1
|
Costa IO, Morais JRF, de Medeiros Dantas JM, Gonçalves LRB, Dos Santos ES, Rios NS. Enzyme immobilization technology as a tool to innovate in the production of biofuels: A special review of the Cross-Linked Enzyme Aggregates (CLEAs) strategy. Enzyme Microb Technol 2023; 170:110300. [PMID: 37523882 DOI: 10.1016/j.enzmictec.2023.110300] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
This review emphasizes the crucial role of enzyme immobilization technology in advancing the production of two main biofuels, ethanol and biodiesel, with a specific focus on the Cross-linked Enzyme Aggregates (CLEAs) strategy. This method of immobilization has gained attention due to its simplicity and affordability, as it does not initially require a solid support. CLEAs synthesis protocol includes two steps: enzyme precipitation and cross-linking of aggregates using bifunctional agents. We conducted a thorough search for papers detailing the synthesis of CLEAs utilizing amylases, cellulases, and hemicellulases. These key enzymes are involved in breaking down starch or lignocellulosic materials to produce ethanol, both in first and second-generation processes. CLEAs of lipases were included as these enzymes play a crucial role in the enzymatic process of biodiesel production. However, when dealing with large or diverse substrates such as lignocellulosic materials for ethanol production and oils/fats for biodiesel production, the use of individual enzymes may not be the most efficient method. Instead, a system that utilizes a blend of enzymes may prove to be more effective. To innovate in the production of biofuels (ethanol and biodiesel), enzyme co-immobilization using different enzyme species to produce Combi-CLEAs is a promising trend.
Collapse
Affiliation(s)
- Isabela Oliveira Costa
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | | | - Nathália Saraiva Rios
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
2
|
Sampaio CS, Angelotti JAF, Fernandez-Lafuente R, Hirata DB. Lipase immobilization via cross-linked enzyme aggregates: Problems and prospects - A review. Int J Biol Macromol 2022; 215:434-449. [PMID: 35752332 DOI: 10.1016/j.ijbiomac.2022.06.139] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 02/08/2023]
Abstract
In this review we have focused on the preparation of cross-linked enzyme aggregates (CLEAs) from lipases, as these are among the most used enzyme in bioprocesses. This immobilization method is considered very attractive due to preparation simplicity, non-use of supports and the possibility of using crude enzyme extracts. CLEAs provide lipase stabilization under extreme temperature or pH conditions or in the presence of organic solvents, in addition to preventing enzyme leaching in aqueous medium. However, it presents some problems in the preparation and limitations in their use. The problems in preparation refer mainly to the crosslinking step, and may be solved using an aminated feeder. The problems in handling have been tackled designing magnetic-CLEAs or trapping the CLEAs in particles with better mechanical properties, the substrate diffusion problems has been reduced by producing more porous-CLEAs, etc. The enzyme co-immobilization using combi-CLEAs is also a new tendency. Therefore, this review explores the CLEAs methodology aimed at lipase immobilization and its applications.
Collapse
Affiliation(s)
- Camila S Sampaio
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Joelise A F Angelotti
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Roberto Fernandez-Lafuente
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain.; Center of Excellence in Bionanoscience Research, Member of The External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Daniela B Hirata
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil.
| |
Collapse
|
3
|
Characteristics of Crosslinking Polymers Play Major Roles in Improving the Stability and Catalytic Properties of Immobilized Thermomyces lanuginosus Lipase. Int J Mol Sci 2022; 23:ijms23062917. [PMID: 35328337 PMCID: PMC8953303 DOI: 10.3390/ijms23062917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/08/2023] Open
Abstract
This study aimed to improve the stability and catalytic properties of Thermomyces lanuginosus lipase (TLL) adsorbed on a hydrophobic support. At the optimized conditions (pH 5 and 25 °C without any additions), the Sips isotherm model effectively fitted the equilibrium adsorption data, indicating a monolayer and the homogenous distribution of immobilized lipase molecules. To preserve the high specific activity of adsorbed lipase, the immobilized lipase (IL) with a moderate loading amount (approximately 40% surface coverage) was selected. Polyethylenimine (PEI) and chitosan (CS) were successfully applied as bridging units to in situ crosslink the immobilized lipase molecules in IL. At the low polymer concentration (0.5%, w/w) and with 1 h incubation, insignificant changes in average pore size were detected. Short-chain PEI and CS (MW ≤ 2 kDa) efficiently improved the lipase stability, i.e., the lipase loss decreased from 40% to <2%. Notably, CS performed much better than PEI in maintaining lipase activity. IL crosslinked with CS-2 kDa showed a two- to three-fold higher rate when hydrolyzing p-nitrophenyl butyrate and a two-fold increase in the catalytic efficiency in the esterification of hexanoic acid with butanol. These in situ crosslinking strategies offer good potential for modulating the catalytic properties of TLL for a specific reaction.
