1
|
Kumar P, Divya, Kayastha AM. Exploring the catalytic potential of watermelon urease: Purification, biochemical characterization, and heavy metal precipitation. Int J Biol Macromol 2024; 282:136798. [PMID: 39442844 DOI: 10.1016/j.ijbiomac.2024.136798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Bioactive urease from watermelon (Citrullus lanatus) seeds was purified using acetone fractionation, anion-exchange, and size-exclusion chromatography, achieving a 121-fold increase and specific activity of 3216 U/mg. The enzyme appeared as a single band on native and SDS-PAGE, with a molecular mass of 480 ± 10 kDa and subunit mass of 80 ± 10 kDa, indicating six identical subunits. Atomic absorption spectroscopy revealed 1.46 nickel ions per subunit. Watermelon urease exhibited serological similarities with jack bean and pigeon pea ureases, an optimal pH of 7.3, an activation energy of 3 kcal/mol, Vmax of 3571 μmol/min/mg, and Km of 0.16 mM. The enzyme displayed biphasic thermal and pH inactivation kinetics, a strong preference for urea, and a half-life of 70 days with 1 mM DTT. This study highlights watermelon urease's role in bioremediation by facilitating the precipitation of heavy metals as stable carbonates, promoting environmental sustainability.
Collapse
Affiliation(s)
- Prince Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Divya
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Kumar P, S Dkhar D, Chandra P, Kayastha AM. Watermelon Derived Urease Immobilized Gold Nanoparticles-Graphene Oxide Transducer for Direct Detection of Urea in Milk Samples. ACS APPLIED BIO MATERIALS 2024; 7:6357-6370. [PMID: 39331047 DOI: 10.1021/acsabm.4c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Urea contamination in milk poses significant health risks, including kidney failure, urinary tract obstruction, fluid loss, shock, and gastrointestinal bleeding. This highlights the need for sensitive, rapid, and reliable methods to detect traces amount of urea in milk. In this study, we designed an electrochemical transducer for urea detection by utilizing purified watermelon urease (Urs), gold nanoparticles (AuNPs), and graphene oxide (GO). The nanomaterials and biosensor probe were characterized using UV-vis spectroscopy, XPS, TEM, XRD, FTIR, AFM, CV, EIS, and DPV. The engineered probe (GCE/AuNPs/GO/Urs) demonstrated a broad linear detection range of 5 to 90 mg/dL and a low limit of detection (LOD) of 0.037 (±0.012) mg/dL (RSD < 3.7%). The biosensor was tested for potential interferents that may be present in adulterated milk and an exceptionally low coefficient of selectivity (ksel <0.1) was obtained. Evaluation of milk samples from a local dairy farm showed good recovery rates from 93.13% to. 98.79% (RSD < 4.28%, n = 3), indicating reliable detection capabilities. Stability tests confirmed the sensor's reproducibility and consistent performance. Additionally, a comparison study of the system was carried out using the purified watermelon urease and the commercially available urease. Herein, the results obtained using the sensor probe was finally validated with the gold standard method.
Collapse
Affiliation(s)
- Prince Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Daphika S Dkhar
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
3
|
Kumar P, Divya, Patel AK, Srivastava A, Kayastha AM. Enhancing milk quality assessment with watermelon (Citrullus lanatus) urease immobilized on VS 2-chitosan nanocomposite beads using response surface methodology. Food Chem 2024; 451:139447. [PMID: 38688097 DOI: 10.1016/j.foodchem.2024.139447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024]
Abstract
An eco-friendly hydrothermal method synthesized VS2 nanosheets. Several spectroscopic and microscopic approaches (TEM) were used to characterize the produced VS2 nanosheet microstructure. VS2, Chitosan, and nanocomposite were used to immobilize watermelon (Citrullus lanatus) urease. Optimization using the Response Surface Methodology and the Box-Behnken design yielded immobilization efficiencies of 65.23 %, 72.52 %, and 87.68 % for chitosan, VS2, and nanocomposite, respectively. The analysis of variance confirmed the mathematical model's validity, enabling additional research. AFM, SEM, FTIR, Fluorescence microscopy, and Cary Eclipse Fluorescence Spectrometer showed urease conjugation to the matrix. During and after immobilization, FTIR spectra showed a dynamic connectivity of chemical processes and bonding. The nanocomposite outperformed VS2 and chitosan in pH and temperature. Chitosan and VS2-immobilized urease were more thermally stable than soluble urease, but the nanocomposite-urease system was even more resilient. The nanocomposite retained 60 % of its residual activity after three months of storage. It retains 91.8 % of its initial activity after 12 reuse cycles. Nanocomposite-immobilized urease measured milk urea at 23.62 mg/dl. This result was compared favorably to the gold standard p-dimethylaminobenzaldehyde spectrophotometric result of 20 mg/dl. The linear range is 5 to 70 mg/dl, with a LOD of 1.07 (±0.05) mg/dl and SD of less than 5 %. The nanocomposite's ksel coefficient for interferents was exceptionally low (ksel < 0.07), indicating urea detection sensitivity. Watermelon urease is suitable for dairy sector applications due to its availability, immobilization on nanocomposite, and reuse.
Collapse
Affiliation(s)
- Prince Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Divya
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Amit Kumar Patel
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anchal Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
4
|
Sahin B, Ozbey-Unal B, Dizge N, Keskinler B, Balcik C. Optimization of immobilized urease enzyme on porous polymer for enhancing the stability, reusability and enzymatic kinetics using response surface methodology. Colloids Surf B Biointerfaces 2024; 240:113986. [PMID: 38795587 DOI: 10.1016/j.colsurfb.2024.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
The study examines the immobilization of the urease enzyme on a range of High Internal Phase Emulsion (polyHIPE) materials, assessing characteristics, efficiency, and performance. It also investigates the impact of polyHIPE type, quantity, incubation time, and various parameters on the process and enzyme activity. Surface morphology and functional groups of polyHIPE materials were determined through scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FT-IR) analyses, revealing significant alterations after modification with polyglutaraldehyde (PGA). The maximum immobilization efficiency of 95% was achieved by adding PGA to polyHIPE materials with an incubation period of 15 h. The optimized conditions for immobilized enzyme using a Box-Behnken design (BBD) of response surface methodology (RSM) were as follows: temperature (40.8 °C), pH (7.1) and NaCl concentration (0.007 g/L). Furthermore, the immobilized enzyme demonstrated remarkable reusability, retaining 75% of its initial activity after six cycles, and sustained shelf-life stability, retaining over 40% activity after 10 days at room temperature. Kinetic analyses revealed that immobilized urease exhibited higher affinity for the substrate, but lower rate of substrate conversion compared to the free enzyme. These findings offer valuable insights into optimizing urease immobilization processes and enhancing urease stability and activity, with potential applications in various fields, including biotechnology and biocatalysis.
