1
|
Yi Y, Jin X, Chen M, Coldea TE, Zhao H. Surfactant-mediated bio-manufacture: A unique strategy for promoting microbial biochemicals production. Biotechnol Adv 2024; 73:108373. [PMID: 38704106 DOI: 10.1016/j.biotechadv.2024.108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Biochemicals are widely used in the medicine and food industries and are more efficient and safer than synthetic chemicals. The amphipathic surfactants can interact with the microorganisms and embed the extracellular metabolites, which induce microbial metabolites secretion and biosynthesis, performing an attractive prospect of promoting the biochemical production. However, the commonness and differences of surfactant-mediated bio-manufacture in various fields are largely unexplored. Accordingly, this review comprehensively summarized the properties of surfactants, different application scenarios of surfactant-meditated bio-manufacture, and the mechanism of surfactants increasing metabolites production. Various biochemical productions such as pigments, amino acids, and alcohols could be enhanced using the cloud point and the micelles of surfactants. Besides, the amphiphilicity of surfactants also promoted the utilization of fermentation substrates, especially lignocellulose and waste sludge, by microorganisms, indirectly increasing the metabolites production. The increase in target metabolites production was attributed to the surfactants changing the permeability and composition of the cell membrane, hence improving the secretion ability of microorganisms. Moreover, surfactants could regulate the energy metabolism, the redox state and metabolic flow in microorganisms, which induced target metabolites synthesis. This review aimed to broaden the application fields of surfactants and provide novel insights into the production of microbial biochemicals.
Collapse
Affiliation(s)
- Yunxin Yi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaofan Jin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
2
|
Correlation Relationship between Phase Inversion of Pickering Emulsions and Biocatalytic Activity of Microbial Transformation of Phytosterols. Catalysts 2022. [DOI: 10.3390/catal13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Microbial transformation of hydrophobic phytosterols into the pharmaceutical steroid precursors AD (androst-4-ene-3, 17-dione) and ADD (androst-4-diene-3, 17-dione) in a water–plant oil two-phase system by Mycolicibacterium neoaurum is a paradigm of interfacial biocatalysis in Pickering emulsions stabilized by bacterial cells. In the present work, phase inversion of Pickering emulsions—i.e., Pickering emulsions turning from water-in-oil (W/O) emulsions into oil-in-water (O/W) ones—was observed during microbial transformation in the presence of high concentrations of crystal phytosterols. It was found that there is a correlation relationship between the phase behaviors of Pickering emulsions and the biocatalytic activity of utilizing M. neoaurum as a whole-cell catalyst. Efficient microbial transformation under the high crystal phytosterol loadings was achieved due to the formation of O/W emulsions where interfacial biocatalysis took place. Under the optimal conditions (volume ratio of soybean oil to water: 15:35 mL, phytosterols concentration in the soybean oil: 80 g/L, glucose as co-substrate in the aqueous culture medium: 10 g/L), the concentrations of AD and ADD reached 4.8 g/L based on the whole broth (16 g/L based on the oil phase) after microbial transformation for 9 days.
Collapse
|
3
|
Influence of alcohols on the lower consolute behavior and thermodynamic approach of Triton X-114 aqueous two-phase systems. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Mycolicibacterium cell factory for the production of steroid-based drug intermediates. Biotechnol Adv 2021; 53:107860. [PMID: 34710554 DOI: 10.1016/j.biotechadv.2021.107860] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022]
Abstract
Steroid-based drugs have been developed as the second largest medical category in pharmaceutics. The well-established route of steroid industry includes two steps: the conversion of natural products with a steroid framework to steroid-based drug intermediates and the synthesis of varied steroid-based drugs from steroid-based drug intermediates. The biosynthesis of steroid-based drug intermediates from phytosterols by Mycolicibacterium cell factories bypasses the potential undersupply of diosgenin in the traditional steroid chemical industry. Moreover, the biosynthesis route shows advantages on multiple steroid-based drug intermediate products, more ecofriendly processes, and consecutive reactions carried out in one operation step and in one pot. Androsta-4-ene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD) and 9-hydroxyandrostra-4-ene-3,17-dione (9-OH-AD) are the representative steroid-based drug intermediates synthesized by mycolicibacteria. Other steroid metabolites of mycolicibacteria, like 4-androstene-17β-ol-3-one (TS), 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), 22-hydroxy-23,24-bisnorchol-1,4-diene-3-one (1,4-HBC), 9,22-dihydroxy-23,24-bisnorchol-4-ene-3-one (9-OH-HBC), 3aα-H-4α-(3'-propionic acid)-7aβ-methylhexahydro-1,5-indanedione (HIP) and 3aα-H-4α-(3'-propionic acid)-5α-hydroxy-7aβ-methylhexahydro-1-indanone-δ-lactone (HIL), also show values as steroid-based drug intermediates. To improve the bio-production efficiency of the steroid-based drug intermediates, mycolicibacterial strains and biotransformation processes have been continuously studied in the past decades. Many mycolicibacteria that accumulate steroid drug intermediates have been isolated, and subsequently optimized by conventional mutagenesis and genetic engineering. Especially, with the clarification of the mycolicibacterial steroid metabolic pathway and the developments on gene editing technologies, rational design is becoming an important measure for the construction and optimization of engineered mycolicibacteria strains that produce steroid-based drug intermediates. Hence, by reviewing researches in the past two decades, this article updates the overall process of steroid metabolism in mycolicibacteria and provides comprehensive schemes for the rational construction of mycolicibacterial strains that accumulate steroid-based drug intermediates. In addition, the special strategies for the bioconversion of highly hydrophobic steroid in aqueous media are discussed as well.
