Liu Y, Wang Y, Chen X, Wu Q, Wang M, Zhu D, Ma Y. Regio- and stereoselective reduction of 17-oxosteroids to 17β-hydroxysteroids by a yeast strain Zygowilliopsis sp. WY7905.
Steroids 2017;
118:17-24. [PMID:
27864020 DOI:
10.1016/j.steroids.2016.11.002]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/29/2016] [Accepted: 11/06/2016] [Indexed: 10/20/2022]
Abstract
The reduction of 17-oxosteroids to 17β-hydroxysteroids is one of the important transformations for the preparation of many steroidal drugs and intermediates. The strain Zygowilliopsis sp. WY7905 was found to catalyze the reduction of C-17 carbonyl group of androst-4-ene-3,17-dione (AD) to give testosterone (TS) as the sole product by the constitutive 17β-hydroxysteroid dehydrogenase (17β-HSD). The optimal conditions for the reduction were pH 8.0 and 30°C with supplementing 10g/l glucose and 1% Tween 80 (w/v). Under the optimized transformation conditions, 0.75g/l AD was reduced to a single product TS with >90% yield and >99% diastereomeric excess (de) within 24h. This strain also reduced other 17-oxosteroids such as estrone, 3β-hydroxyandrost-5-en-17-one and norandrostenedione, to give the corresponding 17β-hydroxysteroids, while the C-3 and C-20 carbonyl groups were intact. The absence of by-products in this microbial 17β-reduction would facilitate the product purification. As such, the strain might serve as a useful biocatalyst for this important transformation.
Collapse