1
|
Qian Z, Yu J, Chen X, Kang Y, Ren Y, Liu Q, Lu J, Zhao Q, Cai M. De Novo Production of Plant 4'-Deoxyflavones Baicalein and Oroxylin A from Ethanol in Crabtree-Negative Yeast. ACS Synth Biol 2022; 11:1600-1612. [PMID: 35389625 DOI: 10.1021/acssynbio.2c00026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Baicalein and oroxylin A are well-known medicinal 4'-deoxyflavones found mainly in the roots of traditional medicinal plant Scutellaria baicalensis Georgi. However, extraction from plants is time-consuming, environmentally unfriendly, and insufficient. Although microbial synthesis of flavonoids has been extensively reported, synthesis of downstream modified 4'-deoxyflavones has not, and their yields are extremely low. Here, we reassembled the S. baicalensis 4'-deoxyflavone biosynthetic pathway in a Crabtree-negative yeast, Pichia pastoris, with activity analysis and combinatorial expression of eight biosynthetic genes, allowing production of 4'-deoxyflavones like baicalein, oroxylin A, wogonin, norwogonin, 6-methoxywogonin, and the novel 6-methoxynorwogonin. De novo baicalein synthesis was then achieved by complete pathway assembly. Toxic intermediates highly impaired the cell production capacity; hence, we alleviated cinnamic acid growth inhibition by culturing the cells at near-neutral pH and using alcoholic carbon sources. To achieve pathway balance and improve baicalein and oroxylin A synthesis, we further divided the pathway into five modules. A series of ethanol-induced and constitutive transcriptional amplification devices were constructed to adapt to the modules. This fine-tuning pathway control considerably reduced byproduct and intermediate accumulation and achieved high-level de novo baicalein (401.9 mg/L with a total increase of 1182-fold, the highest titer reported) and oroxylin A (339.5 mg/L, for the first time) production from ethanol. This study provides new strategies for the microbial synthesis of 4'-deoxyflavones and other flavonoids.
Collapse
Affiliation(s)
- Zhilan Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiahui Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinjie Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yijia Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanna Ren
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Liu X, Liu J, Lei D, Zhao GR. Modular metabolic engineering for production of phloretic acid, phloretin and phlorizin in Escherichia coli. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.116931] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Perrin J, Kulagina N, Unlubayir M, Munsch T, Carqueijeiro I, Dugé de Bernonville T, De Craene JO, Clastre M, St-Pierre B, Giglioli-Guivarc’h N, Gagneul D, Lanoue A, Courdavault V, Besseau S. Exploiting Spermidine N-Hydroxycinnamoyltransferase Diversity and Substrate Promiscuity to Produce Various Trihydroxycinnamoyl Spermidines and Analogues in Engineered Yeast. ACS Synth Biol 2021; 10:286-296. [PMID: 33450150 DOI: 10.1021/acssynbio.0c00391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Trihydroxycinnamoyl spermidines (THCSpd) are plant specialized metabolites with promising pharmacological activities as antifungals, antibacterial, antiviral, and antidepressant drugs. However, their characterization and potential pharmaceutical exploitation are greatly impaired by the sourcing of these compounds, restricted to the pollen of core Eudicot plant species. In this work, we developed a precursor-directed biosynthesis of THCSpd in yeast using a dual enzymatic system based on 4-coumarate-CoA ligases (4CL) and spermidine N-hydroxycinnamoyltransferases (SHT). The system relies on the yeast endogenous spermidine pool and only requires hydroxycinnamic acids as exogenous precursors. By exploring 4CL isoforms and SHT diversity among plants, we have driven the production of 8 natural THCSpd, using single or mixed hydroxycinnamic acid precursors. Substrate promiscuities of 4CL and SHT were genuinely exploited to produce 8 new-to-nature THCSpd from exotic hydroxycinnamic and dihydrohydroxycinnamic acids, together with 3 new-to-nature THCSpd containing halogenated hydroxycinnamoyl moieties. In this work, we established a versatile and modular biotechnological production platform allowing the tailor-made THCSpd synthesis, constituting pioneer metabolic engineering for access to these valuable natural products.