Collapse
|
5
|
Rohman A, Dijkstra BW. Application of microbial 3-ketosteroid Δ 1-dehydrogenases in biotechnology. Biotechnol Adv 2021; 49:107751. [PMID: 33823268 DOI: 10.1016/j.biotechadv.2021.107751] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022]
Abstract
3-Ketosteroid Δ1-dehydrogenase catalyzes the 1(2)-dehydrogenation of 3-ketosteroid substrates using flavin adenine dinucleotide as a cofactor. The enzyme plays a crucial role in microbial steroid degradation, both under aerobic and anaerobic conditions, by initiating the opening of the steroid nucleus. Indeed, many microorganisms are known to possess one or more 3-ketosteroid Δ1-dehydrogenases. In the pharmaceutical industry, 3-ketosteroid Δ1-dehydrogenase activity is exploited to produce Δ1-3-ketosteroids, a class of steroids that display various biological activities. Many of them are used as active pharmaceutical ingredients in drug products, or as key precursors to produce pharmaceutically important steroids. Since 3-ketosteroid Δ1-dehydrogenase activity requires electron acceptors, among other considerations, Δ1-3-ketosteroid production has been industrially implemented using whole-cell fermentation with growing or metabolically active resting cells, in which the electron acceptors are available, rather than using the isolated enzyme. In this review we discuss biotechnological applications of microbial 3-ketosteroid Δ1-dehydrogenases, covering commonly used steroid-1(2)-dehydrogenating microorganisms, the bioprocess for preparing Δ1-3-ketosteroids, genetic engineering of 3-ketosteroid Δ1-dehydrogenases and related genes for constructing new, productive industrial strains, and microbial fermentation strategies for enhancing the product yield. Furthermore, we also highlight the recent development in the use of isolated 3-ketosteroid Δ1-dehydrogenases combined with a FAD cofactor regeneration system. Finally, in a somewhat different context, we summarize the role of 3-ketosteroid Δ1-dehydrogenase in cholesterol degradation by Mycobacterium tuberculosis and other mycobacteria. Because the enzyme is essential for the pathogenicity of these organisms, it may be a potential target for drug development to combat mycobacterial infections.
Collapse
Affiliation(s)
- Ali Rohman
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; Laboratory of Proteomics, Research Center for Bio-Molecule Engineering (BIOME), Universitas Airlangga, Surabaya 60115, Indonesia; Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands.
| | - Bauke W Dijkstra
- Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
6
|
Xie H, Zhao W, Ali DC, Zhang X, Wang Z. Interfacial biocatalysis in bacteria-stabilized Pickering emulsions for microbial transformation of hydrophobic chemicals. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02243h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Pickering emulsion interface is an exceptional habitat for bacteria to grow by simultaneously utilizing hydrophobic and hydrophilic chemicals.
Collapse
Affiliation(s)
- Haisheng Xie
- State Key Laboratory of Microbial Metabolism
- Engineering Research Center of Cell & Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiao Tong University
| | - Wenyu Zhao
- State Key Laboratory of Microbial Metabolism
- Engineering Research Center of Cell & Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiao Tong University
| | - Daniel Chikere Ali
- State Key Laboratory of Microbial Metabolism
- Engineering Research Center of Cell & Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiao Tong University
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism
- School of Life Science and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Zhilong Wang
- State Key Laboratory of Microbial Metabolism
- Engineering Research Center of Cell & Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiao Tong University
| |
Collapse
|
7
|
Liu D, Geiselman GM, Coradetti S, Cheng YF, Kirby J, Prahl JP, Jacobson O, Sundstrom ER, Tanjore D, Skerker JM, Gladden J. Exploiting nonionic surfactants to enhance fatty alcohol production in Rhodosporidium toruloides. Biotechnol Bioeng 2020; 117:1418-1425. [PMID: 31981215 PMCID: PMC7187362 DOI: 10.1002/bit.27285] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 01/13/2023]
Abstract
Fatty alcohols (FOHs) are important feedstocks in the chemical industry to produce detergents, cosmetics, and lubricants. Microbial production of FOHs has become an attractive alternative to production in plants and animals due to growing energy demands and environmental concerns. However, inhibition of cell growth caused by intracellular FOH accumulation is one major issue that limits FOH titers in microbial hosts. In addition, identification of FOH‐specific exporters remains a challenge and previous studies towards this end are limited. To alleviate the toxicity issue, we exploited nonionic surfactants to promote the export of FOHs in Rhodosporidium toruloides, an oleaginous yeast that is considered an attractive next‐generation host for the production of fatty acid‐derived chemicals. Our results showed FOH export efficiency was dramatically improved and the growth inhibition was alleviated in the presence of small amounts of tergitol and other surfactants. As a result, FOH titers increase by 4.3‐fold at bench scale to 352.6 mg/L. With further process optimization in a 2‐L bioreactor, the titer was further increased to 1.6 g/L. The method we show here can potentially be applied to other microbial hosts and may facilitate the commercialization of microbial FOH production.