Collapse
Affiliation(s)
- Busra Sahin
- Department of Biotechnology, Gebze Technical University, Gebze 41400, Turkey
| | - Bahar Ozbey-Unal
- Department of Environmental Engineering, Gebze Technical University, Gebze 41400, Turkey; Institute of Earth and Marine Sciences, Gebze Technical University, Gebze 41400, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin 33343, Turkey
| | - Bulent Keskinler
- Department of Environmental Engineering, Gebze Technical University, Gebze 41400, Turkey
| | - Cigdem Balcik
- Department of Environmental Engineering, Gebze Technical University, Gebze 41400, Turkey.
| |
Collapse
|
5
|
Sindi AM, Zaman U, Saleh EAM, Kassem AF, Rahman KU, Khan SU, Alharbi M, Rizg WY, Omar KM, Majrashi MAA, Safhi AY, Abdelrahman EA. Biochemical and thermodynamic properties of de novo synthesized urease from Vicia sativa seeds with enhanced industrial applications. Int J Biol Macromol 2024; 259:129190. [PMID: 38185304 DOI: 10.1016/j.ijbiomac.2023.129190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Urease is one of the most significant enzymes in the industry. The objective of this research was to isolate and partially purify urease from Vicia sativa seeds with urease characterization. With a 6.4 % yield, the purification fold was 9.0. By using chromatography, it was determined that the isolated urease had a molecular weight of 55 kDa. The maximum urease activity was found following a 60-s incubation period at 40 °C and pH 8. The activity of urease was significantly boosted by a mean of calcium, barium, DL-dithiothreitol, Na2EDTA, and citrate (16.9, 26.6, 18.6, 13.6, and 31 %), respectively. But nickel and mercury caused inhibitory effects and completely inhibited urease activity, indicating the presence of a thiol (-SH) group in the enzyme active site. The Arrhenius plot was used to analyze the thermodynamic constants of activation, Ea, ΔH*, ΔG*, and ΔS*. The results showed that the values were 30 kJ/mol, 93.14 kJ/mol, 107.17 kJ/mol/K, and -40.80 J/mol/K, respectively. The significance of urease extraction from various sources may contribute to our understanding of the metabolism of urea in plants. The current report has novelty as it explained for the first time the kinetics and thermodynamics of hydrolysis of urea and inactivation of urease from V. sativa seeds.
Collapse
Affiliation(s)
- Amal M Sindi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Umber Zaman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Asmaa F Kassem
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Khalil Ur Rahman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan.
| | - Shahid Ullah Khan
- Integrative Science Centre of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Department of Biochemistry, Women Medical and Dental College, Khyber Medical University KP, Pakistan
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Y Rizg
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled Mohamed Omar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Ali A Majrashi
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ehab A Abdelrahman
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
6
|
Chen X, Tian Z, Zhou H, Zhou G, Cheng H. Enhanced Enzymatic Performance of β-Mannanase Immobilized on Calcium Alginate Beads for the Generation of Mannan Oligosaccharides. Foods 2023; 12:3089. [PMID: 37628088 PMCID: PMC10453027 DOI: 10.3390/foods12163089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Mannan oligosaccharides (MOSs) are excellent prebiotics that are usually obtained via the enzymatic hydrolysis of mannan. In order to reduce the cost of preparing MOSs, immobilized enzymes that demonstrate good performance, require simple preparation, and are safe, inexpensive, and reusable must be developed urgently. In this study, β-mannanase was immobilized on calcium alginate (CaAlg). Under the optimal conditions of 320 U enzyme addition, 1.6% sodium alginate, 2% CaCl2, and 1 h of immobilization time, the immobilization yield reached 68.3%. The optimum temperature and pH for the immobilized β-mannanase (Man-CaAlg) were 75 °C and 6.0, respectively. The Man-CaAlg exhibited better thermal stability, a high degree of pH stability, and less substrate affinity than free β-mannanase. The Man-CaAlg could be reused eight times and retained 70.34% of its activity; additionally, the Man-CaAlg showed 58.17% activity after 30 days of storage. A total of 7.94 mg/mL of MOSs, with 4.94 mg/mL of mannobiose and 3.00 mg/mL of mannotriose, were generated in the oligosaccharide production assay. It is believed that this convenient and safe strategy has great potential in the important field of the use of immobilized β-mannanase for the production of mannan oligosaccharides.
Collapse
Affiliation(s)
- Xinggang Chen
- Key Laboratory of National Forestry and Grassland Administration on Control of Artiffcial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Zhuang Tian
- Key Laboratory of Biometallurgy, Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Hongbo Zhou
- Key Laboratory of Biometallurgy, Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Guoying Zhou
- Key Laboratory of National Forestry and Grassland Administration on Control of Artiffcial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Haina Cheng
- Key Laboratory of Biometallurgy, Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
7
|
Immobilization of Urease onto Nanochitosan Enhanced the Enzyme Efficiency: Biophysical Studies and in Vitro Clinical Application on Nephropathy Diabetic Iraqi Patients. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/8288585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Immobilization of enzymes is an effective method for improving the properties and applications of modern enzymes. There are several supports for enzyme immobilization. Because of its unique features, such as inertness and high surface area, chitosan was widely used to immobilize enzymes. Immobilization of urease onto chitosan is a promising approach to treating high urea levels in the blood, however, the immobilization conditions for the best kinetics and enzyme efficiency are still challenging. Herein, we tried to immobilize urease onto nanochitosan (chitosan NPs) through a cross-linker and study the kinetics (km and
values) and thermodynamics (Ea, ∆H, ∆S, and ∆G) parameters of the enzyme reaction before and after immobilization at different substrate concentration (50, 100, 150, 200, and 250 mg/dl) and incubation temperature (15, 20, 25, 30, 35, and 40°C) under selected optimum conditions. The immobilized urease chitosan NPs was characterized in our previous work using Fourier transform infrared
(FTIR), Atomic force
microscopy (AFM), and
imaged here by scanning electron microscopy
(SEM). Results revealed that the highest efficiency % of immobilization (70.38%) was observed at 750 mg/ml chitosan NPs and phosphate buffer pH 7 at 40°C. With an increase of Km value for the immobilized enzyme, however, the efficiency of the enzyme was significantly higher than the free enzyme,
. In addition, the activation energy of the reaction catalyzed by the immobilized enzyme was lower than that of the free enzyme, which suggests that the active site geometry of the immobilized enzyme was more favorable to accommodate the substrate and thus required less energy than that of the free enzyme. The reaction was endothermic by means of positive ∆H. The immobilized urease enzyme was in vitro applied to blood samples of Iraq nephropathy diabetic patients (n = 35) to investigate the effect on serum urease activity and urea level compared to healthy volunteers. Interestingly, the activity of serum urease significantly increased after adding the immobilized enzyme and the level of urea significantly decreased (
) by ∼1.5 folds. Thus, applying an immobilized urease
to remove urea from blood could be effective in the blood detoxification or dialysis regeneration system of artificial kidney machines.