Collapse
|
4
|
Williams V, Cui Y, Zhao J, Fu H, Jiao X, Ma Y, Li X, Du X, Zhang N. Highly Efficient Production of Optically Active ( R)-Tetrahydrothiophene-3-ol in Batch and Continuous Flow by Using Immobilized Ketoreductase. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vyasa Williams
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin, 300457, P.R. China
| | - Yuxia Cui
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin, 300457, P.R. China
| | - Jiadong Zhao
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin, 300457, P.R. China
| | - Han Fu
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin, 300457, P.R. China
| | - Xuecheng Jiao
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin, 300457, P.R. China
| | - Yulei Ma
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin, 300457, P.R. China
| | - Xiang Li
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin, 300457, P.R. China
| | - Xin Du
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin, 300457, P.R. China
| | - Na Zhang
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin, 300457, P.R. China
| |
Collapse
|
5
|
Yu C, Li Q, Tian J, Zhan H, Zheng X, Wang S, Sun X, Sun X. A facile preparation of immobilized naringinase on polyethyleneimine-modified Fe 3O 4 magnetic nanomaterials with high activity. RSC Adv 2021; 11:14568-14577. [PMID: 35424008 PMCID: PMC8698058 DOI: 10.1039/d1ra01449h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/13/2021] [Indexed: 01/13/2023] Open
Abstract
Polyethyleneimine-modified Fe3O4 nanoparticles (Fe3O4-PEI) were synthesized by the one-step co-precipitation method, and the resulting material was used to immobilize naringinase from the fermentation broth of Aspergillus niger FFCC uv-11. The immobilized naringinase activity could reach up to 690.74 U per g-support at the conditions of initial naringinase activity of 406.25 U mL-1, immobilization time of 4 h, glutaraldehyde concentration of 40% (w/v), immobilization temperature of 35 °C, and pH value of 5.5, with naringinase-carrying rate and naringinase activity recovery of 92.93% and 20.89%, respectively. In addition, the immobilized naringinase exhibited good pH and temperature stability in a pH range of 3.5-6.0 and temperature range of 40-70 °C, and the optimal reaction pH and reaction temperature were optimized as 5.5 and 60 °C, respectively. Besides, the immobilized naringinase could maintain 60.58% of the original activity after 10 reuse cycles, indicating that the immobilized naringinase had good reusability. Furthermore, the immobilized naringinase also performed excellent storage stability, 87.52% of enzyme activity still remained as stored at 4 °C for one month. In conclusion, the Fe3O4-PEI could be considered as a promising support for naringinase immobilization, with the advantages of high enzyme activity loading, good reusability, storage stability and rapid recovery.