Collapse
Affiliation(s)
- Di Liu
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, California.,Department of Energy, Agile BioFoundry, Emeryville, California
| | - Gina M Geiselman
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, California.,Department of Energy, Agile BioFoundry, Emeryville, California
| | - Samuel Coradetti
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, California.,Department of Energy, Agile BioFoundry, Emeryville, California
| | - Ya-Fang Cheng
- QB3-Berkeley, University of California, Berkeley, California
| | - James Kirby
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, California.,Department of Energy, Agile BioFoundry, Emeryville, California
| | - Jan-Philip Prahl
- Department of Energy, Agile BioFoundry, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, California
| | - Oslo Jacobson
- Department of Energy, Agile BioFoundry, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, California
| | - Eric R Sundstrom
- Department of Energy, Agile BioFoundry, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, California
| | - Deepti Tanjore
- Department of Energy, Agile BioFoundry, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, California
| | | | - John Gladden
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, California.,Department of Energy, Agile BioFoundry, Emeryville, California.,Joint BioEnergy Institute, Emeryville, California
| |
Collapse
|
8
|
Nitric Oxide and Hydrogen Peroxide Signaling in Extractive Shiraia Fermentation by Triton X-100 for Hypocrellin A Production. Int J Mol Sci 2020; 21:ijms21030882. [PMID: 32019072 PMCID: PMC7037624 DOI: 10.3390/ijms21030882] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/17/2022] Open
Abstract
Shiraia mycelial culture is a promising biotechnological alternative for the production of hypocrellin A (HA), a new photosensitizer for anticancer photodynamic therapy (PDT). The extractive fermentation of intracellular HA in the nonionic surfactant Triton X-100 (TX100) aqueous solution was studied in the present work. The addition of 25 g/L TX100 at 36 h of the fermentation not only enhanced HA exudation to the broth by 15.6-fold, but stimulated HA content in mycelia by 5.1-fold, leading to the higher production 206.2 mg/L, a 5.4-fold of the control on day 9. After the induced cell membrane permeabilization by TX100 addition, a rapid generation of nitric oxide (NO) and hydrogen peroxide (H2O2) was observed. The increase of NO level was suppressed by the scavenger vitamin C (VC) of reactive oxygen species (ROS), whereas the induced H2O2 production could not be prevented by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), suggesting that NO production may occur downstream of ROS in the extractive fermentation. Both NO and H2O2 were proved to be involved in the expressions of HA biosynthetic genes (Mono, PKS and Omef) and HA production. NO was found to be able to up-regulate the expression of transporter genes (MFS and ABC) for HA exudation. Our results indicated the integrated role of NO and ROS in the extractive fermentation and provided a practical biotechnological process for HA production.
Collapse
|
9
|
Raut AN, Dhobe AR, Gedam PS, Dhamole PB. Determination of solubilization isotherm in micelles of non-ionic surfactant L62 for butanol extraction. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Kolmar JF, Thum O, Baganz F. Improving Product Specificity of Whole-Cell Alkane Oxidation in Nonconventional Media: A Multivariate Analysis Approach. Biotechnol J 2019; 14:e1800581. [PMID: 31231931 DOI: 10.1002/biot.201800581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/14/2019] [Indexed: 11/10/2022]
Abstract
Two-liquid-phase reaction media have long been used in bioconversions to supply or remove hydrophobic organic reaction substrates and products to reduce inhibitory and toxic effects on biocatalysts. In case of the terminal oxyfunctionalization of linear alkanes by the AlkBGT monooxygenase the excess alkane substrate is often used as a second phase to extract the alcohol, aldehyde, and acid products. However, the selection of other carrier phases or surfactants is complex due to a large number of parameters that are involved, such as biocompatibility, substrate bioavailability, and product extraction selectivity. This study combines systematic high-throughput screening with chemometrics to correlate physicochemical parameters of a range of cosolvents to product specificity and yield using a multivariate regression model. Partial least-squares regression shows that the defining factor for product specificity is the solubility properties of the reaction substrate and product in the cosolvent, as measured by Hansen solubility parameters. Thus the polarity of cosolvents determines the accumulation of either alcohol or acid products. Whereas usually the acid product accumulates during the reaction, by choosing a more polar cosolvent the 1-alcohol product can be accumulated. Especially with Tergitol as a cosolvent, a 3.2-fold improvement in the 1-octanol yield to 18.3 mmol L-1 is achieved relative to the control reaction without cosolvents.
Collapse
Affiliation(s)
- Johannes F Kolmar
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London, WC1E 6BT, UK
| | - Oliver Thum
- Evonik Creavis GmbH, Paul-Baumann-Straße 1, 45772, Marl, Germany
| | - Frank Baganz
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
11
|
Yang X, Dong Y, Liu G, Zhang C, Cao Y, Wang C. Effects of nonionic surfactants on pigment excretion and cell morphology in extractive fermentation of Monascus sp. NJ1. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1233-1239. [PMID: 30066423 DOI: 10.1002/jsfa.9295] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/26/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Different nonionic surfactants in submerged fermentation of Monascus sp. demonstrate significant differences regarding increasing pigment yield. In this study, 15 surfactants from five series were analyzed to investigate the influence of nonionic surfactants on Monascus pigments, with the aim of simultaneously obtaining a novel nonionic surfactant. RESULTS Addition of the novel surfactant Brij 35 greatly enhanced pigment excretion and demonstrated good biocompatibility. Extracellular red, orange and yellow pigments increased by 1.47-, 1.71- and 2.07-fold respectively. Production of extracellular pigments was not only related to the hydrophile-lipophile balance value (HLB) but also affected by the cloud point temperature (CP) of the fermentation medium. It was found that nonionic surfactants can improve cell membrane permeability and cell storage capacity by modifying the cell walls of Monascus mycelium and by increasing lipid droplet levels, enhancing pigment excretion. Different nonionic surfactants modify Monascus mycelium to different degrees. CONCLUSION The novel surfactant Brij 35, which has good capacity for pigment extraction and biocompatibility, was identified in the analysis. The effects of nonionic surfactants on the secretion of pigments are related to not only the modification of the cell wall and internal structure but also the CP and HLB. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuelian Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
