1
|
Nogo and Nogo receptor: relevance to schizophrenia? Neurobiol Dis 2013; 54:150-7. [PMID: 23369871 DOI: 10.1016/j.nbd.2013.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/14/2013] [Accepted: 01/17/2013] [Indexed: 12/14/2022] Open
Abstract
The membrane protein Nogo-A and its receptor NgR have been extensively characterized for their role in restricting axonal growth, regeneration, and plasticity in the central nervous system. Recent evidence suggests that Nogo and NgR might constitute candidate genes for schizophrenia susceptibility. In this article, we critically review the possibility that dysfunctions related to Nogo-A and NgR might contribute to increased risk for schizophrenia. To this end, we consider the most important insights that have emerged from human genetic and pathological studies and from experimental animal work. Furthermore, we discuss potential mechanisms of Nogo/NgR involvement in neural circuit development and stability, and how mutations or changes in expression levels of these proteins could be developmental risk factors contributing to schizophrenia.
Collapse
|
2
|
Walterfang M, Velakoulis D, Whitford TJ, Pantelis C. Understanding aberrant white matter development in schizophrenia: an avenue for therapy? Expert Rev Neurother 2011; 11:971-87. [PMID: 21721915 DOI: 10.1586/ern.11.76] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although historically gray matter changes have been the focus of neuropathological and neuroradiological studies in schizophrenia, in recent years an increasing body of research has implicated white matter structures and its constituent components (axons, their myelin sheaths and supporting oligodendrocytes). This article summarizes this body of literature, examining neuropathological, neurogenetic and neuroradiological evidence for white matter pathology in schizophrenia. We then look at the possible role that antipsychotic medication may play in these studies, examining both its role as a potential confounder in studies examining neuronal density and brain volume, but also the possible role that these medications may play in promoting myelination through their effects on oligodendrocytes. Finally, the role of potential novel therapies is discussed.
Collapse
Affiliation(s)
- Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Australia.
| | | | | | | |
Collapse
|
3
|
Takahashi N, Sakurai T, Davis KL, Buxbaum JD. Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Prog Neurobiol 2010; 93:13-24. [PMID: 20950668 DOI: 10.1016/j.pneurobio.2010.09.004] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/03/2010] [Accepted: 09/30/2010] [Indexed: 01/05/2023]
Abstract
Multiple lines of evidence in schizophrenia, from brain imaging, studies in postmortem brains, and genetic association studies, have implicated oligodendrocyte and myelin dysfunction in this disease. Recent studies suggest that oligodendrocyte and myelin dysfunction leads to changes in synaptic formation and function, which could lead to cognitive dysfunction, a core symptom of schizophrenia. Furthermore, there is accumulating data linking oligodendrocyte and myelin dysfunction with dopamine and glutamate abnormalities, both of which are found in schizophrenia. These findings implicate oligodendrocyte and myelin dysfunction as a primary change in schizophrenia, not only as secondary consequences of the illness or treatment. Strategies targeting oligodendrocyte and myelin abnormalities could therefore provide therapeutic opportunities for patients suffering from schizophrenia.