Collapse
Affiliation(s)
- Chan Yu
- School of Biological Engineering, Dalian Polytechnic University No. 1st Qinggongyuan, Ganjingzi Dalian 116034 P. R. China +86-411-86323725 +86-411-86323725
| | - Qian Li
- School of Biological Engineering, Dalian Polytechnic University No. 1st Qinggongyuan, Ganjingzi Dalian 116034 P. R. China +86-411-86323725 +86-411-86323725
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University No. 1st Qinggongyuan, Ganjingzi Dalian 116034 P. R. China +86-411-86323725 +86-411-86323725
| | - Honglei Zhan
- School of Biological Engineering, Dalian Polytechnic University No. 1st Qinggongyuan, Ganjingzi Dalian 116034 P. R. China +86-411-86323725 +86-411-86323725
| | - Xinyu Zheng
- School of Biological Engineering, Dalian Polytechnic University No. 1st Qinggongyuan, Ganjingzi Dalian 116034 P. R. China +86-411-86323725 +86-411-86323725
| | - Shujing Wang
- School of Biological Engineering, Dalian Polytechnic University No. 1st Qinggongyuan, Ganjingzi Dalian 116034 P. R. China +86-411-86323725 +86-411-86323725
| | - Xitong Sun
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University No. 1st Qinggongyuan, Ganjingzi Dalian 116034 P. R. China
| | - Xiyan Sun
- Department of Chemical and Environmental Engineering, University of California Riverside Riverside CA 92521 USA
| |
Collapse
|
6
|
Alves NR, Pereira MM, Giordano RLC, Tardioli PW, Lima ÁS, Soares CMF, Souza RL. Design for preparation of more active cross-linked enzyme aggregates of Burkholderia cepacia lipase using palm fiber residue. Bioprocess Biosyst Eng 2020; 44:57-66. [PMID: 32767112 DOI: 10.1007/s00449-020-02419-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/29/2020] [Indexed: 01/18/2023]
Abstract
A new design of cross-linked enzyme aggregates (CLEAs) of Burkholderia cepacia lipase (BCL) based mainly on the use of lignocellulosic residue of palm fiber as an additive was proposed. Different parameters for the preparation of active CLEAs in the hydrolysis of olive oil, such as precipitation agents, crosslinking agent concentration, additives, and coating agents were investigated. The highest activity yield (121.1 ± 0.1%) and volumetric activity (1578.1 ± 2.5 U/mL) were achieved for CLEAs prepared using the combination of a coating step with Triton® X-100 and polyethyleneimine plus the use of palm fiber as an additive. The variations of the secondary structures of BCL-CLEAs were analyzed by second-derivative infrared spectra, mainly indicating a reduction of the α-helix structure, which was responsible for the lipase activation in the supramolecular structure of the CLEAs. Thus, these results provided evidence of an innovative design of BCL-CLEAs as a sustainable and biocompatible opportunity for biotechnology applications.
Collapse
Affiliation(s)
- Nanda R Alves
- UNIT, Universidade Tiradentes, Av. Murilo Dantas, 300, Farolândia, Aracaju, SE, Brazil
| | - Matheus M Pereira
- Chemistry Department, CICECO, University of Aveiro, Campus Universitário de Santiago Aveiro, 3810-193, Aveiro, Portugal
| | - Raquel L C Giordano
- Programa de Pós-Graduação Em Engenharia Química (PPG-EQ), Departamento de Engenharia Química, Universidade Federal de São Carlos (DEQ/UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Paulo W Tardioli
- Programa de Pós-Graduação Em Engenharia Química (PPG-EQ), Departamento de Engenharia Química, Universidade Federal de São Carlos (DEQ/UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Álvaro S Lima
- UNIT, Universidade Tiradentes, Av. Murilo Dantas, 300, Farolândia, Aracaju, SE, Brazil.,ITP, Instituto de Tecnologia E Pesquisa, Av. Murilo Dantas, 300, ITP, Farolândia, Aracaju, SE, Brazil
| | - Cleide M F Soares
- UNIT, Universidade Tiradentes, Av. Murilo Dantas, 300, Farolândia, Aracaju, SE, Brazil.,ITP, Instituto de Tecnologia E Pesquisa, Av. Murilo Dantas, 300, ITP, Farolândia, Aracaju, SE, Brazil
| | - Ranyere L Souza
- UNIT, Universidade Tiradentes, Av. Murilo Dantas, 300, Farolândia, Aracaju, SE, Brazil. .,ITP, Instituto de Tecnologia E Pesquisa, Av. Murilo Dantas, 300, ITP, Farolândia, Aracaju, SE, Brazil.
| |
Collapse
|
7
|
Immobilization of Enzymes as Cross-Linked Enzyme Aggregates: General Strategy to Obtain Robust Biocatalysts. Methods Mol Biol 2020; 2100:345-361. [PMID: 31939135 DOI: 10.1007/978-1-0716-0215-7_23] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Among carrier-free immobilization techniques, cross-linked enzyme aggregates (CLEA) have been extensively described for a great number of diverse enzymes. During the last two decades, numerous efforts have been devoted to identify and understand the main variables involved in CLEA's preparation process leading to robust immobilized biocatalysts. Since every enzyme immobilized as CLEA requires specific conditions and protocols, herein we provide a general preparation strategy where main parameters are highlighted and correlated with a possible desired improved enzyme feature.