- School of Food and Chemical Engineering, Beijing Technology & Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| | - Ye Dong
- School of Food and Chemical Engineering, Beijing Technology & Business University, Beijing, China
| | - Guorong Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
- School of Food and Chemical Engineering, Beijing Technology & Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| | - Chan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
- School of Food and Chemical Engineering, Beijing Technology & Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| | - YanPing Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
- School of Food and Chemical Engineering, Beijing Technology & Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
- School of Food and Chemical Engineering, Beijing Technology & Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| |
Collapse
|
12
|
Zheng Y, Li L, Shi X, Huang Z, Li F, Yang J, Guo Y. Nonionic surfactants and their effects on asymmetric reduction of 2-octanone with Saccharomyces cerevisiae. AMB Express 2018; 8:111. [PMID: 29978349 PMCID: PMC6033843 DOI: 10.1186/s13568-018-0640-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/29/2018] [Indexed: 11/17/2022] Open
Abstract
In an aqueous buffer system, serious reverse and side reactions were found in the asymmetric reduction of 2-octanone with Saccharomyces cerevisiae. However, some nonionic surfactants added to the aqueous buffer system improved the bioreduction process by decreasing the reverse and side reaction rates in addition to effectively increasing the average positive reaction rate. Further, a shorter carbon chain length of hydrophilic or hydrophobic moieties in surfactants resulted in a higher yield of (S)-2-octanol. The alkylphenol ethoxylate surfactants had a less influence than polyoxyethylenesorbitan trialiphatic surfactants on the product e.e. It suggested that the product e.e. resulting from the change of carbon chain length of the hydrophobic moieties varied markedly compared with the change of carbon chain length of the hydrophilic moiety. Emulsifier OP-10 and Tween 20 markedly enhanced the yield and product e.e. at the concentration of 0.4 mmol L−1 with a yield of 73.3 and 93.2%, and the product e.e. of 99.2 and 99.3%, respectively, at the reaction time of 96 h.
Collapse
|
13
|
Morphological transformations in Triton X-100 micelles modulated by imidazolium and pyridinium type Ionic Liquids: Investigations by scattering techniques. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.11.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Isolation of ionizable red Monascus pigments after extractive fermentation in nonionic surfactant micelle aqueous solution. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Awadhiya P, Banerjee T, Patil S. Bioconversion of 16-dehydropregnenolone Acetate to Exclusively 4-androstene-3,17-dione by Delftia acidovorans MTCC 3363. Pol J Microbiol 2017; 66:321-326. [PMID: 29319524 DOI: 10.5604/01.3001.0010.4858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Delftia acidovorans MTCC 3363 was found to convert 16-dehydropregnenolone acetate (16-DPA) exclusively to 4-androstene-3, 17-dione (AD). Addition of 9α-hydroxylase inhibitors was not required for preventing the accumulation of byproducts. The effect of pH, temperature, substrate concentration, surfactants and carrier solvents on this bioconversion has been studied. 16-DPA was maximally converted in buffered medium at pH 7.0, at temperature 30°C and 0.5 mg ml-1 substrate concentration. Detergent addition and temperature above 35°C had deleterious effect on bioconversion. Dioxan was found to be the best carrier solvent for biotransformation of 16-DPA to AD.
Collapse
Affiliation(s)
- Pushpendra Awadhiya
- Applied Microbiology Laboratory, School of Life Sciences, Devi Ahilya University, Indore, India
| | - Tushar Banerjee
- Applied Microbiology Laboratory, School of Life Sciences, Devi Ahilya University, Indore, India
| | - Shridhar Patil
- Applied Microbiology Laboratory, School of Life Sciences, Devi Ahilya University, Indore, India
| |
Collapse
|
16
|
Zhao L, Zhang X, Wang Z. Extraction of anionic dyes with ionic liquid–nonionic surfactant aqueous two-phase system. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2016.1267213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Lihong Zhao
- School of Pharmacy, State Key Laboratory of Microbial Metabolism and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xuehong Zhang
- School of Life Science and Biotechnology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhilong Wang
- School of Pharmacy, State Key Laboratory of Microbial Metabolism and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
17
|
Liu S, Guo C, Liang X, Wu F, Dang Z. Nonionic surfactants induced changes in cell characteristics and phenanthrene degradation ability of Sphingomonas sp. GY2B. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 129:210-218. [PMID: 27045921 DOI: 10.1016/j.ecoenv.2016.03.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/26/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
Surfactant-mediated bioremediation has been widely applied in decontaminating PAH-polluted sites. However, the impacts of surfactants on the biodegradation of PAHs have been controversial in the past years. To gain a clear insight into the influencing mechanisms, three nonionic surfactants (Tween80, TritonX-100 and Brij30) were selected to systematically investigate their effects on cell surface properties (membrane permeability, functional groups and elements), cell vitality as well as subsequent phenanthrene degradation ability of Sphingomonas sp. GY2B. Results showed that biodegradation of phenanthrene was stimulated by Tween80, slightly inhibited by TritonX-100 and severely inhibited by Brij30, respectively. Positive effect of Tween80 may arise from its role as the additional carbon source for GY2B to increase bacterial growth and activity, as demonstrated by the increasing viable cells in Tween80 amended degradation systems determined by flow cytometry. Although TritonX-100 could inhibit bacterial growth and disrupt cell membrane, its adverse impacts on microbial cells were weaker than Brij30, which may result in its weaker inhibitive extent. Results from this study can provide a rational basis on selecting surfactants for enhancing bioremediation of PAHs.
