the disease outspread is a substantial need.
Collapse
Affiliation(s)
- Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | | | | |
Collapse
|
3
|
Kieft R, Zhang Y, Yan H, Schmitz RJ, Sabatini R. Knockout of protein phosphatase 1 in Leishmania major reveals its role during RNA polymerase II transcription termination. Nucleic Acids Res 2023; 51:6208-6226. [PMID: 37194692 PMCID: PMC10325913 DOI: 10.1093/nar/gkad394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
The genomes of kinetoplastids are organized into polycistronic transcription units that are flanked by a modified DNA base (base J, beta-D-glucosyl-hydroxymethyluracil). Previous work established a role of base J in promoting RNA polymerase II (Pol II) termination in Leishmania major and Trypanosoma brucei. We recently identified a PJW/PP1 complex in Leishmania containing a J-binding protein (JBP3), PP1 phosphatase 1, PP1 interactive-regulatory protein (PNUTS) and Wdr82. Analyses suggested the complex regulates transcription termination by recruitment to termination sites via JBP3-base J interactions and dephosphorylation of proteins, including Pol II, by PP1. However, we never addressed the role of PP1, the sole catalytic component, in Pol II transcription termination. We now demonstrate that deletion of the PP1 component of the PJW/PP1 complex in L. major, PP1-8e, leads to readthrough transcription at the 3'-end of polycistronic gene arrays. We show PP1-8e has in vitro phosphatase activity that is lost upon mutation of a key catalytic residue and associates with PNUTS via the conserved RVxF motif. Additionally, purified PJW complex with associated PP1-8e, but not complex lacking PP1-8e, led to dephosphorylation of Pol II, suggesting a direct role of PNUTS/PP1 holoenzymes in regulating transcription termination via dephosphorylating Pol II in the nucleus.
Collapse
Affiliation(s)
- Rudo Kieft
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA30602, USA
| | - Yang Zhang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA30602, USA
| | - Haidong Yan
- Department of Genetics, University of Georgia, Athens, GA30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA30602, USA
| | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA30602, USA
| |
Collapse
|
4
|
Bromodomain factor 5 is an essential regulator of transcription in Leishmania. Nat Commun 2022; 13:4071. [PMID: 35831302 PMCID: PMC9279504 DOI: 10.1038/s41467-022-31742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Leishmania are unicellular parasites that cause human and animal diseases. Like other kinetoplastids, they possess large transcriptional start regions (TSRs) which are defined by histone variants and histone lysine acetylation. Cellular interpretation of these chromatin marks is not well understood. Eight bromodomain factors, the reader modules for acetyl-lysine, are found across Leishmania genomes. Using L. mexicana, Cas9-driven gene deletions indicate that BDF1–5 are essential for promastigotes. Dimerisable, split Cre recombinase (DiCre)-inducible gene deletion of BDF5 show it is essential for both promastigotes and murine infection. ChIP-seq identifies BDF5 as enriched at TSRs. XL-BioID proximity proteomics shows the BDF5 landscape is enriched for BDFs, HAT2, proteins involved in transcriptional activity, and RNA processing; revealing a Conserved Regulators of Kinetoplastid Transcription (CRKT) Complex. Inducible deletion of BDF5 causes global reduction in RNA polymerase II transcription. Our results indicate the requirement of Leishmania to interpret histone acetylation marks through the bromodomain-enriched CRKT complex for normal gene expression and cellular viability. Leishmania use large (5–10 kb) transcriptional start regions, where the chromatin is highly enriched for acetylated histones, to drive the expression of polycistronic gene arrays. Here the authors show bromodomain-containing protein BDF5 is enriched at transcriptional start sites and its depletion leads to cell death in vitro and in murine infections, and they identify its interactors.
