1
|
Nutter CA, Kidd BM, Carter HA, Hamel JI, Mackie PM, Kumbkarni N, Davenport ML, Tuyn DM, Gopinath A, Creigh PD, Sznajder ŁJ, Wang ET, Ranum LPW, Khoshbouei H, Day JW, Sampson JB, Prokop S, Swanson MS. Choroid plexus mis-splicing and altered cerebrospinal fluid composition in myotonic dystrophy type 1. Brain 2023; 146:4217-4232. [PMID: 37143315 PMCID: PMC10545633 DOI: 10.1093/brain/awad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Myotonic dystrophy type 1 is a dominantly inherited multisystemic disease caused by CTG tandem repeat expansions in the DMPK 3' untranslated region. These expanded repeats are transcribed and produce toxic CUG RNAs that sequester and inhibit activities of the MBNL family of developmental RNA processing factors. Although myotonic dystrophy is classified as a muscular dystrophy, the brain is also severely affected by an unusual cohort of symptoms, including hypersomnia, executive dysfunction, as well as early onsets of tau/MAPT pathology and cerebral atrophy. To address the molecular and cellular events that lead to these pathological outcomes, we recently generated a mouse Dmpk CTG expansion knock-in model and identified choroid plexus epithelial cells as particularly affected by the expression of toxic CUG expansion RNAs. To determine if toxic CUG RNAs perturb choroid plexus functions, alternative splicing analysis was performed on lateral and hindbrain choroid plexi from Dmpk CTG knock-in mice. Choroid plexus transcriptome-wide changes were evaluated in Mbnl2 knockout mice, a developmental-onset model of myotonic dystrophy brain dysfunction. To determine if transcriptome changes also occurred in the human disease, we obtained post-mortem choroid plexus for RNA-seq from neurologically unaffected (two females, three males; ages 50-70 years) and myotonic dystrophy type 1 (one female, three males; ages 50-70 years) donors. To test that choroid plexus transcriptome alterations resulted in altered CSF composition, we obtained CSF via lumbar puncture from patients with myotonic dystrophy type 1 (five females, five males; ages 35-55 years) and non-myotonic dystrophy patients (three females, four males; ages 26-51 years), and western blot and osmolarity analyses were used to test CSF alterations predicted by choroid plexus transcriptome analysis. We determined that CUG RNA induced toxicity was more robust in the lateral choroid plexus of Dmpk CTG knock-in mice due to comparatively higher Dmpk and lower Mbnl RNA levels. Impaired transitions to adult splicing patterns during choroid plexus development were identified in Mbnl2 knockout mice, including mis-splicing previously found in Dmpk CTG knock-in mice. Whole transcriptome analysis of myotonic dystrophy type 1 choroid plexus revealed disease-associated RNA expression and mis-splicing events. Based on these RNA changes, predicted alterations in ion homeostasis, secretory output and CSF composition were confirmed by analysis of myotonic dystrophy type 1 CSF. Our results implicate choroid plexus spliceopathy and concomitant alterations in CSF homeostasis as an unappreciated contributor to myotonic dystrophy type 1 CNS pathogenesis.