Collapse
Affiliation(s)
- Shasha Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China.
| | - Xujun Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Fengji Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China.
| |
Collapse
|
18
|
Biosynthesis of Monascus pigments by resting cell submerged culture in nonionic surfactant micelle aqueous solution. Appl Microbiol Biotechnol 2016; 100:7083-9. [PMID: 26971494 DOI: 10.1007/s00253-016-7434-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 02/01/2023]
Abstract
Growing cell submerged culture is usually applied for fermentative production of intracellular orange Monascus pigments, in which accumulation of Monascus pigments is at least partially associated to cell growth. In the present work, extractive fermentation in a nonionic surfactant micelle aqueous solution was utilized as a strategy for releasing of intracellular Monascus pigments. Those mycelia with low content of intracellular Monascus pigments were utilized as biocatalyst in resting cell submerged culture. By this means, resting cell submerged culture for production of orange Monascus pigments was carried out successfully in the nonionic surfactant micelle aqueous solution, which exhibited some advantages comparing with the corresponding conventional growing cell submerged culture, such as non-sterilization operation, high cell density (24 g/l DCW) leading to high productivity (14 AU of orange Monascus pigments at 470 nm per day), and recycling of cells as biocatalyst leading to high product yield (approximately 1 AU of orange Monascus pigments at 470 nm per gram of glucose) based on energy metabolism.
Collapse
|
19
|
Wang B, Zhang X, Wu Z, Wang Z. Investigation of relationship between lipid and Monascus pigment accumulation by extractive fermentation. J Biotechnol 2015; 212:167-73. [DOI: 10.1016/j.jbiotec.2015.08.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 11/29/2022]
|
20
|
Screening of non-Ionic Surfactant for Enhancing Biobutanol Production. Appl Biochem Biotechnol 2015; 177:1272-81. [DOI: 10.1007/s12010-015-1812-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
|
21
|
Nassiri-Koopaei N, Faramarzi MA. Recent developments in the fungal transformation of steroids. BIOCATAL BIOTRANSFOR 2015. [DOI: 10.3109/10242422.2015.1022533] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Shen L, Zhang X, Liu M, Wang Z. Microemulsion Extraction ofMonascusPigments from Nonionic Surfactant using High Polarity of Diethyl Ether as Excess Oil Phase. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2014.924013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Xu YG, Guan YX, Wang HQ, Yao SJ. Microbial Side-Chain Cleavage of Phytosterols by Mycobacteria in Vegetable Oil/Aqueous Two-Phase System. Appl Biochem Biotechnol 2014; 174:522-33. [DOI: 10.1007/s12010-014-1082-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/22/2014] [Indexed: 11/29/2022]
|
24
|
Enhancement of microbial hydroxylation of 13-ethyl-gon-4-ene-3,17-dione by Metarhizium anisopliae using nano-liposome technique. ACTA ACUST UNITED AC 2014; 41:619-27. [DOI: 10.1007/s10295-014-1414-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
Abstract
The introduction of 11α-hydroxy to 13-ethyl-gon-4-ene-3,17-dione (GD) by microbial transformation is a key step in the synthesis of oral contraceptive desogestrel, while low substrate solubility and uptake into cells are tough problems influencing biotransformation efficiency greatly. Nano-liposome technique was used in the hydroxylation of GD by Metarhizium anisopliae. The substrate GD was processed to be GD-loaded nano-liposomes (GNLs) with high stability and encapsulation efficiency, and then applied in microbial hydroxylation by M. anisopliae. The results proved that the yield of the main product 11α-hydroxy-13-ethyl-gon-4-ene-3,17-dione (HGD) tripled compared to regular solvent dimethylformamide dispersion method at 2 g/l of substrate feeding concentration, and the HGD conversion rate showed no obvious reduction when the substrate feeding concentration increased from 2 to 6 g/l, which indicated the improvement of GNL addition method on biotransformation. Furthermore, the main byproduct changed from 6β-hydroxy derivative of GD (with similar polarity to HGD) to 6β,11α-dihydroxy derivative, which benefits the following purification of HGD from fermentation broth. These advantages suggest a great potential for the application of nano-liposome technique in microbial steroid transformation.
Collapse
|
25
|
Pantsyrnaya T, Delaunay S, Goergen JL, Guseva E, Boudrant J. Solubilization of phenanthrene above cloud point of Brij 30: a new application in biodegradation. CHEMOSPHERE 2013; 92:192-195. [PMID: 23582404 DOI: 10.1016/j.chemosphere.2013.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/17/2013] [Accepted: 03/18/2013] [Indexed: 06/02/2023]
Abstract
In the present study a new application of solubilization of phenanthrene above cloud point of Brij 30 in biodegradation was developed. It was shown that a temporal solubilization of phenanthrene above cloud point of Brij 30 (5wt%) permitted to obtain a stable increase of the solubility of phenanthrene even when the temperature was decreased to culture conditions of used microorganism Pseudomonas putida (28°C). A higher initial concentration of soluble phenanthrene was obtained after the cloud point treatment: 200 against 120μM without treatment. All soluble phenanthrene was metabolized and a higher final concentration of its major metabolite - 1-hydroxy-2-naphthoic acid - (160 against 85μM) was measured in the culture medium in the case of a preliminary cloud point treatment. Therefore a temporary solubilization at cloud point might have a perspective application in the enhancement of biodegradation of polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- T Pantsyrnaya
- Laboratoire Réactions et Génie des Procédés UPR CNRS 3349, University of Lorraine, ENSAIA - 2, Avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy Cedex, France.