Collapse
|
5
|
Santi AMM, Murta SMF. Impact of Genetic Diversity and Genome Plasticity of Leishmania spp. in Treatment and the Search for Novel Chemotherapeutic Targets. Front Cell Infect Microbiol 2022; 12:826287. [PMID: 35141175 PMCID: PMC8819175 DOI: 10.3389/fcimb.2022.826287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022] Open
Abstract
Leishmaniasis is one of the major public health concerns in Latin America, Africa, Asia, and Europe. The absence of vaccines for human use and the lack of effective vector control programs make chemotherapy the main strategy to control all forms of the disease. However, the high toxicity of available drugs, limited choice of therapeutic agents, and occurrence of drug-resistant parasite strains are the main challenges related to chemotherapy. Currently, only a small number of drugs are available for leishmaniasis treatment, including pentavalent antimonials (SbV), amphotericin B and its formulations, miltefosine, paromomycin sulphate, and pentamidine isethionate. In addition to drug toxicity, therapeutic failure of leishmaniasis is a serious concern. The occurrence of drug-resistant parasites is one of the causes of therapeutic failure and is closely related to the diversity of parasites in this genus. Owing to the enormous plasticity of the genome, resistance can occur by altering different metabolic pathways, demonstrating that resistance mechanisms are multifactorial and extremely complex. Genetic variability and genome plasticity cause not only the available drugs to have limitations, but also make the search for new drugs challenging. Here, we examined the biological characteristics of parasites that hinder drug discovery.
Collapse
|
6
|
Yagoubat A, Corrales RM, Bastien P, Lévêque MF, Sterkers Y. Gene Editing in Trypanosomatids: Tips and Tricks in the CRISPR-Cas9 Era. Trends Parasitol 2020; 36:745-760. [DOI: 10.1016/j.pt.2020.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/19/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022]
|
7
|
Pacheco-Lugo LA, Sáenz-García JL, Díaz-Olmos Y, Netto-Costa R, Brant RSC, DaRocha WD. CREditing: a tool for gene tuning in Trypanosoma cruzi. Int J Parasitol 2020; 50:1067-1077. [PMID: 32858036 DOI: 10.1016/j.ijpara.2020.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/30/2022]
Abstract
The genetic manipulation of Trypanosoma cruzi continues to be a challenge, mainly due to the lack of available and efficient molecular tools. The CRE-lox recombination system is a site-specific recombinase technology, widely used method of achieving conditional targeted deletions, inversions, insertions, gene activation, translocation, and other modifications in chromosomal or episomal DNA. In the present study, the CRE-lox system was adapted to expand the current genetic toolbox for this hard-to-manipulate parasite. For this, evaluations of whether direct protein delivery of CRE recombinase through electroporation could improve CRE-mediated recombination in T. cruzi were performed. CRE recombinase was fused to the C-terminus of T. cruzi histone H2B, which carries the nuclear localization signal and is expressed in the prokaryotic system. The fusion protein was affinity purified and directly introduced into epimastigotes and tissue culture-derived trypomastigotes. This enabled the control of gene expression as demonstrated by turning on a tandem dimer fluorescent protein reporter gene that had been previously transfected into parasites, achieving CRE-mediated recombination in up to 85% of parasites. This system was further tested for its ability to turn off gene expression, remove selectable markers integrated into the genome, and conditionally knock down the nitroreductase gene, which is involved in drug resistance. Additionally, CREditing also enabled the control of gene expression in tissue culture trypomastigotes, which are more difficult to transfect than epimastigotes. The considerable advances in genomic manipulation of T. cruzi shown in this study can be used by others to aid in the greater understanding of this parasite through gain- or loss-of-function approaches.
Collapse
Affiliation(s)
- Lisandro A Pacheco-Lugo
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Paraná, Brazil; Facultad de Ciencias Básicas Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - José L Sáenz-García
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Paraná, Brazil
| | - Yirys Díaz-Olmos
- Instituto Carlos Chagas, Fiocruz-Paraná, Paraná, Brazil; Facultad de Ciencias de la Salud, Universidad del Norte, Barranquilla, Colombia
| | | | - Rodrigo S C Brant
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Paraná, Brazil
| | - Wanderson D DaRocha
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Paraná, Brazil.