Collapse
Affiliation(s)
- Curtis A Nutter
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Benjamin M Kidd
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Helmut A Carter
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Johanna I Hamel
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA
| | - Philip M Mackie
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nayha Kumbkarni
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Mackenzie L Davenport
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Dana M Tuyn
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Adithya Gopinath
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Peter D Creigh
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA
| | - Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Laura P W Ranum
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, McKnight Brain Institute and the Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John W Day
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Jacinda B Sampson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Stefan Prokop
- Department of Pathology, Immunology, and Laboratory Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute and the Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Guo P, Zhao Z, Yan S, Li J, Xiao H, Yang D, Zhao Y, Jiang P, Yang R. <i>PSAP</i> gene variants and haplotypes reveal significant effects on carcass and meat quality traits in Chinese Simmental-cross cattle. Arch Anim Breed 2016. [DOI: 10.5194/aab-59-461-2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Abstract. Prosaposin (PSAP) is the precursor protein of four small lysosomal glycoproteins and plays vital roles in muscle growth and development of beef cattle. The aim of this study is to evaluate the association between PSAP gene polymorphisms with carcass composition and meat quality traits of Chinese Simmental-cross cattle. In the present study, six SNPs were identified within intron 10 and exon 11 of the PSAP gene from 380 beef cattle by direct DNA sequencing, and 47 traits of carcass composition and meat quality were measured in the studied population. Then, the relationship between variants of PSAP gene with economic traits was analyzed using statistical methods. The result revealed that I10-65G > A, I10-313C > T, E11-87C > T, and E11-93C > G were significantly associated with carcass traits, such as dressing percentage, fat coverage rate, carcass depth, and hind leg width, and I10-162C > T and I10-274C > T were significantly associated with marbling score traits. In addition, the individuals with GCCCGC haplotype showed significant higher dressed weight, dressing percentage and rib eye area (p < 0.01), and the individuals with ACCTCC haplotype showed a significant association with the pH of beef and backfat thickness in the cattle population (p < 0.05). Our results indicate that these SNPs and haplotypes of the PSAP gene are possible important genetic factors that influence carcass composition and meat quality traits, and they may be useful markers in future marker-assisted selection (MAS) programs in beef cattle breeding and production.
Collapse
|
3
|
Temporal changes in prosaposin expression in the rat dentate gyrus after birth. PLoS One 2014; 9:e95883. [PMID: 24871372 PMCID: PMC4037173 DOI: 10.1371/journal.pone.0095883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/01/2014] [Indexed: 11/29/2022] Open
Abstract
Neurogenesis in the hippocampal dentate gyrus occurs constitutively throughout postnatal life. Adult neurogenesis includes a multistep process that ends with the formation of a postmitotic and functionally integrated new neuron. During adult neurogenesis, various markers are expressed, including GFAP, nestin, Pax6, polysialic acid-neural cell adhesion molecule (PSA-NCAM), neuronal nuclei (NeuN), doublecortin, TUC-4, Tuj-1, and calretinin. Prosaposin is the precursor of saposins A–D; it is found in various organs and can be excreted. Strong prosaposin expression has been demonstrated in the developing brain including the hippocampus, and its neurotrophic activity has been proposed. This study investigated changes in prosaposin in the dentate gyrus of young and adult rats using double immunohistochemistry with antibodies to prosaposin, PSA-NCAM, and NeuN. Prosaposin immunoreactivity was intense in the dentate gyrus at postnatal day 3 (P3) and P7, but decreased gradually after P14. In the dentate gyrus at P28, immature PSA-NCAM-positive neurons localized exclusively in the subgranular zone were prosaposin-negative, whereas mature Neu-N-positive neurons were positive for prosaposin. Furthermore, these prosaposin-negative immature neurons were saposin B-positive, suggesting that the neurons take up and degrade prosaposin. In situ hybridization assays showed that prosaposin in the adult dentate gyrus is dominantly the Pro+9 type, a secreted type of prosaposin. These results imply that prosaposin secreted from mature neurons stimulates proliferation and maturation of immature neurons in the dentate gyrus.