Collapse
|
8
|
Abstract
Dextran aldehyde (dexOx), resulting from the periodate oxidative cleavage of 1,2-diol moiety inside dextran, is a polymer that is very useful in many areas, including as a macromolecular carrier for drug delivery and other biomedical applications. In particular, it has been widely used for chemical engineering of enzymes, with the aim of designing better biocatalysts that possess improved catalytic properties, making them more stable and/or active for different catalytic reactions. This polymer possesses a very flexible hydrophilic structure, which becomes inert after chemical reduction; therefore, dexOx comes to be highly versatile in a biocatalyst design. This paper presents an overview of the multiple applications of dexOx in applied biocatalysis, e.g., to modulate the adsorption of biomolecules on carrier surfaces in affinity chromatography and biosensors design, to serve as a spacer arm between a ligand and the support in biomacromolecule immobilization procedures or to generate artificial microenvironments around the enzyme molecules or to stabilize multimeric enzymes by intersubunit crosslinking, among many other applications.
Collapse
|
9
|
Cross-linked enzyme-polymer conjugates with excellent stability and detergent-enhanced activity for efficient organophosphate degradation. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0236-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
10
|
Protein Engineering and Homologous Expression of Serratia marcescens Lipase for Efficient Synthesis of a Pharmaceutically Relevant Chiral Epoxyester. Appl Biochem Biotechnol 2017; 183:543-554. [PMID: 28766104 DOI: 10.1007/s12010-017-2543-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/20/2017] [Indexed: 01/08/2023]
Abstract
The lipase isolated from Serratia marcescens (LipA) is a useful biocatalyst for kinetic resolution of a pharmaceutically relevant epoxyester, (±)-3-(4'-methoxyphenyl) glycidic acid methyl ester [(±)-MPGM], to afford optically pure (-)-MPGM, a key intermediate for the synthesis of diltiazem hydrochloride. Two mutants, LipAL315S and LipAS271F, were identified from the combinatorial saturation mutation library of 14 amino acid residues lining the substrate-binding pocket. LipAL315S, LipAS271F, and their combination LipAL315S/S271F showed 2.6-, 2.2-, and 4.6-fold improvements in their specific activities towards para-nitrophenyl butyrate (pNPB), respectively. Among these positive mutants, LipAS271F displayed a 3.5-fold higher specific activity towards the pharmaco substrate (±)-MPGM. Kinetic study showed that the improvement in catalytic efficiency of LipAS271F against (±)-MPGM was mainly resulted from the enhanced affinity between substrate and enzyme, as indicated by the decrease of K m. Furthermore, to address the insoluble expression issue in Escherichia coli, the homologous expression of LipA gene in S. marcescens was achieved by introducing it into an expression vector pUC18, resulting in ca. 20-fold higher lipase production. The significantly improved volumeric production and specific activity of S. marcescens lipase make it very attractive as a new-generation biocatalyst for more efficient and economical manufacturing of (-)-MPGM.
Collapse
|
11
|
Virgen-Ortíz JJ, dos Santos JCS, Berenguer-Murcia Á, Barbosa O, Rodrigues RC, Fernandez-Lafuente R. Polyethylenimine: a very useful ionic polymer in the design of immobilized enzyme biocatalysts. J Mater Chem B 2017; 5:7461-7490. [DOI: 10.1039/c7tb01639e] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review discusses the possible roles of polyethylenimine (PEI) in the design of improved immobilized biocatalysts from diverse perspectives.