| | | | | | | | | |
Collapse
|
26
|
Kollerov VV, Monti D, Deshcherevskaya NO, Lobastova TG, Ferrandi EE, Larovere A, Gulevskaya SA, Riva S, Donova MV. Hydroxylation of lithocholic acid by selected actinobacteria and filamentous fungi. Steroids 2013; 78:370-8. [PMID: 23333587 DOI: 10.1016/j.steroids.2012.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/03/2012] [Accepted: 12/15/2012] [Indexed: 11/23/2022]
Abstract
Selected actinobacteria and filamentous fungi of different taxonomy were screened for the ability to carry out regio- and stereospecific hydroxylation of lithocholic acid (LCA) at position 7β. The production of ursodeoxycholic acid (UDCA) was for the first time shown for the fungal strains of Bipolaris, Gibberella, Cunninghamella and Curvularia, as well as for isolated actinobacterial strains of Pseudonocardia, Saccharothrix, Amycolatopsis, Lentzea, Saccharopolyspora and Nocardia genera. Along with UDCA, chenodeoxycholic (CDCA), deoxycholic (DCA), cholic (CA), 7-ketodeoxycholic and 3-ketodeoxycholic acids were detected amongst the metabolites by some strains. A strain of Gibberella zeae VKM F-2600 expressed high level of 7β-hydroxylating activity towards LCA. Under optimized conditions, the yield of UDCA reached 90% at 1g/L of LCA and up to 60% at a 8-fold increased substrate loading. The accumulation of the major by-product, 3-keto UDCA, was limited by using selected biotransformation media.
Collapse
Affiliation(s)
- V V Kollerov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki 5, 142290 Pushchino, Moscow Region, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kang B, Zhang X, Wu Z, Qi H, Wang Z. Solubilization capacity of nonionic surfactant micelles exhibiting strong influence on export of intracellular pigments in Monascus fermentation. Microb Biotechnol 2013; 6:540-50. [PMID: 23425092 PMCID: PMC3918156 DOI: 10.1111/1751-7915.12039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/07/2013] [Indexed: 11/01/2022] Open
Abstract
In this study, perstractive fermentation of intracellular Monascus pigments in nonionic surfactant micelle aqueous solution had been studied. The permeability of cell membrane modified by nonionic surfactant might have influence on the rate of export of intracellular pigments into its extracellular broth while nearly no effect on the final extracellular pigment concentration. However, the solubilization of pigments in nonionic surfactant micelles strongly affected the final extracellular pigment concentration. The solubilization capacity of micelles depended on the kind of nonionic surfactant, the super-molecule assembly structure of nonionic surfactant in an aqueous solution, and the nonionic surfactant concentration. Elimination of pigment degradation by export of intracellular Monascus pigments and solubilizing them into nonionic surfactant micelles was also confirmed experimentally. Thus, nonionic surfactant micelle aqueous solution is potential for replacement of organic solvent for perstractive fermentation of intracellular product.
Collapse
Affiliation(s)
- Biyu Kang
- School of Biological Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | | | | | | | | |
Collapse
|
28
|
Zhang XY, Peng Y, Su ZR, Chen QH, Ruan H, He GQ. Optimization of biotransformation from phytosterol to androstenedione by a mutant Mycobacterium neoaurum ZJUVN-08. J Zhejiang Univ Sci B 2013; 14:132-43. [PMID: 23365012 DOI: 10.1631/jzus.b1200067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Biotransformation of phytosterol (PS) by a newly isolated mutant Mycobacterium neoaurum ZJUVN-08 to produce androstenedione has been investigated in this paper. The parameters of the biotransformation process were optimized using fractional factorial design and response surface methodology. Androstenedione was the sole product in the fermentation broth catalyzed by the mutant M. neoaurum ZJUVN-08 strain. Results showed that molar ratio of hydroxypropyl-β-cyclodextrin (HP-β-CD) to PS and substrate concentrations were the two most significant factors affecting androstenedione production. By analyzing the statistical model of three-dimensional surface plot, the optimal process conditions were observed at 0.1 g/L inducer, pH 7.0, molar ratio of HP-β-CD to PS 1.92:1, 8.98 g/L PS, and at 120 h of incubation time. Under these conditions, the maximum androstenedione yield was 5.96 g/L and nearly the same with the non-optimized (5.99 g/L), while the maximum PS conversion rate was 94.69% which increased by 10.66% compared with the non-optimized (84.03%). The predicted optimum conditions from the mathematical model were in agreement with the verification experimental results. It is considered that response surface methodology was a powerful and efficient method to optimize the parameters of PS biotransformation process.
Collapse
Affiliation(s)
- Xiao-yan Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | |
Collapse
|
29
|
Hu Z, Zhang X, Wu Z, Qi H, Wang Z. Export of intracellular Monascus pigments by two-stage microbial fermentation in nonionic surfactant micelle aqueous solution. J Biotechnol 2012; 162:202-9. [PMID: 23079078 DOI: 10.1016/j.jbiotec.2012.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 11/19/2022]
Abstract
Microbial fermentation of intracellular product is usually limited by high intracellular product concentration inhibition and complex downstream product processing. Perstractive fermentation of intracellular Monascus pigments in the nonionic surfactant Triton X-100 aqueous solution was studied in the present work, in which the intracellular product was exported from the intracellular to the extracellular aqueous solution and consecutively extracted into the nonionic surfactant micelles. After the second stage perstractive fermentation in the two-stage operation mode, biomass increased from 5 to 24 g/l DCW. The corresponding extracellular concentrations of yellow, orange, and red pigments were 60, 49 and 26 AU. The increase of cell density and the final pigment concentration were difficult to occur in a conventional aqueous medium using the two-stage fermentation. This positive effect of perstractive fermentation was ascribed to low intracellular pigment density, which eliminated the product inhibition and prevented the product from further degradation. The high efficiency of perstractive fermentation was further confirmed by fed-batch operation mode, in which the final biomass reached 28 g/l DCW and the corresponding extracellular concentrations of yellow, orange, and red pigments were 130, 84 and 47 AU.