Collapse
|
8
|
Almaghrabi O, Almulaiky YQ. A biocatalytic system obtained via immobilization of urease onto magnetic metal/alginate nanocomposite: Improving reusability and enhancing stability. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2082871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Omar Almaghrabi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Yaaser Q. Almulaiky
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Applied Science, Taiz University, Taiz, Yemen
| |
Collapse
|
9
|
Saxena A, Sharda S, Kumar S, Kumar B, Shirodkar S, Dahiya P, Sahney R. Synthesis of Alginate Nanogels with Polyvalent 3D Transition Metal Cations: Applications in Urease Immobilization. Polymers (Basel) 2022; 14:polym14071277. [PMID: 35406151 PMCID: PMC9002911 DOI: 10.3390/polym14071277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
Biocompatible nanogels are highly in demand and have the potential to be used in various applications, e.g., for the encapsulation of sensitive biomacromolecules. In the present study, we have developed water-in-oil microemulsions of sodium alginate sol/hexane/Span 20 as a template for controlled synthesis of alginate nanogels, cross-linked with 3d transition metal cations (Mn2+, Fe3+, and Co2+). The results suggest that the stable template of 110 nm dimensions can be obtained by microemulsion technique using Span 20 at concentrations of 10mM and above, showing a zeta potential of −57.3 mV. A comparison of the effects of the cross-links on the morphology, surface charge, protein (urease enzyme) encapsulation properties, and stability of the resulting nanogels were studied. Alginate nanogels, cross-linked with Mn2+, Fe3+, or Co2+ did not show any gradation in the hydrodynamic diameter. The shape of alginate nanogels, cross-linked with Mn2+ or Co2+, were spherical; whereas, nanogels cross-linked with Fe3+ (Fe–alginate) were non-spherical and rice-shaped. The zeta potential, enzyme loading efficiency, and enzyme activity of Fe–alginate was the highest among all the nanogels studied. It was found that the morphology of particles influenced the percent immobilization, loading capacity, and loading efficiency of encapsulated enzymes. These particles are promising candidates for biosensing and efficient drug delivery due to their relatively high loading capacity, biocompatibility, easy fabrication, and easy handling.
Collapse
Affiliation(s)
- Abhishek Saxena
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, India; (A.S.); (S.S.); (B.K.); (S.S.); (P.D.)
| | - Shivani Sharda
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, India; (A.S.); (S.S.); (B.K.); (S.S.); (P.D.)
| | - Sumit Kumar
- Radioanalytical Chemistry Division, Radiological Laboratories, Bhabha Atomic Research Centre, Mumbai 40008, India;
| | - Benu Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, India; (A.S.); (S.S.); (B.K.); (S.S.); (P.D.)
| | - Sheetal Shirodkar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, India; (A.S.); (S.S.); (B.K.); (S.S.); (P.D.)
| | - Praveen Dahiya
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, India; (A.S.); (S.S.); (B.K.); (S.S.); (P.D.)
| | - Rachana Sahney
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, India; (A.S.); (S.S.); (B.K.); (S.S.); (P.D.)
- Correspondence: ; Tel.: +91-9810-2820-38
| |
Collapse
|
10
|
Synergistic Effect of Urease and Nitrification Inhibitors in the Reduction of Ammonia Volatilization. WATER AIR AND SOIL POLLUTION 2021. [DOI: 10.1007/s11270-021-05259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
İspirli Doğaç Y, Teke M. Urease immobilized core–shell magnetic Fe[NiFe]O4/alginate and Fe3O4/alginate composite beads with improved enzymatic stability properties: removal of artificial blood serum urea. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02219-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Tapdigov SZ. The bonding nature of the chemical interaction between trypsin and chitosan based carriers in immobilization process depend on entrapped method: A review. Int J Biol Macromol 2021; 183:1676-1696. [PMID: 34015409 DOI: 10.1016/j.ijbiomac.2021.05.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/13/2021] [Accepted: 05/09/2021] [Indexed: 12/26/2022]
Abstract
The review article is dedicated to a comprehensive study of the chemical bond formed during the immobilization of the proteolytic enzyme pancreatic trypsin in chitosan-based polymer matrixes and its derivatives. The main focus of the study is to describe the chemical bond that causes immobilization between chitosan based carriers and trypsin. Because the nature of the chemical bond between the carrier and trypsin is a key factor in determining the area of application of the conjugate. It has been found out that after the chemical nature of functional groups, their degree of ionization, the structure of the chemical cross-linking, the medium pH and ionic strength of chitosan are modified, the mechanism of trypsin immobilization is affected. As a result, the attraction enzyme to the matrix occurs due to polar covalent and hydrogen bonds, as well as electrostatic, hydrophobic, Van der Waals forces. The collected research works on the immobilization of trypsin on chitosan-based carriers have been systematized in the paper and shown schematically in subsystems according to the type of chemical interaction. It has been shown that the immobilization of trypsin on chitosan based matrixes occur more often due to the covalent and hydrogen bonds between the protein and the carrier.