Collapse
Affiliation(s)
- Jennifer Perrin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200, Tours, France
| | - Natalja Kulagina
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200, Tours, France
| | - Marianne Unlubayir
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200, Tours, France
| | - Thibaut Munsch
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200, Tours, France
| | - Inês Carqueijeiro
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200, Tours, France
| | | | - Johan-Owen De Craene
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200, Tours, France
| | - Marc Clastre
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200, Tours, France
| | - Benoit St-Pierre
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200, Tours, France
| | | | - David Gagneul
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV − Institut Charles Viollette, F-59000 Lille, France
| | - Arnaud Lanoue
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200, Tours, France
| | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200, Tours, France
| | - Sébastien Besseau
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200, Tours, France
| |
Collapse
|
4
|
Kufs JE, Hoefgen S, Rautschek J, Bissell AU, Graf C, Fiedler J, Braga D, Regestein L, Rosenbaum MA, Thiele J, Valiante V. Rational Design of Flavonoid Production Routes Using Combinatorial and Precursor-Directed Biosynthesis. ACS Synth Biol 2020; 9:1823-1832. [PMID: 32525654 DOI: 10.1021/acssynbio.0c00172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Combinatorial biosynthesis has great potential for designing synthetic circuits and amplifying the production of new active compounds. Studies on multienzyme cascades are extremely useful for improving our knowledge on enzymatic catalysis. In particular, the elucidation of enzyme substrate promiscuity can be potentially used for bioretrosynthetic approaches, leading to the design of alternative and more convenient routes to produce relevant molecules. In this perspective, plant-derived polyketides are extremely adaptable to those synthetic biological applications. Here, we present a combination of an in vitro CoA ligase activity assay coupled with a bacterial multigene expression system that leads to precursor-directed biosynthesis of 21 flavonoid derivatives. When the vast knowledge from protein databases is exploited, the herein presented procedure can be easily repeated with additional plant-derived polyketides. Lastly, we report an efficient in vivo expression system that can be further exploited to heterologously express pathways not necessarily related to plant polyketide synthases.
Collapse
Affiliation(s)
- Johann E. Kufs
- Leibniz Research Cluster Group “Biobricks of Microbial Natural Product Syntheses”, Leibniz Institute for Natural Product Research and Infection Biology − Hans Knöll Institute, Jena 07745, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena 07743, Germany
| | - Sandra Hoefgen
- Leibniz Research Cluster Group “Biobricks of Microbial Natural Product Syntheses”, Leibniz Institute for Natural Product Research and Infection Biology − Hans Knöll Institute, Jena 07745, Germany
| | - Julia Rautschek
- Leibniz Research Cluster Group “Biobricks of Microbial Natural Product Syntheses”, Leibniz Institute for Natural Product Research and Infection Biology − Hans Knöll Institute, Jena 07745, Germany
| | - Alexander U. Bissell
- Leibniz Research Cluster Group “Biobricks of Microbial Natural Product Syntheses”, Leibniz Institute for Natural Product Research and Infection Biology − Hans Knöll Institute, Jena 07745, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena 07743, Germany
| | - Carola Graf
- Leibniz Research Cluster Group “Polymer Micro (bio)reactors”, Leibniz Institute of Polymer Research, Dresden 01069, Germany
| | - Jonas Fiedler
- Leibniz Research Cluster Group “Biobricks of Microbial Natural Product Syntheses”, Leibniz Institute for Natural Product Research and Infection Biology − Hans Knöll Institute, Jena 07745, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena 07743, Germany
| | - Daniel Braga
- Synthetic Microbiology Group, Leibniz Institute for Natural Product Research and Infection Biology − Hans Knöll Institute, Jena 07745, Germany
| | - Lars Regestein
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology − Hans Knöll Institute, Jena 07745, Germany