Collapse
Affiliation(s)
- Nagahide Takahashi
- Conte Center for the Neuroscience of Mental Disorders and the Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
4
|
Höistad M, Segal D, Takahashi N, Sakurai T, Buxbaum JD, Hof PR. Linking white and grey matter in schizophrenia: oligodendrocyte and neuron pathology in the prefrontal cortex. Front Neuroanat 2009; 3:9. [PMID: 19636386 PMCID: PMC2713751 DOI: 10.3389/neuro.05.009.2009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 06/16/2009] [Indexed: 11/21/2022] Open
Abstract
Neuronal circuitry relies to a large extent on the presence of functional myelin produced in the brain by oligodendrocytes. Schizophrenia has been proposed to arise partly from altered brain connectivity. Brain imaging and neuropathologic studies have revealed changes in white matter and reduction in myelin content in patients with schizophrenia. In particular, alterations in the directionality and alignment of axons have been documented in schizophrenia. Moreover, the expression levels of several myelin-related genes are decreased in postmortem brains obtained from patients with schizophrenia. These findings have led to the formulation of the oligodendrocyte/myelin dysfunction hypothesis of schizophrenia. In this review, we present a brief overview of the neuropathologic findings obtained on white matter and oligodendrocyte status observed in schizophrenia patients, and relate these changes to the processes of brain maturation and myelination. We also review recent data on oligodendrocyte/myelin genes, and present some recent mouse models of myelin deficiencies. The use of transgenic and mutant animal models offers a unique opportunity to analyze oligodendrocyte and neuronal changes that may have a clinical impact. Lastly, we present some recent morphological findings supporting possible causal involvement of white and grey matter abnormalities, in the aim of determining the morphologic characteristics of the circuits whose alteration leads to the cortical dysfunction that possibly underlies the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Malin Höistad
- Department of Neuroscience, Mount Sinai School of MedicineNew York, NY, USA
| | - Devorah Segal
- Department of Neuroscience, Mount Sinai School of MedicineNew York, NY, USA
| | - Nagahide Takahashi
- Department of Psychiatry, Mount Sinai School of MedicineNew York, NY, USA
| | - Takeshi Sakurai
- Department of Psychiatry, Mount Sinai School of MedicineNew York, NY, USA
| | - Joseph D. Buxbaum
- Department of Psychiatry, Mount Sinai School of MedicineNew York, NY, USA
| | - Patrick R. Hof
- Department of Neuroscience, Mount Sinai School of MedicineNew York, NY, USA
| |
Collapse
|
5
|
Karoutzou G, Emrich HM, Dietrich DE. The myelin-pathogenesis puzzle in schizophrenia: a literature review. Mol Psychiatry 2008; 13:245-60. [PMID: 17925796 DOI: 10.1038/sj.mp.4002096] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Schizophrenia is a serious and disabling mental disorder with symptoms such as auditory hallucinations, disordered thinking and delusions, avolition, anhedonia, blunted affect and apathy. In this review article we seek to present the current scientific findings from linkage studies and susceptible genes and the pathophysiology of white matter in schizophrenia. The article has been reviewed in two parts. The first part deals with the linkage studies and susceptible genes in schizophrenia in order to have a clear-cut picture of the involvement of chromosomes and their genes in schizophrenia. The genetic linkage results seem to be replicated in some cases but in others are not. From these results, we cannot draw a fine map to a single locus or gene, leading to the conclusion that schizophrenia is not caused by a single factor/gene. In the second part of the article we present the oligodendrocyte-related genes that are associated with schizophrenia, as we hypothesize a potential role of oligodendrocyte-related genes in the pathology of the disorder.
Collapse
Affiliation(s)
- G Karoutzou
- Department of Clinical Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
6
|
Mitkus SN, Hyde TM, Vakkalanka R, Kolachana B, Weinberger DR, Kleinman JE, Lipska BK. Expression of oligodendrocyte-associated genes in dorsolateral prefrontal cortex of patients with schizophrenia. Schizophr Res 2008; 98:129-38. [PMID: 17964117 PMCID: PMC2259271 DOI: 10.1016/j.schres.2007.09.032] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 09/20/2007] [Accepted: 09/24/2007] [Indexed: 11/28/2022]
Abstract