Collapse
Affiliation(s)
- Shamo Zokhrab Tapdigov
- Department of Nanostructured Metal-polymer Catalysist, Institute Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Sciences, H. Javid ave. 113, AZ1143, Azerbaijan; Department of Prevention of Sand and Water Appearance, Oil-gas Research and Design Institute, The State Oil Company of the Azerbaijan Republic, H. Zardabi ave. 88, AZ1012 Baku, Azerbaijan.
| |
Collapse
|
13
|
Verma N, Saini R, Gahlaut A, Hooda V. Stabilization and optimization of purified diamine oxidase by immobilization onto activated PVC membrane. FOOD BIOTECHNOL 2020. [DOI: 10.1080/08905436.2020.1833912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Neelam Verma
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Rajni Saini
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Anjum Gahlaut
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Vikas Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
14
|
Purification and identification of novel alkaline pectinase PNs31 from Bacillus subtilis CBS31 and its immobilization for bioindustrial applications. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0648-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Nawaz MA, Pervez S, Rehman HU, Jamal M, Jan T, Hazrat A, Attaullah M, Khan W, Qader SAU. Utilization of different polymers for the improvement of catalytic properties and recycling efficiency of bacterial maltase. Int J Biol Macromol 2020; 163:1344-1352. [PMID: 32698068 DOI: 10.1016/j.ijbiomac.2020.07.166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 11/17/2022]
Abstract
Current study deals with the comparative study related to immobilization of maltase using synthetic (polyacrylamide) and non-synthetic (calcium alginate, agar-agar and agarose) polymers via entrapment technique. Polyacrylamide beads were formed by cross-linking of monomers, agar-agar and agarose through solidification while alginate beads were prepared by simple gelation. Results showed that the efficiency of enzyme significantly improved after immobilization and among all tested supports agar-agar was found to be the most promising and biocompatible for maltase in terms of immobilization yield (82.77%). The catalytic behavior of maltase was slightly shifted in terms of reaction time (free enzyme, agarose and polyacrylamide: 5.0 min; agar-agar and alginate: 10.0 min), pH (free enzyme, alginate and polyacrylamide: 6.5; agar-agar, agarose: 7.0) and temperature (free enzyme: 45 °C; alginate: 50 °C; polyacrylamide: 55 °C; agarose: 60 °C; agar-agar: 65 °C). Stability profile of immobilized maltase also revealed that all the supports utilized have significantly enhanced the activity of maltase at higher temperatures then its free counterpart. However, recycling data showed that agar-agar entrapped maltase retained 20.0% of its initial activity even after 10 cycles followed by agarose (10.0%) while polyacrylamide and alginate showed no activity after 8 and 6 cycles respectively.
Collapse
Affiliation(s)
- Muhammad Asif Nawaz
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), Pakistan; The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Sidra Pervez
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan.
| | - Haneef Ur Rehman
- Department of Chemistry, University of Turbat, Kech, Balochistan, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University Mardan, KPK, Pakistan
| | - Tour Jan
- Department of Botany, University of Malakand, Chakdara, KPK, Pakistan
| | - Ali Hazrat
- Department of Botany, University of Malakand, Chakdara, KPK, Pakistan
| | | | - Wali Khan
- Department of Zoology, University of Malakand, Chakdara, KPK, Pakistan
| | - Shah Ali Ul Qader
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
16
|
Fapyane D, Berillo D, Marty JL, Revsbech NP. Urea Biosensor Based on a CO 2 Microsensor. ACS OMEGA 2020; 5:27582-27590. [PMID: 33134722 PMCID: PMC7594316 DOI: 10.1021/acsomega.0c04146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Urea sensors based on electrodes in direct contact with the medium have limited long-term stability when exposed to complex media. Here, we present a urea biosensor based on urease immobilized in an alginate polymer, buffered at pH 6, and placed in front of a newly developed fast and sensitive CO2 microsensor, where the electrodes are shielded by a gas-permeable membrane. The CO2 produced by the urease in the presence of urea diffuses into the microsensor and is reduced at a Ag cathode. Oxygen interference is prevented by a Cr2+ trap. The 95% response time to changes in urea concentration was 120 s with a linear calibration curve in the range 0-1000 μM and a detection limit of 1 μM. The Ni2+ cofactor to improve sensor performance was continuously supplied from a reservoir behind the sensor tip. The stability of the urea sensor was optimized by the addition of bovine serum albumin as a stabilizer to the urease/alginate mixture that was cross-linked with glutaraldehyde and Ca2+ ions. This immobilization strategy resulted in about 70% of the initial urea sensor sensitivity after two weeks of continuous operation. The sensor was successfully tested in blood serum.
Collapse
Affiliation(s)
- Deby Fapyane
- Aarhus University
Centre for Water Technology (WATEC), Department of Biology, Aarhus University, Ny Munkegade 114-116, Aarhus
C 8000, Denmark
| | - Dmitriy Berillo
- Aarhus University
Centre for Water Technology (WATEC), Department of Biology, Aarhus University, Ny Munkegade 114-116, Aarhus
C 8000, Denmark
| | - Jean-Louis Marty
- BAE (Biocapteurs-Analyses-Environnement), Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan
Cedex 66860, France
| | - Niels Peter Revsbech
- Aarhus University
Centre for Water Technology (WATEC), Department of Biology, Aarhus University, Ny Munkegade 114-116, Aarhus
C 8000, Denmark
| |
Collapse
|
17
|
Verma N, Sisodiya L, Gahlaut A, Hooda V, Hooda V. Novel approach using activated cellulose film for efficient immobilization of purified diamine oxidase to enhance enzyme performance and stability. Prep Biochem Biotechnol 2020; 50:468-476. [PMID: 32267204 DOI: 10.1080/10826068.2019.1709976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The presence of various contaminants in foodstuffs has led to serious public health concerns. Diamine oxidase (DAO) has attracted tremendous attention for guarding food safety as well as clinical and environmental industries. In this study, DAO from Pisum sativum (Pea) seedlings was extracted and purified by dialysis and gel filtration. Purified DAO was covalently immobilized onto the surface of nitrocellulose membrane using glutaraldehyde. The obtained bioaffinity support has efficiently shown high yield immobilization of DAO from pea seedlings. The optimal conditions of free and immobilized DAO activity were evaluated against the substrate, Putrescine dihydrochloride. The influence of pH, temperature, storage stability, and reusability of immobilized enzyme with comparison to the free enzyme was studied and the results showed that the stabilities were significantly enhanced compared with free counterpart. Residual activity of the immobilized enzyme was 59% of the initial activity after being recycled 10 times. We approve that this novel low cost immobilized DAO carrier presents a new approach in large scale applications.