Collapse
Affiliation(s)
- Jose J. Virgen-Ortíz
- CONACYT-Centro de Investigación en Alimentación y Desarrollo
- A.C. (CIAD)-Consorcio CIDAM
- 58341 Morelia
- Mexico
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Acarape
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Campus de San Vicente del Raspeig
- Ap. 99-03080 Alicante
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Av. Bento Gonçalves
- Porto Alegre
| | | |
Collapse
|
12
|
Rueda N, dos Santos JCS, Ortiz C, Torres R, Barbosa O, Rodrigues RC, Berenguer-Murcia Á, Fernandez-Lafuente R. Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities. CHEM REC 2016; 16:1436-55. [DOI: 10.1002/tcr.201600007] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Nazzoly Rueda
- Departamento de Biocatálisis; ICP-CSIC C/Marie Curie 2, Campus UAM-CSIC; Cantoblanco 28049 Madrid Spain
- Escuela de Química, Grupo de investigación en Bioquímica y Microbiología (GIBIM) Edificio Camilo Torres 210, Universidad Industrial de Santander; CEP 680001 Bucaramanga Colombia
| | - Jose C. S. dos Santos
- Departamento de Biocatálisis; ICP-CSIC C/Marie Curie 2, Campus UAM-CSIC; Cantoblanco 28049 Madrid Spain
- Instituto de Engenharias e Desenvolvimento Sustentável Universidade da Integração Internacional da Lusofonia Afro-Brasileira; CEP 62785-000 Acarape CE Brazil
| | - Claudia Ortiz
- Escuela de Microbiología, Universidad Industrial de Santander; Bucaramanga Colombia
| | - Rodrigo Torres
- Escuela de Química, Grupo de investigación en Bioquímica y Microbiología (GIBIM) Edificio Camilo Torres 210, Universidad Industrial de Santander; CEP 680001 Bucaramanga Colombia
| | - Oveimar Barbosa
- Departamento de Química; Facultad de Ciencias Universidad del Tolima; Ibagué Colombia
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Laboratory; Institute of Food Science and Technology Federal University of Rio Grande do Sul; Av. Bento Gonçalves 9500 P.O. Box 15090 Porto Alegre RS Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales Departamento de Química Inorgánica Universidad de Alicante Campus de San Vicente del Raspeig; Ap. 99 - 03080 Alicante Spain
| | | |
Collapse
|
13
|
Abstract
AbstractStructural and functional catalytic characteristics of cross-linked enzyme aggregates (CLEA) are reviewed. Firstly, advantages of enzyme immobilization and existing types of immobilization are described. Then, a wide description of the factors that modify CLEA activity, selectivity and stability is presented. Nowadays CLEA offers an economic, simple and easy tool to reuse biocatalysts, improving their catalytic properties and stability. This immobilization methodology has been widely and satisfactorily tested with a great variety of enzymes and has demonstrated its potential as a future tool to optimize biocatalytic processes.
Collapse
|
14
|
Jamwal S, Chauhan GS, Ahn JH, Reddy NS. Cellulase stabilization by crosslinking with ethylene glycol dimethacrylate and evaluation of its activity including in a water–ionic liquid mixture. RSC Adv 2016. [DOI: 10.1039/c5ra19571c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis of immobilized enzymes via crosslinking is an easy route to develop a biocatalyst with enhanced activity and recyclability.
Collapse
Affiliation(s)
- Shivani Jamwal
- Himachal Pradesh University
- Department of Chemistry
- Shimla–171005
- India
| | | | - Jou-Hyeon Ahn
- Department of Chemical Engineering and Research Institute for Green Energy Convergence Technology
- Gyeongsang National University
- Jinju 52828
- Republic of Korea
| | - N. S. Reddy
- School of Materials Science and Engineering and Engineering Research Institute
- Gyeongsang National University
- Jinju 52828
- Republic of Korea
| |
Collapse
|
15
|
Solid state fermentation with recovery of Amyloglucosidase from extract by direct immobilization in cross linked enzyme aggregate for starch hydrolysis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Tan IS, Lee KT. Immobilization of β-glucosidase from Aspergillus niger on κ-carrageenan hybrid matrix and its application on the production of reducing sugar from macroalgae cellulosic residue. BIORESOURCE TECHNOLOGY 2015; 184:386-394. [PMID: 25465785 DOI: 10.1016/j.biortech.2014.10.146] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
A novel concept for the synthesis of a stable polymer hybrid matrix bead was developed in this study. The beads were further applied for enzyme immobilization to produce stable and active biocatalysts with low enzyme leakage, and high immobilization efficiency, enzyme activity, and recyclability. The immobilization conditions, including PEI concentration, activation time and pH of the PEI solution were investigated and optimized. All formulated beads were characterized for its functionalized groups, composition, surface morphology and thermal stability. Compared with the free β-glucosidase, the immobilized β-glucosidase on the hybrid matrix bead was able to tolerate broader range of pH values and higher reaction temperature up to 60 °C. The immobilized β-glucosidase was then used to hydrolyse pretreated macroalgae cellulosic residue (MCR) for the production of reducing sugar and a hydrolysis yield of 73.4% was obtained. After repeated twelve runs, immobilized β-glucosidase retained about 75% of its initial activity.
