1
|
Al-Qodami BA, Sayed SY, Alalawy HH, Al-Akraa IM, Allam NK, Mohammad AM. Boosted formic acid electro-oxidation on platinum nanoparticles and "mixed-valence" iron and nickel oxides. RSC Adv 2023; 13:20799-20809. [PMID: 37441028 PMCID: PMC10333810 DOI: 10.1039/d3ra03350c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The modification of Pt nanoparticles (nano-Pt, assembled electrochemically onto a glassy carbon (GC) substrate) with hybrid multivalent nickel (nano-NiOx) and iron (nano-FeOx) oxide nanostructures was intended to steer the mechanism of the formic acid electro-oxidation (FAO) in the desirable dehydrogenation pathway. This binary modification with inexpensive oxides succeeded in mediating the reaction mechanism of FAO by boosting reaction kinetics "electron transfer" and amending the surface geometry of the catalyst against poisoning. The sequence of deposition was optimized where the a-FeOx/NiOx/Pt/GC catalyst (where "a" denotes a post-activation step for the catalyst at -0.5 V in 0.5 mol L-1 NaOH) reserved the best hierarchy. Morphologically, while nano-Pt appeared to be spherical (ca. 100 nm in average diameter), nano-NiOx appeared as flowered nanoaggregates (ca. 56 nm in average diameter) and nano-FeOx (after activation) retained a plate-like nanostructure (ca. 38 nm in average diameter and 167 nm in average length). This a-FeOx/NiOx/Pt/GC catalyst demonstrated a remarkable catalytic efficiency (125 mA mgPt-1) for FAO that was ca. 12.5 times that of the pristine Pt/GC catalyst with up to five times improvement in the catalytic tolerance against poisoning and up to -214 mV shift in the FAO's onset potential. Evidences for equipping the a-FeOx/NiOx/Pt/GC catalyst with the least charge transfer resistance and the highest stability among the whole investigated catalysts are provided and discussed.
Collapse
Affiliation(s)
- Bilquis Ali Al-Qodami
- Chemistry Department, Faculty of Science, Cairo University Cairo 12613 Egypt
- Chemistry Department, Faculty of Education and Applied Science, Hajjah University Yemen
| | - Sayed Youssef Sayed
- Chemistry Department, Faculty of Science, Cairo University Cairo 12613 Egypt
| | - Hafsa H Alalawy
- Chemistry Department, Faculty of Science, Cairo University Cairo 12613 Egypt
| | - Islam M Al-Akraa
- Department of Chemical Engineering, Faculty of Engineering, The British University in Egypt Cairo 11837 Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Ahmad M Mohammad
- Chemistry Department, Faculty of Science, Cairo University Cairo 12613 Egypt
| |
Collapse
|
2
|
Sharma T, Sharma A, Xia CL, Lam SS, Khan AA, Tripathi S, Kumar R, Gupta VK, Nadda AK. Enzyme mediated transformation of CO 2 into calcium carbonate using purified microbial carbonic anhydrase. ENVIRONMENTAL RESEARCH 2022; 212:113538. [PMID: 35640707 DOI: 10.1016/j.envres.2022.113538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In this study, a bacterial carbonic anhydrase (CA) was purified from Corynebacterium flavescens for the CO2 conversion into CaCO3. The synthesized CaCO3 can be utilized in the papermaking industry as filler material, construction material and in steel industry. Herein, the CA was purified by using a Sephadex G-100 column chromatography having 29.00 kDa molecular mass in SDS-PAGE analysis. The purified CA showed an optimal temperature of 35 °C and pH 7.5. In addition, a kinetic study of CA using p-NPA as substrate showed Vmax (166.66 μmoL/mL/min), Km (5.12 mM), and Kcat (80.56 sec-1) using Lineweaver Burk plot. The major inhibitors of CA activity were Na2+, K+, Mn2+, and Al3+, whereas Zn2+ and Fe2+ slightly enhanced it. The purified CA showed a good efficacy to convert the CO2 into CaCO3 with a total conversion rate of 65.05 mg CaCO3/mg of protein. In silico analysis suggested that the purified CA has conserved Zn2+ coordinating residues such as His 111, His 113, and His 130 in the active site center. Further analysis of the CO2 binding site showed conserved residues such as Val 132, Val 142, Leu 196, Thr 197, and Val 205. However, a substitution has been observed where Trp 208 of its closest structural homolog T. ammonificans CA is replaced with Arg 207 of C. flavescens. The presence of a hydrophilic mutation in the CO2 binding hydrophobic region is a further subject of investigation.