Collapse
Affiliation(s)
- Neelam Verma
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Lovely Sisodiya
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Anjum Gahlaut
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Vinita Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Vikas Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
18
|
Enzyme Immobilization over Polystyrene Surface Using Cysteine Functionalized Copper Nanoparticle as a Linker Molecule. Appl Biochem Biotechnol 2020; 191:1247-1257. [PMID: 32086705 DOI: 10.1007/s12010-020-03257-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/13/2020] [Indexed: 10/25/2022]
Abstract
The work focus on the development of a simple and efficient method of enzyme immobilization over a polystyrene surface using cysteine functionalized copper nanoparticle as linker molecule. The polystyrene surface is activated by generating -NO2 groups by the process of nitration reaction. The nitrated polystyrene plate then is silanized with (3-mercaptopropyl) trimethoxysilane (MPTS) followed with the coupling of cysteine-capped copper nanoparticles on the silanized surface through thiol moiety. A nanoparticle layer is thus created over the polystyrene surface which is efficiently used for covalent immobilization of urease via an amino group of cysteine through glutaraldehyde treatment. The technique resulted in an enhancement in the enzymatic activity by 72.37% over the soluble counterpart. The immobilized enzyme also exhibited appreciable reusability of about 10 times with activity retention of 82% of its initial activity. Immobilization also offered an increased thermal and pH stability to the immobilized enzyme over the soluble enzyme.
Collapse
|
19
|
Pervez S, Nawaz MA, Jamal M, Jan T, Maqbool F, Shah I, Aman A, Ul Qader SA. Improvement of catalytic properties of starch hydrolyzing fungal amyloglucosidase: Utilization of agar-agar as an organic matrix for immobilization. Carbohydr Res 2019; 486:107860. [PMID: 31683070 DOI: 10.1016/j.carres.2019.107860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/02/2019] [Accepted: 10/25/2019] [Indexed: 10/25/2022]
Abstract
In this study, amyloglucosidase was immobilized within agar-agar through entrapment technique for the hydrolysis of soluble starch. Enzymatic activities of soluble and entrapped amyloglucosidase were compared using soluble starch as a substrate. Partially purified enzyme was immobilized and maximum immobilization yield (80%) was attained at 40 gL-1 of agar-agar. Enzyme catalysis reaction time shifted from 5.0 min to 10 min after immobilization. Similarly, a five-degree shift in temperature (60 °C-65 °C) and a 0.5 unit increase in pH (pH-5.0 to pH-5.5) were also observed. Substrate saturation kinetics revealed that Km of entrapped amyloglucosidase increased from 1.41 mg ml-1 (soluble enzyme) to 3.39 mg ml-1 (immobilized enzyme) whereas, Vmax decreased from 947 kU mg-1 (soluble enzyme) to 698 kU mg-1 (immobilized enzyme). Entrapped amyloglucosidase also exhibited significant catalytic performance during thermal and storage stability when compared with soluble enzyme. Reusability of entrapped amyloglucosidase for hydrolysis of soluble starch demonstrated its recycling efficiency up to six cycles which is an exceptional characteristic for continuous bioprocessing of soluble starch into glucose.
Collapse
Affiliation(s)
- Sidra Pervez
- Department of Microbiology, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Asif Nawaz
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), Khyber Pakhtunkhwa, Pakistan.
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Tour Jan
- Department of Botany, University of Malakand, Chakdrara, Khyber Pakhtunkhwa, Pakistan
| | - Farhana Maqbool
- Department of Microbiology, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Ismail Shah
- Department of Pharmacy, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Afsheen Aman
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, 75270, Karachi, Pakistan
| | - Shah Ali Ul Qader
- Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
20
|
Amin Fatoni, Anggraeni MD, Dwiasi DW. Easy and Low-cost Chitosan Cryogel-based Colorimetric Biosensor for Detection of Glucose. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819090028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Ademakinwa AN, Agboola FK. Kinetic and thermodynamic investigations of cell-wall degrading enzymes produced by Aureobasidium pullulans via induction with orange peels: application in lycopene extraction. Prep Biochem Biotechnol 2019; 49:949-960. [DOI: 10.1080/10826068.2019.1650375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Adedeji Nelson Ademakinwa
- Department of Physical and Chemical Sciences, Elizade University, Ilara-Mokin, Nigeria
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Femi Kayode Agboola
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
22
|
Almulaiky YQ, Al-Harbi SA. A novel peroxidase from Arabian balsam (Commiphora gileadensis) stems: Its purification, characterization and immobilization on a carboxymethylcellulose/Fe3O4 magnetic hybrid material. Int J Biol Macromol 2019; 133:767-774. [DOI: 10.1016/j.ijbiomac.2019.04.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 01/11/2023]
|
23
|
Heater BS, Chan WS, Lee MM, Chan MK. Directed evolution of a genetically encoded immobilized lipase for the efficient production of biodiesel from waste cooking oil. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:165. [PMID: 31297153 PMCID: PMC6598307 DOI: 10.1186/s13068-019-1509-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/19/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND We have recently developed a one-step, genetically encoded immobilization approach based on fusion of a target enzyme to the self-crystallizing protein Cry3Aa, followed by direct production and isolation of the fusion crystals from Bacillus thuringiensis. Using this approach, Bacillus subtilis lipase A was genetically fused to Cry3Aa to produce a Cry3Aa-lipA catalyst capable of the facile conversion of coconut oil into biodiesel over 10 reaction cycles. Here, we investigate the fusion of another lipase to Cry3Aa with the goal of producing a catalyst suitable for the conversion of waste cooking oil into biodiesel. RESULTS Genetic fusion of the Proteus mirabilis lipase (PML) to Cry3Aa allowed for the production of immobilized lipase crystals (Cry3Aa-PML) directly in bacterial cells. The fusion resulted in the loss of PML activity, however, and so taking advantage of its genetically encoded immobilization, directed evolution was performed on Cry3Aa-PML directly in its immobilized state in vivo. This novel strategy allowed for the selection of an immobilized PML mutant with 4.3-fold higher catalytic efficiency and improved stability. The resulting improved Cry3Aa-PML catalyst could be used to catalyze the conversion of waste cooking oil into biodiesel for at least 15 cycles with minimal loss in conversion efficiency. CONCLUSIONS The genetically encoded nature of our Cry3Aa-fusion immobilization platform makes it possible to perform both directed evolution and screening of immobilized enzymes directly in vivo. This work is the first example of the use of directed evolution to optimize an enzyme in its immobilized state allowing for identification of a mutant that would unlikely have been identified from screening of its soluble form. We demonstrate that the resulting Cry3Aa-PML catalyst is suitable for the recyclable conversion of waste cooking oil into biodiesel.