| | - Miriam A. Rosenbaum
- Faculty of Biological Sciences, Friedrich Schiller University, Jena 07743, Germany
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology − Hans Knöll Institute, Jena 07745, Germany
| | - Julian Thiele
- Leibniz Research Cluster Group “Polymer Micro (bio)reactors”, Leibniz Institute of Polymer Research, Dresden 01069, Germany
| | - Vito Valiante
- Leibniz Research Cluster Group “Biobricks of Microbial Natural Product Syntheses”, Leibniz Institute for Natural Product Research and Infection Biology − Hans Knöll Institute, Jena 07745, Germany
| |
Collapse
|
5
|
Raising the production of phloretin by alleviation of by-product of chalcone synthase in the engineered yeast. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1734-1743. [DOI: 10.1007/s11427-019-1634-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/17/2020] [Indexed: 12/25/2022]
|
6
|
Ding W, Cheng J, Guo D, Mao L, Li J, Lu L, Zhang Y, Yang J, Jiang H. Engineering the 5' UTR-Mediated Regulation of Protein Abundance in Yeast Using Nucleotide Sequence Activity Relationships. ACS Synth Biol 2018; 7:2709-2714. [PMID: 30525473 DOI: 10.1021/acssynbio.8b00127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The 5' untranslated region (5'UTR) plays a key role in post-transcriptional regulation, but interaction between nucleotides and directed evolution of 5'UTRs as synthetic regulatory elements remain unclear. By constructing a library of synthesized random 5'UTRs of 24 nucleotides in Saccharomyces cerevisiae, we observed strong epistatic interactions among bases from different positions in the 5'UTR. Taking into account these base interactions, we constructed a mathematical model to predict protein abundance with a precision of R2 = 0.60. On the basis of this model, we developed an approach to engineer 5'UTRs according to nucleotide sequence activity relationships (NuSAR), in which 5'UTRs were engineered stepwise through repeated cycles of backbone design, directed screening, and model reconstruction. After three rounds of NuSAR, the predictive accuracy of our model was improved to R2 = 0.71, and a strong 5'UTR was obtained with 5-fold higher protein abundance than the starting 5'UTR. Our findings provide new insights into the mechanism of 5'UTR regulation and contribute to a new translational elements engineering approach in synthetic biology.
Collapse
Affiliation(s)
- Wentao Ding
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dan Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ling Mao
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jingwei Li
- Laboratory of Mathematics for Nonlinear Science, Shanghai Key Laboratory for Contemporary Applied Mathematics, Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Lina Lu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yunxin Zhang
- Laboratory of Mathematics for Nonlinear Science, Shanghai Key Laboratory for Contemporary Applied Mathematics, Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Jiangke Yang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
7
|
Ibdah M, Martens S, Gang DR. Biosynthetic Pathway and Metabolic Engineering of Plant Dihydrochalcones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2273-2280. [PMID: 29171271 DOI: 10.1021/acs.jafc.7b04445] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Dihydrochalcones are plant natural products containing the phenylpropanoid backbone and derived from the plant-specific phenylpropanoid pathway. Dihydrochalcone compounds are important in plant growth and response to stresses and, thus, can have large impacts on agricultural activity. In recent years, these compounds have also received increased attention from the biomedical community for their potential as anticancer treatments and other benefits for human health. However, they are typically produced at relatively low levels in plants. Therefore, an attractive alternative is to express the plant biosynthetic pathway genes in microbial hosts and to engineer the metabolic pathway/host to improve the production of these metabolites. In the present review, we discuss in detail the functions of genes and enzymes involved in the biosynthetic pathway of the dihydrochalcones and the recent strategies and achievements used in the reconstruction of multi-enzyme pathways in microorganisms in efforts to be able to attain higher amounts of desired dihydrochalcones.