Collapse
Affiliation(s)
- Tanvi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Abhishek Sharma
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171 005, India
| | - Chang Lei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Azmat Ali Khan
- Pharmaceutical Biotechnological Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Lucknow, Uttar Pradesh, 226025, India
| | - Raj Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India.
| |
Collapse
|
3
|
Rasouli H, Nguyen K, Iliuta MC. Recent advancements in carbonic anhydrase immobilization and its implementation in CO2 capture technologies: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Nilouyal S, Karahan HE, Isfahani AP, Yamaguchi D, Gibbons AH, Ito MMM, Sivaniah E, Ghalei B. Carbonic Anhydrase-Mimicking Supramolecular Nanoassemblies for Developing Carbon Capture Membranes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37595-37607. [PMID: 35969637 DOI: 10.1021/acsami.2c06270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
As a ubiquitous family of enzymes with high performance in converting carbon dioxide (CO2) into bicarbonate, carbonic anhydrases (CAs) sparked enormous attention for carbon capture. Nevertheless, the high cost and operational instability of CAs hamper their practical relevance, and the utility of CAs is mainly limited to aqueous applications where CO2-to-bicarbonate conversion is possible. Taking advantage of the chemical motif that endows CA-like active sites (metal-coordinated histidine), here we introduce a new line of high-performance gas separation membranes with CO2-philic behavior. We first self-assembled a histidine-based bolaamphiphile (His-Bola) molecule in the aqueous phase and coordinated the resulting entities with divalent zinc. Optimizing the supramolecular synthesis conditions ensured that the resultant nanoparticles (His-NPs) exhibit high CO2 affinity and catalytic activity. We then exploited the His-NPs as nanofillers to enhance the separation performance of Pebax MH 1657. The hydrogen-bonding interactions allowed the dispersion of His-NPs within the polymer matrix uniformly, as confirmed by microscopic, spectroscopic, and thermal analyses. The imidazole and amine functionalities of His-NPs enhanced the solubility of CO2 molecules in the polymer matrix. The CA-mimic active sites of His-NPs nanozymes, on the other hand, catalyzed the reversible hydration of CO2 molecules in humid conditions, facilitating their transport across the membranes. The resulting nanocomposite membranes displayed excellent CO2 separation performance, with a high level of stability. At a filling ratio as low as 3 wt %, we achieved a CO2 permeability of >145 Barrer and a CO2/N2 selectivity of >95 with retained performance under humid continuous gas feeds. The bio-inspired approach presented in this work offers a promising platform for designing durable and highly selective CO2 capture membranes.