Collapse
Affiliation(s)
- Zhiqiang Hu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | | | | | | | | |
Collapse
|
30
|
Bhatti HN, Khera RA. Biological transformations of steroidal compounds: a review. Steroids 2012; 77:1267-90. [PMID: 22910289 DOI: 10.1016/j.steroids.2012.07.018] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/15/2012] [Accepted: 07/26/2012] [Indexed: 10/28/2022]
Abstract
Microbial transformation is an important tool for structural modification of organic compounds, especially natural products with complex structures like steroids. It can be used to synthesize chemical structures that are difficult to obtain by ordinary methods and as a model of mammalian metabolism due to similarity between mammalian and microbial enzyme systems. During recent years research has been focused on the structural modifications of bioactive steroids by using various microorganisms, in order to obtain biologically potent compounds with diverse structures. Steroidal compounds are responsible for important biological functions in the cells and manifest a variety of activities. This article covers the microbial transformation of sterols, steroidal hormones and some new types of steroids known as bufadienolides. Emphasis has placed on reporting metabolites that may be of general interest and on the practical aspects of work in the field of microbial transformations. The review covers the literature from 1994 to 2011.
Collapse
Affiliation(s)
- Haq Nawaz Bhatti
- Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan.
| | | |
Collapse
|
31
|
Steroidal Metabolites Transformed by Marchantia polymorpha Cultures Block Breast Cancer Estrogen Biosynthesis. Cell Biochem Biophys 2012; 63:85-96. [DOI: 10.1007/s12013-012-9343-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Hu Z, Zhang X, Wu Z, Qi H, Wang Z. Perstraction of intracellular pigments by submerged cultivation of Monascus in nonionic surfactant micelle aqueous solution. Appl Microbiol Biotechnol 2012; 94:81-9. [DOI: 10.1007/s00253-011-3851-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/11/2011] [Accepted: 12/17/2011] [Indexed: 11/28/2022]
|
33
|
Olivares A, Acevedo F. Effect of inoculation strategies, substrate to biomass ratio and nitrogen sources on the bioconversion of wood sterols by Mycobacterium sp. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0720-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Bioavailability of organic compounds solubilized in nonionic surfactant micelles. Appl Microbiol Biotechnol 2010; 89:523-34. [DOI: 10.1007/s00253-010-2938-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 11/24/2022]
|
35
|
Dai Z, Wang Z, Xu JH, Qi H. Assessing bioavailability of the solubilization of organic compound in nonionic surfactant micelles by dose–response analysis. Appl Microbiol Biotechnol 2010; 88:327-39. [DOI: 10.1007/s00253-010-2737-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/13/2010] [Accepted: 06/13/2010] [Indexed: 11/28/2022]
|
36
|
Wang Z, Feng H. Double cloud point of ethylene oxide–propylene oxide triblock copolymer in an aqueous solution. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2010.03.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Wang Z, Dai Z. Extractive microbial fermentation in cloud point system. Enzyme Microb Technol 2010; 46:407-18. [DOI: 10.1016/j.enzmictec.2010.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Accepted: 02/07/2010] [Indexed: 10/19/2022]
|
38
|
Extractive fermentation in cloud point system for lipase production by Serratia marcescens ECU1010. Appl Microbiol Biotechnol 2009; 85:1789-96. [DOI: 10.1007/s00253-009-2257-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 08/07/2009] [Accepted: 09/09/2009] [Indexed: 10/20/2022]
|
39
|
Xue Y, Qian C, Wang Z, Xu JH, Yang R, Qi H. Investigation of extractive microbial transformation in nonionic surfactant micelle aqueous solution using response surface methodology. Appl Microbiol Biotechnol 2009; 85:517-24. [PMID: 19629469 DOI: 10.1007/s00253-009-2139-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 11/28/2022]
Abstract
Extractive microbial transformation of L-phenylacetylcarbinol (L-PAC) in nonionic surfactant Triton X-100 micelle aqueous solution was investigated by response surface methodology. Based on the Box-Behnken design, a mathematical model was developed for the predication of mutual interactions between benzaldehyde, Triton X-100, and glucose on L-PAC production. It indicated that the negative or positive effect of nonionic surfactant strongly depended on the substrate concentration. The model predicted that the optimal concentration of benzaldehyde, Triton X-100, and glucose was 1.2 ml, 15 g, and 2.76 g per 100 ml, respectively. Under the optimal condition, the maximum L-PAC production was 27.6 mM, which was verified by a time course of extractive microbial transformation. A discrete fed-batch process for verification of cell activity was also presented.
Collapse
Affiliation(s)
- Yingying Xue
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
A Closed Concept of Extractive Whole Cell Microbial Transformation of Benzaldehyde into l-Phenylacetylcarbinol by Saccharomyces cerevisiae in Novel Polyethylene-Glycol-Induced Cloud-Point System. Appl Biochem Biotechnol 2009; 160:1865-77. [DOI: 10.1007/s12010-009-8695-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022]
|
41
|
Enhancement of substrate concentration in microbial stereoinversion through one-pot oxidation and reduction by aqueous two-phase system. Bioprocess Biosyst Eng 2009; 33:367-73. [PMID: 19504270 DOI: 10.1007/s00449-009-0334-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
Abstract
An extractive biocatalytic method of aqueous two-phase system was employed for stereoinversing (R)-1-phenyl-1,2-ethanediol into (S)-1-phenyl-1,2-ethanediol by Candida parapsilosis CCTCC M203011. It was observed that substrate and product inhibitions in microbial stereoinversion through one-pot oxidation and reduction were removed efficiently by extractive biocatalysis in aqueous two-phase system with PEG 4000/phosphate potassium system, and that the substrate concentration was enhanced from 15 to 30 g/L with product optical purity of 99.02% e.e. and yield of 90% after 60 h. Simultaneously, it was observed that change in cell morphology impedes the further enhancement of substrate concentration in this system but can be reversibly changed after stereoinversion or cultivation in systems without PEG.