Collapse
|
4
|
Saito S, Saito K, Nabeka H, Shimokawa T, Kobayashi N, Matsuda S. Differential expression of the alternatively spliced forms of prosaposin mRNAs in rat choroid plexus. Cell Tissue Res 2014; 356:231-42. [PMID: 24414178 DOI: 10.1007/s00441-013-1773-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/14/2013] [Indexed: 02/02/2023]
Abstract
Prosaposin has two distinct profiles. One is a precursor form that is processed into saposins thus promoting lysosomal sphingolipid hydrolase function, whereas the other is an intact form that is not processed into saposins but is abundant in certain tissues and secretory fluids, including the cerebrospinal fluid. In rats, alternative splicing in the prosaposin gene generates mRNAs with and without a 9-base insertion (Pro+9 and Pro+0 mRNAs, respectively). Pro+9 mRNA is reported to be preferentially expressed in tissues in which the intact form of prosaposin dominates, whereas Pro+0 mRNA is preferentially expressed in tissues in which the precursor dominates. The expression patterns of Pro+9 and Pro+0 mRNAs in the rat choroid plexus are examined in the present study. The specificities of 36-mer oligonucleotide probes used to detect the 9-base insertion by in situ hybridization were demonstrated by dot-blot hybridization. Next, these probes were used for in situ hybridization, which showed predominant expression of Pro+0 mRNA and weak expression of Pro+9 mRNA in the choroid plexus. These expression patterns were confirmed by reverse transcription plus the polymerase chain reaction with AlwI restriction enzyme treatment. Expression of the intact form of prosaposin in the choroid plexus was assessed by Western blotting and immunohistochemistry. Because the choroid plexus is responsible for the generation of cerebrospinal fluid containing the intact form of prosaposin, the present study raises the possibility that Pro+0 mRNA is related to the intact form in the choroid plexus and that the alternatively spliced forms of mRNAs do not simply correspond to the precursor and intact forms of prosaposin.
Collapse
Affiliation(s)
- Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, 501-1128, Japan,
| | | | | | | | | | | |
Collapse
|
5
|
Gao HL, Li C, Nabeka H, Shimokawa T, Kobayashi N, Saito S, Wang ZY, Cao YM, Matsuda S. Decrease in prosaposin in the Dystrophic mdx mouse brain. PLoS One 2013; 8:e80032. [PMID: 24244600 PMCID: PMC3828254 DOI: 10.1371/journal.pone.0080032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/27/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy caused by a mutation in the X-linked dystrophin gene induces metabolic and structural disorders in the brain. A lack of dystrophin in brain structures is involved in impaired cognitive function. Prosaposin (PS), a neurotrophic factor, is abundant in the choroid plexus and various brain regions. We investigated whether PS serves as a link between dystrophin loss and gross and/or ultrastructural brain abnormalities. METHODOLOGY/PRINCIPAL FINDINGS The distribution of PS in the brains of juvenile and adult mdx mice was investigated by immunochemistry, Western blotting, and in situ hybridization. Immunochemistry revealed lower levels of PS in the cytoplasm of neurons of the cerebral cortex, hippocampus, cerebellum, and choroid plexus in mdx mice. Western blotting confirmed that PS levels were lower in these brain regions in both juveniles and adults. Even with low PS production in the choroids plexus, there was no significant PS decrease in cerebrospinal fluid (CSF). In situ hybridization revealed that the primary form of PS mRNA in both normal and mdx mice was Pro+9, a secretory-type PS, and the hybridization signals for Pro+9 in the above-mentioned brain regions were weaker in mdx mice than in normal mice. We also investigated mitogen-activated protein kinase signalling. Stronger activation of ERK1/2 was observed in mdx mice, ERK1/2 activity was positively correlated with PS activity, and exogenous PS18 stimulated both p-ERK1/2 and PS in SH-SY5Y cells. CONCLUSIONS/SIGNIFICANCE Low levels of PS and its receptors suggest the participation of PS in some pathological changes in the brains of mdx mice.
Collapse
Affiliation(s)
- Hui-ling Gao
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Cheng Li
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Department of Immunology, China Medical University, Shenyang, China
| | - Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Naoto Kobayashi
- Medical Education Center, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ya-ming Cao
- Department of Immunology, China Medical University, Shenyang, China
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
6
|
Islam MR, Abdullah JM, Atoji Y. Distribution of prosaposin mRNA in the central nervous system of the pigeon (Columba livia). Anat Histol Embryol 2012; 42:257-65. [PMID: 22994540 DOI: 10.1111/ahe.12009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/21/2012] [Indexed: 11/30/2022]
Abstract
Bioassay and immunohistochemical studies have detected the presence of prosaposin in the central nervous system (CNS) of mammals. Here, first time, we have determined the partial cDNA sequence of pigeon prosaposin and mapped the distribution of its mRNA in the pigeon CNS. The predicted amino acid sequence of pigeon prosaposin showed 93 and 60% identity to chicken and human prosaposin, respectively. In situ hybridization, autoradiograms showed that the prosaposin mRNA expression was found in the olfactory bulb, prepiriform cortex, Wulst, mesopallium, nidopallium, hippocampal formation, thalamus, tuberis nucleus, pre-tectal nucleus, nucleus mesencephalicus lateralis, pars dorsalis, nucleus isthmi, pars parvocellularis and magnocellularis, Edinger-Westphal nucleus, optic tectum, cerebellar cortex and nuclei, vestibular nuclei and gray matter of the spinal cord. These results suggest that the cDNA sequence of pigeon prosaposin is comparable to other vertebrates, and the general distribution pattern of prosaposin mRNA resembles those are found in mammals.