| |
Collapse
|
8
|
Damasceno JD, Reis-Cunha J, Crouch K, Beraldi D, Lapsley C, Tosi LRO, Bartholomeu D, McCulloch R. Conditional knockout of RAD51-related genes in Leishmania major reveals a critical role for homologous recombination during genome replication. PLoS Genet 2020; 16:e1008828. [PMID: 32609721 PMCID: PMC7360064 DOI: 10.1371/journal.pgen.1008828] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/14/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Homologous recombination (HR) has an intimate relationship with genome replication, both during repair of DNA lesions that might prevent DNA synthesis and in tackling stalls to the replication fork. Recent studies led us to ask if HR might have a more central role in replicating the genome of Leishmania, a eukaryotic parasite. Conflicting evidence has emerged regarding whether or not HR genes are essential, and genome-wide mapping has provided evidence for an unorthodox organisation of DNA replication initiation sites, termed origins. To answer this question, we have employed a combined CRISPR/Cas9 and DiCre approach to rapidly generate and assess the effect of conditional ablation of RAD51 and three RAD51-related proteins in Leishmania major. Using this approach, we demonstrate that loss of any of these HR factors is not immediately lethal but in each case growth slows with time and leads to DNA damage and accumulation of cells with aberrant DNA content. Despite these similarities, we show that only loss of RAD51 or RAD51-3 impairs DNA synthesis and causes elevated levels of genome-wide mutation. Furthermore, we show that these two HR factors act in distinct ways, since ablation of RAD51, but not RAD51-3, has a profound effect on DNA replication, causing loss of initiation at the major origins and increased DNA synthesis at subtelomeres. Our work clarifies questions regarding the importance of HR to survival of Leishmania and reveals an unanticipated, central role for RAD51 in the programme of genome replication in a microbial eukaryote.
Collapse
Affiliation(s)
- Jeziel D. Damasceno
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
- * E-mail: (JDD); (RM)
| | - João Reis-Cunha
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Kathryn Crouch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
| | - Dario Beraldi
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
| | - Craig Lapsley
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
| | - Luiz R. O. Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto, SP, Brazil
| | - Daniella Bartholomeu
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
- * E-mail: (JDD); (RM)
| |
Collapse
|
9
|
Yagoubat A, Crobu L, Berry L, Kuk N, Lefebvre M, Sarrazin A, Bastien P, Sterkers Y. Universal highly efficient conditional knockout system in
Leishmania
, with a focus on untranscribed region preservation. Cell Microbiol 2020; 22:e13159. [DOI: 10.1111/cmi.13159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Akila Yagoubat
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| | - Lucien Crobu
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| | - Laurence Berry
- Laboratory of Pathogen Host Interactions, Microscopie Electronique et Analytique, CNRSUniversity of Montpellier Montpellier France
| | - Nada Kuk
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| | - Michèle Lefebvre
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| | - Amélie Sarrazin
- Montpellier RIO Imaging Facility, Montpellier BIOCAMPUSUniversity of Montpellier, Arnaud de Villeneuve Campus Imaging Facility‐Institut de Génétique Humaine‐CNRS Montpellier France
| | - Patrick Bastien
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| | - Yvon Sterkers
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| |
Collapse
|
10
|
Damasceno JD, Obonaga R, Silva GLA, Reis-Cunha JL, Duncan SM, Bartholomeu DC, Mottram JC, McCulloch R, Tosi LRO. Conditional genome engineering reveals canonical and divergent roles for the Hus1 component of the 9-1-1 complex in the maintenance of the plastic genome of Leishmania. Nucleic Acids Res 2019; 46:11835-11846. [PMID: 30380080 PMCID: PMC6294564 DOI: 10.1093/nar/gky1017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022] Open
Abstract
Leishmania species are protozoan parasites whose remarkably plastic genome limits the establishment of effective genetic manipulation and leishmaniasis treatment. The strategies used by Leishmania to maintain its genome while allowing variability are not fully understood. Here, we used DiCre-mediated conditional gene deletion to show that HUS1, a component of the 9-1-1 (RAD9-RAD1-HUS1) complex, is essential and is required for a G2/M checkpoint. By analyzing genome-wide instability in HUS1 ablated cells, HUS1 is shown to have a conserved role, by which it preserves genome stability and also a divergent role, by which it promotes genome variability. These roles of HUS1 are related to distinct patterns of formation and resolution of single-stranded DNA and γH2A, throughout the cell cycle. Our findings suggest that Leishmania 9-1-1 subunits have evolved to co-opt canonical genomic maintenance and genomic variation functions. Hence, this study reveals a pivotal function of HUS1 in balancing genome stability and transmission in Leishmania. These findings may be relevant to understanding the evolution of genome maintenance and plasticity in other pathogens and eukaryotes.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Ricardo Obonaga