Collapse
Affiliation(s)
- Inn Shi Tan
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia.
| |
Collapse
|
17
|
Wang F, Nie TT, Shao LL, Cui Z. Comparison of physical and covalent immobilization of lipase fromCandida antarcticaon polyamine microspheres of alkylamine matrix. BIOCATAL BIOTRANSFOR 2014. [DOI: 10.3109/10242422.2014.977266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Velasco-Lozano S, López-Gallego F, Vázquez-Duhalt R, Mateos-Díaz JC, Guisán JM, Favela-Torres E. Carrier-Free Immobilization of Lipase from Candida rugosa with Polyethyleneimines by Carboxyl-Activated Cross-Linking. Biomacromolecules 2014; 15:1896-903. [DOI: 10.1021/bm500333v] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Susana Velasco-Lozano
- Departamento
de Biotecnología, Universidad Autónoma Metropolitana Iztapalapa, Avenida San Rafael Atlixco #186, Col. Vicentina 09340, Distrito Federal México
| | - Fernando López-Gallego
- Biofunctional
Nanomaterials unit, CIC Biomagune, Parque tecnológico de San
Sebastián, Edificio Empresarial “C″, Paseo Miramón 182, 20009, Donostia-San Sebastián Guipúzcoa, Spain
- Ikerbasque, Basque
foundation for Science, 48011, Bilbao, Spain
| | - Rafael Vázquez-Duhalt
- Centro
de Nanociencias y Nanotecnología, UNAM, Ensenada, Baja California, 22780, México
| | - Juan C. Mateos-Díaz
- Centro de Investigación
y Asistencia en Tecnología y Diseño del Estado de Jalisco,
A.C., Unidad de Biotecnología Industrial, Avenida Normalistas 800, Colinas de la Normal, C.P. 44270, Guadalajara, México
| | - José M. Guisán
- Departamento
de Biocatálisis, Instituto de Catálisis (CSIC), Campus UAM Cantoblanco, 28049, Madrid, Spain
| | - Ernesto Favela-Torres
- Departamento
de Biotecnología, Universidad Autónoma Metropolitana Iztapalapa, Avenida San Rafael Atlixco #186, Col. Vicentina 09340, Distrito Federal México
| |
Collapse
|
19
|
Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R. Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv 2014. [DOI: 10.1039/c3ra45991h] [Citation(s) in RCA: 571] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
20
|
Talekar S, Nadar S, Joshi A, Joshi G. Pectin cross-linked enzyme aggregates (pectin-CLEAs) of glucoamylase. RSC Adv 2014. [DOI: 10.1039/c4ra09552a] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CLEAs of glucoamylase were prepared using pectin as non-toxic and macromolecular cross-linker which showed improved thermal stability and good reusability.
Collapse
Affiliation(s)
- Sachin Talekar
- Department of Biotechnology Engineering
- Kolhapur Institute of Technology's College of Engineering
- Kolhapur 416 234, India
| | - Shamraja Nadar
- Department of Biotechnology Engineering
- Kolhapur Institute of Technology's College of Engineering
- Kolhapur 416 234, India
| | - Asavari Joshi
- Department of Biotechnology Engineering
- Kolhapur Institute of Technology's College of Engineering
- Kolhapur 416 234, India
| | - Gandhali Joshi
- Department of Biotechnology Engineering
- Kolhapur Institute of Technology's College of Engineering
- Kolhapur 416 234, India
| |
Collapse
|
21
|
Rodrigues RC, Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Fernandez-Lafuente R. Amination of enzymes to improve biocatalyst performance: coupling genetic modification and physicochemical tools. RSC Adv 2014. [DOI: 10.1039/c4ra04625k] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Improvement of the features of an enzyme is in many instances a pre-requisite for the industrial implementation of these exceedingly interesting biocatalysts.