Collapse
Affiliation(s)
- Bradley S. Heater
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Wai Shan Chan
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Marianne M. Lee
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Michael K. Chan
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, SAR China
| |
Collapse
|
24
|
Vardar G, Attar A, Yapaoz MA. Development of urea biosensor using non-covalent complexes of urease with aldehyde derivative of PEG and analysis on serum samples. Prep Biochem Biotechnol 2019; 49:868-875. [PMID: 31219372 DOI: 10.1080/10826068.2019.1630650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Non-covalent complexes of urease/polyethylene glycol (PEG)-aldehyde were synthesized using regular molar ratios of urease and PEG-aldehyde at room temperature. The physical properties of the non-covalent complexes were analyzed in order to investigate the impact of coupling ratio, temperature, pH, storage stability, and thermal stability. Urease activity was analyzed by UV-Vis spectrophotometer at 630 nm. The results showed that the strongest thermal resistance was obtained using nU/nPEG:1/1 (mg/mL) complex within all molar ratios tested. The enzymatic activity of nU/nPEG:1/1 complex doubled the activity of the free enzyme. Therefore, this complex was chosen to be used in the analyses. When coupled with PEG-aldehyde, urease exhibited improved activity between pH 4.0-9.0 and the optimum pH was found to be 7.0. The thermal inactivation results of the complex demonstrated that higher activity remained (40%) when compared with the free enzyme (10%) at 60 °C. The storage stability of the non-covalent complex was 4 weeks which was greater than the storage stability of the free enzyme. A kinetic model was suggested in order to reveal the mechanism of enzymatic conversion. Potentiometric urea biosensor was prepared using two different membranes: carboxylated poly vinyl chloride (PVC) and palmitic acid containing PVC. The potentiometric responses of both sensors were tested against pH and temperature and the best results were obtained at pH 7.0 and 20-30 °C. Also, selectivity of the suggested biosensors toward Na+, Li+ Ca2+, and K+ ions was evaluated and the reproducibility responses of the urea biosensors were measured with acceptable results.
Collapse
Affiliation(s)
- Gokay Vardar
- Department of Chemistry, Faculty of Science and Letters, Yildiz Technical University , Istanbul , Turkey
| | - Azade Attar
- Department of Bioengineering, Faculty of Chemical & Metallurgical Engineering, Yildiz Technical University , Istanbul , Turkey
| | - Melda Altikatoglu Yapaoz
- Department of Chemistry, Faculty of Science and Letters, Yildiz Technical University , Istanbul , Turkey
| |
Collapse
|
25
|
Bracco LF, Levin GJ, Urtasun N, Navarro del Cañizo AA, Wolman FJ, Miranda MV, Cascone O. Covalent immobilization of soybean seed hull urease on chitosan mini-spheres and the impact on their properties. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Verma ML, Kumar S, Das A, Randhawa JS, Chamundeeswari M. Enzyme Immobilization on Chitin and Chitosan-Based Supports for Biotechnological Applications. SUSTAINABLE AGRICULTURE REVIEWS 35 2019. [DOI: 10.1007/978-3-030-16538-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Tamaddon F, Arab D. Urease covalently immobilized on cotton-derived nanocellulose-dialdehyde for urea detection and urea-based multicomponent synthesis of tetrahydro-pyrazolopyridines in water. RSC Adv 2019; 9:41893-41902. [PMID: 35541594 PMCID: PMC9076516 DOI: 10.1039/c9ra05240b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/26/2019] [Indexed: 01/30/2023] Open
Abstract
The urease Schiff-base covalently bonded to the designed high-content nanocellulosedialdehyde (HANCD) prepared from cotton-derived nanocellulose (NC) via tandem acid-hydrolysis and periodate-oxidation reactions was termed HANCD@urease. No change in the aldehyde content of HANCD after Schiff-base bonding to urease and similarity in the relative enzyme activities for HANCD@urease and free enzyme supported that the preparation conditions for HANCD-loaded urease are mild enough to prevent denaturation of the enzyme. As the immobilized urease showed higher stability and reusability versus free enzyme, the HANCD@urease was efficiently used to determine the urea concentration in aqueous solutions and blood serum samples. Alternatively, the catalytic efficiency of the HANCD@urease was demonstrated for the production of ammonia from urea in the multicomponent synthesis of 3,5-dimethyl-4-aryl-1,4,7,8-tetrahydrodipyrazolo[3,4-b:4′,3′-e]pyridines (THPPs) in water. This new environment-friendly urea sensor showed 90% preservation of the enzyme activity after the six cycles of reuse in enzymatic reactions, while its catalytic activity in the reaction of benzaldehyde, hydrazine hydrate, and alkyl acetoacetate with urea instead of hygroscopic ammonium salts did not change significantly after the sixth run. Detection and production of ammonia by a bio-compatible sensor and catalyst under mild conditions are features of this new green protocol. The urease Schiff-base covalently bonded to the designed high-content nanocellulosedialdehyde (HANCD) prepared from cotton-derived nanocellulose (NC) via tandem acid-hydrolysis and periodate-oxidation reactions was termed HANCD@urease.![]()
Collapse
Affiliation(s)
- Fatemeh Tamaddon
- Department of Chemistry
- Faculty of Science
- Yazd University
- Yazd 89195-741
- Iran
| | - Davood Arab
- Department of Chemistry
- Faculty of Science
- Yazd University
- Yazd 89195-741
- Iran
| |
Collapse
|
28
|
Yang L, Liu X, Zhou N, Tian Y. Characteristics of refold acid urease immobilized covalently by graphene oxide-chitosan composite beads. J Biosci Bioeng 2019; 127:16-22. [DOI: 10.1016/j.jbiosc.2018.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022]
|
29
|
Fu D, Singh RP, Yang X, Ojha CSP, Surampalli RY, Kumar AJ. Sediment in-situ bioremediation by immobilized microbial activated beads: Pilot-scale study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:62-69. [PMID: 30110664 DOI: 10.1016/j.jenvman.2018.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/28/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
A field study was carried out to investigate the sediment in-situ bioremediation by adding microbial activated beads. In this work, Calcium carbonate, silicon dioxide, activated carbon powder, attapulgite powder, sodium alginate, microbial liquid and polyvinyl alcohol were utilized to make the immobilized microbial activated beads. Field experiment results showed that the removal rate of NH4+-N, TN and COD in overlying water reached about 61.8%, 87.5% and 87.1%, respectively. The initial concentration of NH4+-N, TN and COD was 159 mg/L, 6.24 mg/L and 7.28 mg/L, whereas and the final concentration was 58 mg/L, 0.78 mg/L and 0.94 mg/L when water temperature, DO, pH and C/N ratio were 25-30 °C, 2-3 mg/L, 7.0-8.0 and 10-15, respectively. Moreover, under optimal temperature condition (25-30 °C), the removal rate of TOC, TN, heterotrophic bacteria and sulfur bacteria in the river sediment reached to 46.5%, 50.7%, 39.2% and 73.2%, respectively.