Collapse
Affiliation(s)
- M R Islam
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | | | | |
Collapse
|
7
|
Tamargo RJ, Velayati A, Goldin E, Sidransky E. The role of saposin C in Gaucher disease. Mol Genet Metab 2012; 106:257-63. [PMID: 22652185 PMCID: PMC3534739 DOI: 10.1016/j.ymgme.2012.04.024] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 04/28/2012] [Accepted: 04/29/2012] [Indexed: 12/16/2022]
Abstract
Saposin C is one of four homologous proteins derived from sequential cleavage of the saposin precursor protein, prosaposin. It is an essential activator for glucocerebrosidase, the enzyme deficient in Gaucher disease. Gaucher disease is a rare autosomal recessive lysosomal storage disorder caused by mutations in the GBA gene that exhibits vast phenotypic heterogeneity, despite its designation as a "simple" Mendelian disorder. The observed phenotypic variability has led to a search for disease modifiers that can alter the Gaucher phenotype. The PSAP gene encoding saposin C is a prime candidate modifier for Gaucher disease. In humans, saposin C deficiency due to mutations in PSAP results in a Gaucher-like phenotype, despite normal in vitro glucocerebrosidase activity. Saposin C deficiency has also been shown to modify phenotype in one mouse model of Gaucher disease. The role of saposin C as an activator required for normal glucocerebrosidase function, and the consequences of saposin C deficiency are described, and are being explored as potential modifying factors in patients with Gaucher disease.
Collapse
Affiliation(s)
- Rafael J. Tamargo
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arash Velayati
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ehud Goldin
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Xue B, Chen J, Gao H, Saito S, Kobayashi N, Shimokawa T, Nabeka H, Sano A, Matsuda S. Chronological changes in prosaposin in the developing rat brain. Neurosci Res 2011; 71:22-34. [PMID: 21684311 DOI: 10.1016/j.neures.2011.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 05/28/2011] [Accepted: 06/01/2011] [Indexed: 11/30/2022]
Abstract
Prosaposin is the precursor protein of four glycoproteins, saposins A, B, C, and D, which activate sphingolipid hydrolases in lysosomes. Besides this role, intact prosaposin is also known as a potent neurotrophic factor that prevents neuronal cell death and stimulates neurite outgrowth in in vivo and in vitro experiments. In the present study, we examined chronological changes in prosaposin immunoreactivity in the rat brain using immunofluorescence staining and Diaminobenzidine (DAB) immunohistochemistry. In the hippocampal regions CA1, CA3, and dentate gyrus, the strongest staining of prosaposin was observed on postnatal day 1. The prosaposin immunoreactivity then decreased gradually until postnatal day 28. But in the cerebral cortex, prosaposin staining intensity increased from postnatal day 1 to 14, then decreased until postnatal day 28. The prosaposin immunoreactivity co-localized with the lysosomal granules labeled by an anti-Cathepsin D antibody, indicating that prosaposin mainly localized in the lysosomes of the neurons. We also examined the chronological changes in prosaposin mRNA and its two alternatively spliced variants using in situ hybridization. We found that both the mRNA forms, especially the one without a nine-base insertion, increased significantly from embryonic day 15 to postnatal day 7, then decreased gradually until postnatal day 28. Abundant prosaposin expression in the perinatal stages indicates a potential role of prosaposin in the early development of the rat brain.