Prior studies have found decreased mRNA expression of oligodendrocyte-associated genes in the dorsolateral prefrontal cortex (DLPFC) of patients with schizophrenia. However, it is unclear which specific genes are affected and whether the changes occur in the cortical white or grey matter. We assessed the mRNA expression levels of four oligodendrocyte-related genes: myelin-associated basic protein (MOBP), myelin-associated glycoprotein (MAG), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and oligodendrocyte-lineage transcription factor 2 (OLIG2) in DLPFC white and grey matter using quantitative-PCR (approximately 70 controls and approximately 30 patients with schizophrenia). We also examined the effects of high-risk polymorphisms in CNP and OLIG2 on mRNA levels of these genes. We found that genetic polymorphisms in CNP (rs2070106) and OLIG2 (rs1059004 and rs9653711), previously associated with schizophrenia, predicted low expression of these genes. Expression of MAG, CNP and OLIG2 did not differ between patients with schizophrenia and controls in the grey or white matter but MOBP mRNA levels were increased in the DLPFC white matter in patients with a history of substance abuse. MOBP and CNP protein in the white matter was not altered. Although previously reported reductions in the expression of myelin-related genes in the DLPFC were not detected, we show that individuals carrying risk-associated alleles in oligodendrocyte-related genes had relatively lower transcript levels. These data illustrate the importance of genetic background in gene expression studies in schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Barbara K. Lipska
- *Corresponding Author: Barbara K. Lipska, 10 Center Drive, Room 4N306, Bethesda, MD 20892-1385, phone: (301) 496-9501, Fax (301) 402-2751, e-mail:
| |
Collapse
|
7
|
Francks C, Maegawa S, Laurén J, Abrahams BS, Velayos-Baeza A, Medland SE, Colella S, Groszer M, McAuley EZ, Caffrey TM, Timmusk T, Pruunsild P, Koppel I, Lind PA, Matsumoto-Itaba N, Nicod J, Xiong L, Joober R, Enard W, Krinsky B, Nanba E, Richardson AJ, Riley BP, Martin NG, Strittmatter SM, Möller HJ, Rujescu D, St Clair D, Muglia P, Roos JL, Fisher SE, Wade-Martins R, Rouleau GA, Stein JF, Karayiorgou M, Geschwind DH, Ragoussis J, Kendler KS, Airaksinen MS, Oshimura M, DeLisi LE, Monaco AP. LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Mol Psychiatry 2007; 12:1129-39, 1057. [PMID: 17667961 PMCID: PMC2990633 DOI: 10.1038/sj.mp.4002053] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Left-right asymmetrical brain function underlies much of human cognition, behavior and emotion. Abnormalities of cerebral asymmetry are associated with schizophrenia and other neuropsychiatric disorders. The molecular, developmental and evolutionary origins of human brain asymmetry are unknown. We found significant association of a haplotype upstream of the gene LRRTM1 (Leucine-rich repeat transmembrane neuronal 1) with a quantitative measure of human handedness in a set of dyslexic siblings, when the haplotype was inherited paternally (P=0.00002). While we were unable to find this effect in an epidemiological set of twin-based sibships, we did find that the same haplotype is overtransmitted paternally to individuals with schizophrenia/schizoaffective disorder in a study of 1002 affected families (P=0.0014). We then found direct confirmatory evidence that LRRTM1 is an imprinted gene in humans that shows a variable pattern of maternal downregulation. We also showed that LRRTM1 is expressed during the development of specific forebrain structures, and thus could influence neuronal differentiation and connectivity. This is the first potential genetic influence on human handedness to be identified, and the first putative genetic effect on variability in human brain asymmetry. LRRTM1 is a candidate gene for involvement in several common neurodevelopmental disorders, and may have played a role in human cognitive and behavioral evolution.
Collapse
Affiliation(s)
- C Francks
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fergani A, Dupuis L, Jokic N, Larmet Y, de Tapia M, Rene F, Loeffler JP, Gonzalez de Aguilar JL. Reticulons as markers of neurological diseases: focus on amyotrophic lateral sclerosis. NEURODEGENER DIS 2006; 2:185-94. [PMID: 16909024 DOI: 10.1159/000089624] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Reticulons (RTNs) are a family of proteins that are primarily associated with the endoplasmic reticulum. In mammals, four genes have been identified and referred as to rtn1, 2, 3 and the neurite outgrowth inhibitor rtn4/nogo. These genes generate multiple isoforms that contain a common C-terminal reticulon homology domain of 150-200 amino-acid residues. The N-terminal regions of RTNs are highly variable, and result from alternative splicing or differential promoter usage. Although widely distributed, the functions of RTNs are still poorly understood. Much interest has been focused on rtn4/nogo because of its activity as a potent inhibitor of axonal growth and repair. In the present study, we update recent knowledge on mammalian RTNs paying special attention to the involvement of these proteins as markers of neurological diseases. We also present recent data concerning RTN expression in amyotrophic lateral sclerosis, a fatal degenerative disorder characterized by loss of upper and lower motor neurons, and muscle atrophy. The rearrangement of RTN expression is regulated not only in suffering skeletal muscle but also preceding the onset of symptoms, and may relate to the disease process.