Collapse
Affiliation(s)
- Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | | | - Xinde Yang
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - C S P Ojha
- Dept. of Civil Engineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Rao Y Surampalli
- Global Institute for Energy, Environment and Sustainability, KS, 66285, USA
| | | |
Collapse
|
30
|
Heater BS, Lee MM, Chan MK. Direct production of a genetically-encoded immobilized biodiesel catalyst. Sci Rep 2018; 8:12783. [PMID: 30143735 PMCID: PMC6109139 DOI: 10.1038/s41598-018-31213-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/14/2018] [Indexed: 11/09/2022] Open
Abstract
The use of immobilized enzymes as biocatalysts has great potential to improve the efficiency and environmental sustainability of many industrial processes. Here, we report a novel approach that allows for the direct production of a highly active immobilized lipase within the bacterium Bacillus thuringiensis. Cry3Aa-lipA crystals were generated by genetically fusing Bacillus subtilis lipase A to Cry3Aa, a protein that naturally forms crystals in the bacteria. The crystal framework significantly stabilized the lipase against denaturation in organic solvents and high temperatures, resulting in a highly efficient fusion crystal that could catalyze the conversion of triacylglycerols to fatty acid methyl ester biodiesel to near-completion over 10 cycles. The simplicity and robustness of the Cry-fusion crystal (CFC) immobilization system could make it an appealing platform for generating industrial biocatalysts for multiple bioprocesses.
Collapse
Affiliation(s)
- Bradley S Heater
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Marianne M Lee
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Michael K Chan
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
31
|
de Oliveira RL, da Silva OS, Converti A, Porto TS. Thermodynamic and kinetic studies on pectinase extracted from Aspergillus aculeatus: Free and immobilized enzyme entrapped in alginate beads. Int J Biol Macromol 2018; 115:1088-1093. [DOI: 10.1016/j.ijbiomac.2018.04.154] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/14/2018] [Accepted: 04/28/2018] [Indexed: 01/30/2023]
|
32
|
Bilal M, Rasheed T, Iqbal HMN, Hu H, Wang W, Zhang X. Horseradish peroxidase immobilization by copolymerization into cross-linked polyacrylamide gel and its dye degradation and detoxification potential. Int J Biol Macromol 2018; 113:983-990. [PMID: 29447971 DOI: 10.1016/j.ijbiomac.2018.02.062] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 02/05/2023]
Abstract
Owing to the ever-increasing environmental and health impacts associated with the discharge of dye-based effluents, effective remediation of industrial waste have become a top priority for the industrialists and environmental fraternity, around the world. Plant-based peroxidases represent a suitable bio-remediating agent for the effective treatment of original dyes or dye-based colored wastewater effluents. In the present study, horseradish peroxidase was immobilized by copolymerization into cross-linked polyacrylamide gel and investigated its potential for the degradation and detoxification of an azo dye, methyl orange. In the presence of N, N'-methylenebisacrylamide as a cross-linker, polyacrylamide gel at 10% concentration furnished >80% of immobilization yield. The surface morphology of the control (free enzyme) and immobilized enzyme, i.e., horseradish peroxidase cross-linked polyacrylamide gel was characterized using scanning electron microscopy. The high yielded horseradish peroxidase cross-linked polyacrylamide gel concentration, i.e., 10% was used to develop a packed bed reactor and exploited for dye degradation and detoxification purposes. A noteworthy level (>90%) of dye degradation was recorded after polyacrylamide gel cross-linked horseradish peroxidase-catalyzed reaction in a packed bed bioreactor. The biodegradation was further assessed by Fourier-transform infrared spectral analysis. The acute toxicity assays demonstrated that enzyme-based bio-degradation might be used effectively for large-scale environmental remediation of dyes and dyes containing wastewater effluents.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tahir Rasheed
- The School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
33
|
Agarose Hydrogel Beads: An Effective Approach to Improve the Catalytic Activity, Stability and Reusability of Fungal Amyloglucosidase of GH15 Family. Catal Letters 2018. [DOI: 10.1007/s10562-018-2460-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Sattar H, Aman A, Qader SAU. Agar-agar immobilization: An alternative approach for the entrapment of protease to improve the catalytic efficiency, thermal stability and recycling efficiency. Int J Biol Macromol 2018; 111:917-922. [DOI: 10.1016/j.ijbiomac.2018.01.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/05/2018] [Accepted: 01/16/2018] [Indexed: 01/12/2023]
|
35
|
Mohapatra BR. Biocatalytic efficacy of immobilized cells of Chryseobacterium sp. Alg-SU10 for simultaneous hydrolysis of urethane and urea. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1445228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Bidyut R. Mohapatra
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, Barbados
| |
Collapse
|
36
|
Mohapatra BR. An Insight into the Prevalence and Enzymatic Abatement of Urethane in Fermented Beverages. Microb Biotechnol 2018. [DOI: 10.1007/978-981-10-7140-9_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
37
|