Collapse
Affiliation(s)
- Bing Xue
- Division of Anatomy and Embryology, Department of Integrated Basic Medical Science, Ehime University School of Medicine, Shitsukawa, To-on, Ehime 791-0295, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fang M, He X, Zhang W, Zhou X, Nie Q, Zhang X. Transcript variants, expression, and polymorphisms of the pig prosaposin gene. DNA Cell Biol 2011; 30:481-9. [PMID: 21563967 DOI: 10.1089/dna.2011.1225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Prosaposin (PASP) is a sphingolipid hydrolysis protein that plays roles in both the nervous and reproduction systems. In this study, we cloned the pig PASP gene and studied its genomic organization, polymorphism, and expression pattern. Two PASP transcripts, TV1 (HQ245644) and TV2 (HQ245646), were identified in pig. TV1 was the complete transcript that encoded 527 amino acids, whereas TV2 was 9 bp shorter due to an exon 8 deletion. The pig PASP gene spanned over 34 kb in length on chromosome 14 (SSC14), and consisted of 15 exons and 14 introns. The pig PASP gene (TV1 and TV2) expressed predominantly in the cerebellum, lymphnode, pituitary, abdominal fat, hypothalamus, and cerebrum in both females and males. PASP TV1 expressed mainly in teh cerebrum, cerebellum, hypothalamus, pituitary, heart, subcutaneous fat, and foreleg muscle, while TV2 was expressed in the liver, spleen, lung, kidney, and lymphnode. In foreleg muscle, the predominant transcript was TV2 in males and TV1 in females. Some potential transcriptional elements were predicted in 5' flanking region (~3000 bp) of the PASP gene, and they were TATA boxes, RORE, Sp1, SRY, oct-1, Cdx A, and cap. Additionally, we identified 68 single-nucleotide polymorphisms and 9 indels in the pig PASP gene, and three single-nucleotide polymorphisms (C77932320T or L15F; C77928094T or P191L; A77917401G or K522R) were nonsynonymous substitutions. These results provide useful information for future functional investigations of the pig PASP gene.
Collapse
Affiliation(s)
- Meixia Fang
- Department of Laboratory Animal Science, Medical College of Jinan University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
10
|
The secretion and maturation of prosaposin and procathepsin D are blocked in embryonic neural progenitor cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1480-9. [DOI: 10.1016/j.bbamcr.2008.01.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 01/30/2008] [Indexed: 01/14/2023]
|
11
|
Expression patterns in alternative splicing forms of prosaposin mRNA in the rat facial nerve nucleus after facial nerve transection. Neurosci Res 2007; 60:82-94. [PMID: 18022721 DOI: 10.1016/j.neures.2007.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 08/20/2007] [Accepted: 09/26/2007] [Indexed: 11/24/2022]
Abstract
Prosaposin acts as a neurotrophic factor, in addition to its role as the precursor protein for saposins A, B, C, and D, which are activators for specific sphingolipid hydrolases in lysosomes. In rats, the prosaposin gene generates two alternative splicing forms of mRNA: Pro+9 containing a 9-base insertion and Pro+0 without. The expression of these mRNAs changes after brain injury. We examined the expression patterns of the alternative splicing forms of prosaposin mRNA in the rat facial nerve nucleus for 52 days following facial nerve transection. Pro+0 mRNA increased within 3 days of transection, peaked after 5-10 days, and remained significantly elevated for 21 days. In contrast, the expression of Pro+9 mRNA was constant throughout the regenerative period. Prosaposin mRNA expression increased not only in facial motoneurons, but also in microglia during facial nerve regeneration. Our findings indicate that the saposin B domain of prosaposin, which is the domain affected by alternative splicing, plays an important role in both neurons and microglia during neuroregeneration.