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Gabriel L A Silva
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - João L Reis-Cunha
- Laboratório de Genômica de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brasil
| | - Samuel M Duncan
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Daniella C Bartholomeu
- Laboratório de Genômica de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brasil
| | - Jeremy C Mottram
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK.,Centre for Immunology and Infection, Department of Biology, University of York, York YO10 5DD, UK
| | - Richard McCulloch
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Luiz R O Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| |
Collapse
|
11
|
Leishmanicidal therapy targeted to parasite proteases. Life Sci 2019; 219:163-181. [PMID: 30641084 DOI: 10.1016/j.lfs.2019.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/31/2022]
Abstract
Leishmaniasis is considered a serious public health problem and the current available therapy has several disadvantages, which makes the search for new therapeutic targets and alternative treatments extremely necessary. In this context, this review focuses on the importance of parasite proteases as target drugs against Leishmania parasites, as a chemotherapy approach. Initially, we discuss about the current scenario for the treatment of leishmaniasis, highlighting the main drugs used and the problems related to their use. Subsequently, we describe the inhibitors of major proteases of Leishmania already discovered, such as Compound s9 (aziridine-2,3-dicarboxylate), Compound 1c (benzophenone derivative), Au2Phen (gold complex), AubipyC (gold complex), MDL 28170 (dipeptidyl aldehyde), K11777, Hirudin, diazo-acetyl norleucine methyl ester, Nelfinavir, Saquinavir, Nelfinavir, Saquinavir, Indinavir, Saquinavir, GNF5343 (azabenzoxazole), GNF6702 (azabenzoxazole), Benzamidine and TPCK. Next, we discuss the importance of the protease gene to parasite survival and the aspects of the validation of proteases as target drugs, with emphasis on gene disruption. Then, we describe novel important strategies that can be used to support the research of new antiparasitic drugs, such as molecular modeling and nanotechnology, whose main targets are parasitic proteases. And finally, we discuss possible perspectives to improve drug development. Based on all findings, proteases could be considered potential targets against leishmaniasis.
Collapse
|
12
|
Abstract
Induction of gene expression is a valuable approach for functional studies since it allows for the assessment of phenotypes without the need for clonal selection. Inducible expression can find a wide range of applications, from the study of essential genes to the characterization of overexpression of genes of interest. Here, we describe a detailed protocol for the use of the DiCre-based inducible gene expression system in Leishmania parasites. This is a tightly regulated induction system that allows for time- and dose-controlled expression of gene products, as rapidly as within 12 h.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Luiz R O Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Renato E R S Santos
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jeremy C Mottram
- Department of Biology, York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
13
|
Balabaskaran-Nina P, Desai SA. Diverse target gene modifications in Plasmodium falciparum using Bxb1 integrase and an intronic attB. Parasit Vectors 2018; 11:548. [PMID: 30333047 PMCID: PMC6192176 DOI: 10.1186/s13071-018-3129-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/01/2018] [Indexed: 12/26/2022] Open
Abstract
Genetic manipulation of the human malaria parasite Plasmodium falciparum is needed to explore pathogen biology and evaluate antimalarial targets. It is, however, aggravated by a low transfection efficiency, a paucity of selectable markers and a biased A/T-rich genome. While various enabling technologies have been introduced over the past two decades, facile and broad-range modification of essential genes remains challenging. We recently devised a new application of the Bxb1 integrase strategy to meet this need through an intronic attB sequence within the gene of interest. Although this attB is silent and without effect on intron splicing or protein translation and function, it allows efficient gene modification with minimal risk of unwanted changes at other genomic sites. We describe the range of applications for this new method as well as specific cases where it is preferred over CRISPR-Cas9 and other technologies. The advantages and limitations of various strategies for endogenous gene editing are also discussed.
Collapse
Affiliation(s)
- Praveen Balabaskaran-Nina
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.,Present Address: Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur, India
| | - Sanjay A Desai
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.
| |
Collapse
|
14
|
Duncan SM, Jones NG, Mottram JC. Recent advances in Leishmania reverse genetics: Manipulating a manipulative parasite. Mol Biochem Parasitol 2017. [DOI: 10.1016/j.molbiopara.2017.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|