Delignification and fruit juice clarification properties of alginate-chitosan-immobilized ligninolytic cocktail. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.02.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Delignification of Lignocellulose Biomasses by Alginate–Chitosan Immobilized Laccase Produced from Trametes versicolor IBL-04. WASTE AND BIOMASS VALORIZATION 2017. [DOI: 10.1007/s12649-017-9991-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Kumar S, Haq I, Prakash J, Raj A. Improved enzyme properties upon glutaraldehyde cross-linking of alginate entrapped xylanase from Bacillus licheniformis. Int J Biol Macromol 2017; 98:24-33. [DOI: 10.1016/j.ijbiomac.2017.01.104] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 12/24/2022]
|
40
|
Pervez S, Aman A, Ul Qader SA. Role of two polysaccharide matrices on activity, stability and recycling efficiency of immobilized fungal amyloglucosidase of GH15 family. Int J Biol Macromol 2017; 96:70-77. [DOI: 10.1016/j.ijbiomac.2016.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/11/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022]
|
41
|
Biopolymer matrix for nano-encapsulation of urease – A model protein and its application in urea detection. J Colloid Interface Sci 2017; 490:452-461. [DOI: 10.1016/j.jcis.2016.11.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 11/22/2022]
|
42
|
Chitosan beads immobilized manganese peroxidase catalytic potential for detoxification and decolorization of textile effluent. Int J Biol Macromol 2016; 89:181-9. [DOI: 10.1016/j.ijbiomac.2016.04.075] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 11/20/2022]
|
43
|
Immobilization of a novel cold active esterase onto Fe3O4∼cellulose nano-composite enhances catalytic properties. Int J Biol Macromol 2016; 87:488-97. [DOI: 10.1016/j.ijbiomac.2016.03.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/27/2023]
|
44
|
Salazar-Leyva JA, Lizardi-Mendoza J, Ramirez-Suarez JC, Lugo-Sanchez ME, Valenzuela-Soto EM, Ezquerra-Brauer JM, Castillo-Yañez FJ, Pacheco-Aguilar R. Catalytic and Operational Stability of Acidic Proteases from Monterey Sardine (Sardinops sagax caerulea) Immobilized on a Partially Deacetylated Chitin Support. J Food Biochem 2016. [DOI: 10.1111/jfbc.12287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jesus Aaron Salazar-Leyva
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a la Victoria, Km. 0.6; C.P. 83304 Hermosillo Sonora México
- Universidad Politécnica de Sinaloa. Unidad Académica de Ingeniería en Biotecnología. Carretera Municipal Libre Mazatlán-Higueras; C.P. 82199 Mazatlán Sinaloa México
| | - Jaime Lizardi-Mendoza
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a la Victoria, Km. 0.6; C.P. 83304 Hermosillo Sonora México
| | - Juan Carlos Ramirez-Suarez
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a la Victoria, Km. 0.6; C.P. 83304 Hermosillo Sonora México
| | - Maria Elena Lugo-Sanchez
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a la Victoria, Km. 0.6; C.P. 83304 Hermosillo Sonora México
| | - Elisa Miriam Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a la Victoria, Km. 0.6; C.P. 83304 Hermosillo Sonora México
| | - Josafat Marina Ezquerra-Brauer
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Rosales y Niños Héroes; S/N. Hermosillo Sonora México
| | - Francisco Javier Castillo-Yañez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Rosales y Niños Héroes; S/N. Hermosillo Sonora México
| | - Ramon Pacheco-Aguilar
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a la Victoria, Km. 0.6; C.P. 83304 Hermosillo Sonora México
| |
Collapse
|
45
|
Salazar-Leyva JA, Lizardi-Mendoza J, Ramirez-Suarez JC, Valenzuela-Soto EM, Ezquerra-Brauer JM, Castillo-Yañez FJ, Lugo-Sanchez ME, Garcia-Sanchez G, Carvallo-Ruiz MG, Pacheco-Aguilar R. Optimal Immobilization of Acidic Proteases from Monterey Sardine (Sardinops sagax caeurelea) on Partially Deacetylated Chitin from Shrimp Head Waste. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2016. [DOI: 10.1080/10498850.2015.1033583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Nawaz MA, Aman A, Rehman HU, Bibi Z, Ansari A, Islam Z, Khan IA, Qader SAU. Polyacrylamide Gel-Entrapped Maltase: An Excellent Design of Using Maltase in Continuous Industrial Processes. Appl Biochem Biotechnol 2016; 179:383-97. [DOI: 10.1007/s12010-016-2001-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/27/2016] [Indexed: 11/29/2022]
|
47
|
Doğaç YI, Teke M. Synthesis and Characterisation of Biocompatible Polymer-Conjugated Magnetic Beads for Enhancement Stability of Urease. Appl Biochem Biotechnol 2016; 179:94-110. [DOI: 10.1007/s12010-016-1981-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
|
48
|
Rajagopalan G, Shanmugavelu K, Yang KL. Production of xylooligosaccharides from hardwood xylan by using immobilized endoxylanase of Clostridium strain BOH3. RSC Adv 2016. [DOI: 10.1039/c6ra17085d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endoxylanase ofClostridiumsp. BOH3 was immobilized in calcium alginate/silica gel matrix with a 100% yield. This immobilized xylanase can be reused 7 times to produce prebiotic xylooligosaccharides from hardwood xylan with 62% of activity recovery.
Collapse
Affiliation(s)
- Gobinath Rajagopalan
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117576
- Faculty of Life Sciences and Biotechnology
- South Asian University
| | - Kavitha Shanmugavelu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117576
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117576
| |
Collapse
|
49
|
Immobilization of Enterococcus faecalis cells with chitosan: A new process for the industrial production of l-citrulline. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Taksima T, Limpawattana M, Klaypradit W. Astaxanthin encapsulated in beads using ultrasonic atomizer and application in yogurt as evaluated by consumer sensory profile. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|