Collapse
Affiliation(s)
- Anissa Fergani
- Laboratoire de Signalisations Moléculaires et Neurodégénérescence, INSERM U-692, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Gil V, Nicolas O, Mingorance A, Ureña JM, Tang BL, Hirata T, Sáez-Valero J, Ferrer I, Soriano E, del Río JA. Nogo-A expression in the human hippocampus in normal aging and in Alzheimer disease. J Neuropathol Exp Neurol 2006; 65:433-44. [PMID: 16772867 DOI: 10.1097/01.jnen.0000222894.59293.98] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Myelin-associated proteins are involved in the formation and stabilization of myelin sheaths. In addition, they prevent axon regeneration and plasticity in the adult brain. Recent evidence suggests that the expression of certain myelin-associated proteins (e.g. Nogo-A) can be regulated by synaptic activity or by over-expression after neural lesions in brain syndromes such as temporal lobe epilepsy. However, no studies on Alzheimer disease (AD) have been reported in which cell loss and significant synaptic reorganization occurs. In the present study, we analyze in detail the expression of Nogo-A in the hippocampal formation in normal human aging and in AD. Our results indicate that Nogo-A is expressed by oligodendrocytes and neurons in the aged hippocampal formation. In addition, both granule cells and mossy fiber connections are also labeled in the old-aged hippocampi. Interestingly, Nogo-A is over-expressed by hippocampal neurons in AD and is associated with beta-amyloid deposits in senile plaques. Taken together, our results reinforce the hypothesis that Reticulon proteins such as Nogo-A participate in the neuronal responses stemming from hippocampal formation during senescence, and particularly in AD. These findings also indicate that Reticulon proteins could be considered as new putative drug targets in therapies of neurodegenerative disorders.
Collapse
Affiliation(s)
- Vanessa Gil
- Development and Regeneration of the CNS, IRB-PCB, Barcelona Science Park, University of Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tan EC, Chong SA, Wang H, Chew-Ping Lim E, Teo YY. Gender-specific association of insertion/deletion polymorphisms in the nogo gene and chronic schizophrenia. ACTA ACUST UNITED AC 2005; 139:212-6. [PMID: 15953657 DOI: 10.1016/j.molbrainres.2005.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 04/20/2005] [Accepted: 05/12/2005] [Indexed: 11/19/2022]
Abstract
Nogo is a myelin-associated protein associated with neurite outgrowth and regeneration. A previous study has reported an association between an insertion/deletion polymorphism in schizophrenia. We tested for the distribution of the polymorphism and haplotypes of this and another insertion/deletion polymorphism in our population. We have also developed an assay combining allele-specific polymerase chain reaction (AS-PCR) and restriction fragment length polymorphism (RFLP) to simultaneously type these two insertion/deletion polymorphisms. There was a statistically significant difference at the allelic level for both the CAA (chi2 = 4.378, df = 1, P value = 0.036) and TATC (chi2 = 5.807, df = 1, P = 0.016) polymorphisms in the female subgroup, but not in males. With our genotyping method, we also determined the molecular haplotype. Within the female gender, odds ratio is at 1.57 (95% CI 1.05-2.37) for CAACAA-TATC and 1.40 (95% CI 0.55-3.60) for CAA-TATC, the two at-risk haplotypes. Odds ratio is 0.63 (95% CI 0.42-0.93) for the protective wildtype haplotype CAA-TATCTATC. Further study of these two polymorphisms to investigate functional significance and confirm gender-specific association should be carried out.
Collapse
Affiliation(s)
- Ene-Choo Tan
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, Kent Ridge, 117510, Singapore.
| | | | | | | | | |
Collapse
|