Collapse
|
12
|
Katyal S, Gao Z, Liu RZ, Godbout R. Evolutionary conservation of alternative splicing in chicken. Cytogenet Genome Res 2007; 117:146-57. [PMID: 17675855 PMCID: PMC3726401 DOI: 10.1159/000103175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 09/13/2006] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing represents a source of great diversity for regulating protein expression and function. It has been estimated that one-third to two-thirds of mammalian genes are alternatively spliced. With the sequencing of the chicken genome and analysis of transcripts expressed in chicken tissues, we are now in a position to address evolutionary conservation of alternative splicing events in chicken and mammals. Here, we compare chicken and mammalian transcript sequences of 41 alternatively-spliced genes and 50 frequently accessed genes. Our results support a high frequency of splicing events in chicken, similar to that observed in mammals.
Collapse
Affiliation(s)
- S Katyal
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
13
|
Cove J, Morales CR, Baranes D. SGP-1 increases dendritic and synaptic development dependent on synaptic activity. Neurosci Res 2006; 56:372-85. [PMID: 17050025 DOI: 10.1016/j.neures.2006.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 08/13/2006] [Accepted: 08/14/2006] [Indexed: 11/21/2022]
Abstract
Neurotrophic factors are a group of secreted proteins which generally regulate neurite outgrowth and synaptic development. SGP-1 has been reported as a neurotrophic factor, though little is known of its effect on neurite outgrowth, and it is unknown whether SGP-1 affects synaptic development. We report here that SGP-1 is distributed in vesicle-like puncta in somas and dendrites of primary neurons in culture, and that SGP-1 is secreted in culture and is taken up by endocytosis in dendrites. Endogenous extracellular activity of SGP-1 promotes dendritic, but not axonal outgrowth. Furthermore, endogenous activity of SGP-1 increases synaptogenesis in hippocampal neurons as determined by measuring the density and size of synaptophysin puncta and by determining the density of dendritic spines, their surface expression of GluR2 and their immunoreactivity for GluR1. The effect of SGP-1 on the amount of postsynaptic receptors in dendritic spines depends on synaptic activity and apparently on activation of MAPK, as inhibition of either of these abolished the affect. Hence, SGP-1 has neurotrophic effects, increasing dendritic growth and promoting synaptic development in an activity-dependent fashion.
Collapse
Affiliation(s)
- Joshua Cove
- Department of Life Sciences, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | | | | |
Collapse
|
14
|
Cohen T, Auerbach W, Ravid L, Bodennec J, Fein A, Futerman AH, Joyner AL, Horowitz M. The exon 8-containing prosaposin gene splice variant is dispensable for mouse development, lysosomal function, and secretion. Mol Cell Biol 2005; 25:2431-40. [PMID: 15743835 PMCID: PMC1061615 DOI: 10.1128/mcb.25.6.2431-2440.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prosaposin is a multifunctional protein with diverse functions. Intracellularly, prosaposin is a precursor of four sphingolipid activator proteins, saposins A to D, which are required for hydrolysis of sphingolipids by several lysosomal exohydrolases. Secreted prosaposin has been implicated as a neurotrophic, myelinotrophic, and myotrophic factor as well as a spermatogenic factor. It has also been implicated in fertilization. The human and the mouse prosaposin gene has a 9-bp exon (exon 8) that is alternatively spliced, resulting in an isoform with three extra amino acids, Gln-Asp-Gln, within the saposin B domain. Alternative splicing in the prosaposin gene is conserved from fish to humans, tissue specific, and regulated in the brain during development and nerve regeneration-degeneration processes. To elucidate the physiological role of alternative splicing, we have generated a mouse lacking exon 8 by homologous recombination. The exon 8 prosaposin mutant mice are healthy and fertile with no obvious phenotype. No changes were detected in prosaposin secretion or in accumulation and metabolism of gangliosides, sulfatides, neutral glycosphingolipids, neutral phospholipids, other neutral lipids, and ceramide. These data strongly indicate that the prosaposin variant containing the exon 8-encoded three amino acids is dispensable for normal mouse development and fertility as well as for prosaposin secretion and its lysosomal function, at least in the presence of the prosaposin variant missing the exon 8-encoded three amino acids.
Collapse
Affiliation(s)
- Tsadok Cohen
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | | | | | | | |
Collapse
|