Collapse
|
42
|
Liang R, Wang Z, Xu JH, Li W, Qi H. Novel polyethylene glycol induced cloud point system for extraction and back-extraction of organic compounds. Sep Purif Technol 2009. [DOI: 10.1016/j.seppur.2009.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Zhang L, Wang M, Shen Y, Ma Y, Luo J. Improvement of steroid biotransformation with hydroxypropyl-beta-cyclodextrin induced complexation. Appl Biochem Biotechnol 2009; 159:642-54. [PMID: 19189059 DOI: 10.1007/s12010-008-8499-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Accepted: 12/16/2008] [Indexed: 11/28/2022]
Abstract
The inclusion complexes induced by cyclodextrins and its derivates have been shown previously to enhance the biotransformation of hydrophobic compounds. Using hydroxypropyl-beta-cyclodextrin (HP-beta-CD; 20% w/v), the water solubility of cortisone acetate increased from 0.039 to 7.382 g L(-1) at 32 degrees C. The solubilization effect of HP-beta-CD was far superior to dimethylformamide (DMF) and ethanol. The dissolution rate also significantly increased in the presence of HP-beta-CD. The enzymatic stability of Delta(1)-dehydrogenase from Arthrobacter simplex TCCC 11037 was not influenced by the increasing concentrations of HP-beta-CD contrary to the organic cosolvents which negatively influenced in the order DMF > ethanol. The activity inhibition effect caused by HP-beta-CD was not so conspicuous as ethanol and DMF. Inactivation constants of ethanol, DMF, and HP-beta-CD were 5.832, 4.541, and 1.216, respectively. The inactivation energy (E (a)) was in the order of HP-beta-CD (55.1 kJ mol(-1)) > ethanol (39.9 kJ mol(-1)) > DMF (37.1 kJ mol(-1)).
Collapse
Affiliation(s)
- Liting Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | | | | | | | | |
Collapse
|
44
|
Malaviya A, Gomes J. Androstenedione production by biotransformation of phytosterols. BIORESOURCE TECHNOLOGY 2008; 99:6725-6737. [PMID: 18329874 DOI: 10.1016/j.biortech.2008.01.039] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/23/2008] [Accepted: 01/26/2008] [Indexed: 05/26/2023]
Abstract
Androstenedione is a key intermediate of microbial steroid metabolism. It belongs to the 17-keto steroid family and is used as starting material for the preparation of different steroids. Androstenedione can be produced by microbial side chain cleavage of phytosterol, which is an alternative to multi-step chemical synthesis. In this review, various methods of biotransformation of sterols to androstenedione are surveyed. It begins with the history and current research status in this field. The existing methods of chemical and biochemical synthesis are examined. Various issues related to these methods and how researchers have addressed them is presented. Among these, the low solubility of sterols in aqueous systems is a critical problem since it limits the product yield. The main content of this review focuses on new methods of biotransformation that are being investigated. Recent biotechnological advances in this field are presented. The review ends with a note on future perspectives.
Collapse
Affiliation(s)
- Alok Malaviya
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | | |
Collapse
|
45
|
Wang Z, Xu JH, Zhang W, Zhuang B, Qi H. In situ extraction of polar product of whole cell microbial transformation with polyethylene glycol-induced cloud point system. Biotechnol Prog 2008; 24:1090-5. [DOI: 10.1002/btpr.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Malaviya A, Gomes J. Nutrient broth/PEG200/TritonX114/Tween80/Chloroform microemulsion as a reservoir of solubilized sitosterol for biotransformation to androstenedione. J Ind Microbiol Biotechnol 2008; 35:1435-40. [DOI: 10.1007/s10295-008-0444-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
|
47
|
A downstream process with microemulsion extraction for microbial transformation in cloud point system. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2008.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Whole cell microbial transformation in cloud point system. J Ind Microbiol Biotechnol 2008; 35:645-56. [DOI: 10.1007/s10295-008-0345-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 02/15/2008] [Accepted: 03/20/2008] [Indexed: 10/22/2022]
|
49
|
Production of l-phenylacetylcarbinol by microbial transformation in polyethylene glycol-induced cloud point system. Appl Microbiol Biotechnol 2008; 78:233-9. [DOI: 10.1007/s00253-007-1304-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/23/2007] [Accepted: 11/25/2007] [Indexed: 10/22/2022]
|
50
|
Wang Z, Xu JH, Zhang W, Zhuang B, Qi H. Cloud point of nonionic surfactant Triton X-45 in aqueous solution. Colloids Surf B Biointerfaces 2008; 61:118-22. [PMID: 17825536 DOI: 10.1016/j.colsurfb.2007.07.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/12/2007] [Accepted: 07/20/2007] [Indexed: 10/23/2022]
Abstract
Triton X-45, a nonionic surfactant with a low hydrophile-lypophile balance value and dispersible in aqueous solution at room temperature, has a Krafft point above the room temperature. The cloud point of Triton X-45 in an aqueous solution is different from the conventional aqueous nonionic surfactant micelle solution. It was further confirmed by a determination of the effect of additives on the phase behavior of aqueous solutions containing Triton X-45. The experimental fact eliminates the prevalent concept that the cloud point of Triton X-45 is below room temperature, which is helpful to exploit a biocompatible medium for a microbial growth and then for whole cell microbial transformation in a nonaqueous medium.
Collapse
Affiliation(s)
- Zhilong Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China.
| | | | | | | | | |
Collapse
|