Collapse
Affiliation(s)
- Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Porto Alegre, Brazil
| | - Oveimar Barbosa
- Escuela de Química
- Grupo de investigación en Bioquímica y Microbiología (GIBIM)
- Edificio Camilo Torres 210
- Universidad Industrial de Santander
- Bucaramanga, Colombia
| | - Claudia Ortiz
- Escuela de Bacteriología y Laboratorio Clínico
- Universidad Industrial de Santander
- Bucaramanga, Colombia
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Ap. 99-03080 Alicante, Spain
| | - Rodrigo Torres
- Escuela de Química
- Grupo de investigación en Bioquímica y Microbiología (GIBIM)
- Edificio Camilo Torres 210
- Universidad Industrial de Santander
- Bucaramanga, Colombia
| | | |
Collapse
|
22
|
Immobilization of amyloglucosidase from SSF of Aspergillus niger by crosslinked enzyme aggregate onto magnetic nanoparticles using minimum amount of carrier and characterizations. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Cui JD, Jia SR. Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: current development and future challenges. Crit Rev Biotechnol 2013; 35:15-28. [DOI: 10.3109/07388551.2013.795516] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
JIANG Y, WANG Q, WANG W, ZHOU L, GAO J. Preparation of Immobilized Lipase through Combination of Cross-Linked En-zyme Aggregates and Biomimetic Silicification. CHINESE JOURNAL OF CATALYSIS 2013. [DOI: 10.3724/sp.j.1088.2012.11055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Talekar S, Joshi A, Joshi G, Kamat P, Haripurkar R, Kambale S. Parameters in preparation and characterization of cross linked enzyme aggregates (CLEAs). RSC Adv 2013. [DOI: 10.1039/c3ra40818c] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
26
|
Galvis M, Barbosa O, Ruiz M, Cruz J, Ortiz C, Torres R, Fernandez-Lafuente R. Chemical amination of lipase B from Candida antarctica is an efficient solution for the preparation of crosslinked enzyme aggregates. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.09.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Talekar S, Ghodake V, Ghotage T, Rathod P, Deshmukh P, Nadar S, Mulla M, Ladole M. Novel magnetic cross-linked enzyme aggregates (magnetic CLEAs) of alpha amylase. BIORESOURCE TECHNOLOGY 2012; 123:542-7. [PMID: 22944488 DOI: 10.1016/j.biortech.2012.07.044] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 05/07/2023]
Abstract
Novel magnetic cross-linked enzyme aggregates of alpha amylase were prepared by chemical cross-linking of enzyme aggregates with amino functionalized magnetite nanoparticles which can be separated from reaction mixture using magnetic field. Of the initially applied alpha amylase activity 100% was recovered in magnetic CLEAs, whereas only 45% was recovered in CLEAs due to the low content of Lys residues in alpha amylase. Scanning electron microscopy analysis showed that CLEAs and magnetic CLEAs were spherical structures. The CLEAs and magnetic CLEAs displayed a shift in optimal pH towards the acidic side, whereas optimal temperature of magnetic CLEAs was improved compared to free enzyme and CLEAs. Although V(max) of enzyme in CLEAs and magnetic CLEAs did not change, substrate affinity of the enzyme increased. The magnetic CLEAs also enhanced the thermal stability and storage stability. Moreover, the magnetic CLEAs retained 100% initial activity even after 6 cycles of reuse.
Collapse
Affiliation(s)
- Sachin Talekar
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Cruz J, Barbosa O, Rodrigues RC, Fernandez-Lafuente R, Torres R, Ortiz C. Optimized preparation of CALB-CLEAs by response surface methodology: The necessity to employ a feeder to have an effective crosslinking. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.04.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
29
|
Vaidya BK, Kuwar SS, Golegaonkar SB, Nene SN. Preparation of cross-linked enzyme aggregates of l-aminoacylase via co-aggregation with polyethyleneimine. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2011.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
|
31
|
Rodrigues RC, Berenguer-Murcia Á, Fernandez-Lafuente R. Coupling Chemical Modification and Immobilization to Improve the Catalytic Performance of Enzymes. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100163] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Affiliation(s)
- Daniel N. Tran
- Department of Chemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Kenneth J. Balkus
- Department of Chemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|