Collapse
Affiliation(s)
- Mwafaq Ibdah
- Newe Ya'ar Research Center , Agriculture Research Organization , Post Office Box 1021, Ramat Yishay 30095 , Israel
| | - Stefan Martens
- Department of Food Quality and Nutrition, Centro Ricerca e Innovazione , Fondazione Edmund Mach , Via E. Mach 1 , 38010 San Michele all'Adige , Trentino , Italy
| | - David R Gang
- Institute of Biological Chemistry , Washington State University , Post Office Box 646340, Pullman , Washington 99164-6340 , United States
| |
Collapse
|
8
|
Eichenberger M, Lehka BJ, Folly C, Fischer D, Martens S, Simón E, Naesby M. Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties. Metab Eng 2016; 39:80-89. [PMID: 27810393 PMCID: PMC5249241 DOI: 10.1016/j.ymben.2016.10.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/01/2016] [Accepted: 10/25/2016] [Indexed: 01/03/2023]
Abstract
Dihydrochalcones are plant secondary metabolites comprising molecules of significant commercial interest as antioxidants, antidiabetics, or sweeteners. To date, their heterologous biosynthesis in microorganisms has been achieved only by precursor feeding or as minor by-products in strains engineered for flavonoid production. Here, the native ScTSC13 was overexpressed in Saccharomyces cerevisiae to increase its side activity in reducing p-coumaroyl-CoA to p-dihydrocoumaroyl-CoA. De novo production of phloretin, the first committed dihydrochalcone, was achieved by co-expression of additional relevant pathway enzymes. Naringenin, a major by-product of the initial pathway, was practically eliminated by using a chalcone synthase from barley with unexpected substrate specificity. By further extension of the pathway from phloretin with decorating enzymes with known specificities for dihydrochalcones, and by exploiting substrate flexibility of enzymes involved in flavonoid biosynthesis, de novo production of the antioxidant molecule nothofagin, the antidiabetic molecule phlorizin, the sweet molecule naringin dihydrochalcone, and 3-hydroxyphloretin was achieved. De novo biosynthesis of phloretin in S. cerevisiae. De novo pathway extended to various dihydrochalcones of commercial interest. A barley CHS exhibits very high specificity for phloretin production.
Collapse
Affiliation(s)
- Michael Eichenberger
- Evolva SA, Duggingerstrasse 23, 4153 Reinach, Switzerland; Department of Biology, Technical University Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Beata Joanna Lehka
- Evolva Biotech A/S, Lersø Parkallé 42, 2100 Copenhagen, Denmark; Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | | | - David Fischer
- Evolva SA, Duggingerstrasse 23, 4153 Reinach, Switzerland
| | - Stefan Martens
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Centro Ricerca e Innovazione, Via E. Mach 1, 38010 San Michele all'Adige (TN), Italy
| | - Ernesto Simón
- Evolva SA, Duggingerstrasse 23, 4153 Reinach, Switzerland
| | - Michael Naesby
- Evolva SA, Duggingerstrasse 23, 4153 Reinach, Switzerland.
| |
Collapse
|
9
|
Ukida K, Doi T, Sugimoto S, Matsunami K, Otsuka H, Takeda Y. Schoepfiajasmins A-H: C-glycosyl dihydrochalcones, dihydrochalcone glycoside, C-glucosyl flavanones, flavanone glycoside and flavone glycoside from the branches of Schoepfia jasminodora. Chem Pharm Bull (Tokyo) 2014; 61:1136-42. [PMID: 24189301 DOI: 10.1248/cpb.c13-00466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
From the branches of Schoepfia jasminodora collected in Okinawa, three new dihydrochalcone C-glycosides, one dihydrochalcone di-O-glucopyranoside, two flavanone C-glycosides, one flavanone O-glycoside and one flavone O-glycoside were isolated. Their structures were elucidated by extensive study of one- and two-dimensional NMR spectroscopic data.
Collapse
Affiliation(s)
- Kouki Ukida
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | | | | | | | | | | |
Collapse
|
10
|
Stompor M, Potaniec B, Szumny A, Zieliński P, Żołnierczyk AK, Anioł M. Microbial synthesis of dihydrochalcones using Rhodococcus and Gordonia species. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Brazier-Hicks M, Edwards R. Metabolic engineering of the flavone-C-glycoside pathway using polyprotein technology. Metab Eng 2013; 16:11-20. [PMID: 23246521 DOI: 10.1016/j.ymben.2012.11.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/06/2012] [Accepted: 11/06/2012] [Indexed: 11/17/2022]
Abstract
C-Glycosylated flavonoids are biologically active plant natural products linked to dietary health benefits. We have used polyprotein expression technology to reconstruct part of the respective biosynthetic pathway in tobacco and yeast, such that dihydrochalcone and flavanone precursors are directly converted to C-glycosides. The polyprotein system developed facilitated the simple and efficient co-expression of pathway enzymes requiring different sub-cellular localization in both plants and yeast. The pathway to flavone-C-glucosides comprised a flavanone 2-hydroxylase (F2H), co-expressed with a C-glucosyltransferase (CGT). While pathway engineering in tobacco resulted in only minor C-glycoside formation, when fed with the flavanone naringenin, yeast transformed with the F2H-CGT polyprotein construct produced high concentrations of 2-hydroxynaringenin-C-glucoside in the medium. These fermentation products could then be readily chemically converted to the respective flavone-C-glucosides. The efficiency of the biosynthesis was optimal when both the F2H and CGT were obtained from the same species (rice). These results confirm the coupled roles of the F2H and CGT in producing C-glucosides in vivo, with the use of the polyprotein expression system in yeast offering a useful system to optimize the synthesis of these natural products in quantities suitable for dietary studies.
Collapse
Affiliation(s)
- Melissa Brazier-Hicks
- Centre for Novel Agriculture Products, Department of Biology, University of York, York YO10 5DD, UK
| | | |
Collapse
|
12
|
Chemler JA, Buchholz TJ, Geders TW, Akey DL, Rath CM, Chlipala GE, Smith JL, Sherman DH. Biochemical and structural characterization of germicidin synthase: analysis of a type III polyketide synthase that employs acyl-ACP as a starter unit donor. J Am Chem Soc 2012; 134:7359-66. [PMID: 22480290 DOI: 10.1021/ja2112228] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Germicidin synthase (Gcs) from Streptomyces coelicolor is a type III polyketide synthase (PKS) with broad substrate flexibility for acyl groups linked through a thioester bond to either coenzyme A (CoA) or acyl carrier protein (ACP). Germicidin synthesis was reconstituted in vitro by coupling Gcs with fatty acid biosynthesis. Since Gcs has broad substrate flexibility, we directly compared the kinetic properties of Gcs with both acyl-ACP and acyl-CoA. The catalytic efficiency of Gcs for acyl-ACP was 10-fold higher than for acyl-CoA, suggesting a strong preference toward carrier protein starter unit transfer. The 2.9 Å germicidin synthase crystal structure revealed canonical type III PKS architecture along with an unusual helical bundle of unknown function that appears to extend the dimerization interface. A pair of arginine residues adjacent to the active site affect catalytic activity but not ACP binding. This investigation provides new and surprising information about the interactions between type III PKSs and ACPs that will facilitate the construction of engineered systems for production of novel polyketides.
Collapse
Affiliation(s)
- Joseph A Chemler
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Wilson SA, Roberts SC. Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:249-68. [PMID: 22059985 PMCID: PMC3288596 DOI: 10.1111/j.1467-7652.2011.00664.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plant cell culture systems were initially explored for use in commercial synthesis of several high-value secondary metabolites, allowing for sustainable production that was not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis. Although there have been some commercial successes, most notably paclitaxel production from Taxus sp., process limitations exist with regards to low product yields and inherent production variability. A variety of strategies are being developed to overcome these limitations including elicitation, in situ product removal and metabolic engineering with single genes and transcription factors. Recently, the plant cell culture production platform has been extended to pharmaceutically active heterologous proteins. Plant systems are beneficial because they are able to produce complex proteins that are properly glycosylated, folded and assembled without the risk of contamination by toxins that are associated with mammalian or microbial production systems. Additionally, plant cell culture isolates transgenic material from the environment, allows for more controllable conditions over field-grown crops and promotes secretion of proteins to the medium, reducing downstream purification costs. Despite these benefits, the increase in cost of heterologous protein synthesis in plant cell culture as opposed to field-grown crops is significant and therefore processes must be optimized with regard to maximizing secretion and enhancing protein stability in the cell culture media. This review discusses recent advancements in plant cell culture processing technology, focusing on progress towards overcoming the problems associated with commercialization of these production systems and highlighting recent commercial successes.
Collapse
Affiliation(s)
- Sarah A Wilson
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | | |
Collapse
|