Collapse
Affiliation(s)
- Somaye Nilouyal
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, 606-8501 Kyoto, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, 615-8510 Kyoto, Japan
| | - H Enis Karahan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, 606-8501 Kyoto, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, 615-8510 Kyoto, Japan
- Synthetic Fuels & Chemicals Technology Center (ITU-SENTEK), Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Ali Pournaghshband Isfahani
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, 606-8501 Kyoto, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, 615-8510 Kyoto, Japan
| | - Daisuke Yamaguchi
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, 606-8501 Kyoto, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, 615-8510 Kyoto, Japan
| | - Andrew H Gibbons
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, 606-8501 Kyoto, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, 615-8510 Kyoto, Japan
| | - Masateru M M Ito
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, 606-8501 Kyoto, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, 615-8510 Kyoto, Japan
| | - Easan Sivaniah
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, 606-8501 Kyoto, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, 615-8510 Kyoto, Japan
| | - Behnam Ghalei
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, 606-8501 Kyoto, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, 615-8510 Kyoto, Japan
| |
Collapse
|
5
|
Orhan F, Senturk M, Genisel M. A new carbonic anhydrase identified in the Gram-negative bacterium (Chromohalobacter sp.) and the interaction of anions with the enzyme. Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109290. [PMID: 35114393 DOI: 10.1016/j.cbpc.2022.109290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 11/19/2022]
Abstract
In this study, the characterization and inhibition characteristic of α-class carbonic anhydrase from Chromohalobacter (ChCA) was documented for the first time. The carbonic anhydrase enzyme had 47.77% yield and 54.45-fold purity. The specific activity of the enzyme was determined as 318.52 U/mg proteins. Alternative substrate (4-nitrophenyl trifluoroacetate, 4-nitrophenyl phosphate, 4-nitrophenyl sulphate and 4-nitrophenyl acetate) were tested for the enzyme. KM and Vmax values for 4-nitrophenyl acetate were 4.57 mM and 4.29 EU/mL and for 4-nitrophenyl trifluoroacetate were 2.39 mM and 2.41 EU/mL. The anions, Cl-, NO2-, NO3-, Br-, ClO3-, ClO4-, I-, CO32- and SO42-, inhibited the ChCA hydratase activity. Among nine anions, the strongest inhibitor activities were obtained with micro molar concentrations of NO2-, NO3-, Br-, I-, CO32- (KI values of 160-255 μM). Other four anions tested (Cl-, ClO3-, ClO4- and SO42-) showed moderate inhibitory activities (KI values of 680-813.5 μM). The results obtained demonstrate that the anions we tested inhibit the Chromohalobacter CA (ChCA) enzyme as in other α-CAs in mammals; however, the susceptibility of ChCA resulted from anions differed significantly from that of other organism CAs.
Collapse
Affiliation(s)
- Furkan Orhan
- Agri Ibrahim Cecen University, Art and Science Faculty, Molecular Biology Department, 4100 Agri, Turkey; Agri Ibrahim Cecen University, Central Research and Application Laboratory, 4100 Agri, Turkey.
| | - Murat Senturk
- Agri Ibrahim Cecen University, Pharmacy Faculty, Department of Biochemistry, 4100 Agri, Turkey
| | - Mucip Genisel
- Agri Ibrahim Cecen University, Central Research and Application Laboratory, 4100 Agri, Turkey; Agri Ibrahim Cecen University, Pharmacy Faculty, Department of Pharmaceutical Botany, 04100 Agri, Turkey
| |
Collapse
|
6
|
Rather AH, Khan RS, Wani TU, Beigh MA, Sheikh FA. Overview on immobilization of enzymes on synthetic polymeric nanofibers fabricated by electrospinning. Biotechnol Bioeng 2021; 119:9-33. [PMID: 34672360 DOI: 10.1002/bit.27963] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 10/13/2021] [Indexed: 01/19/2023]
Abstract
The arrangement and type of support has a significant impact on the efficiency of immobilized enzymes. 1-dimensional fibrous materials can be one of the most desirable supports for enzyme immobilization. This is due to their high surface area to volume ratio, internal porosity, ease of handling, and high mechanical stability, all of which allow a higher enzyme loading, release and finally lead to better catalytic efficiency. Fortunately, the enzymes can reside inside individual nanofibers to remain encapsulated and retain their three-dimensional structure. These properties can protect the enzyme's tolerance against harsh conditions such as pH variations and high temperature, and this can probably enhance the enzyme's stability. This review article will discuss the immobilization of enzymes on synthetic polymers, which are fabricated into nanofibers by electrospinning. This technique is rapidly gaining popularity as one of the most practical ways to fibricate polymer, metal oxide, and composite micro or nanofibers. As a result, there is interest in using nanofibers to immobilize enzymes. Furthermore, present research on electrospun nanofibers for enzyme immobilization is primarily limited to the lab scale and industrial scale is still challanging. The primary future research objectives of this paper is to investigate the use of electrospun nanofibers for enzyme immobilization, which includes increasing yield to transfer biological products into commercial applications.
Collapse
Affiliation(s)
- Anjum Hamid Rather
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, India
| | - Rumysa Saleem Khan
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, India
| | - Taha Umair Wani
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, India
| | - Mushtaq A Beigh
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, India
| | - Faheem A Sheikh
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
7
|
Shamna I, Kwan Jeong S, Margandan B. Covalent immobilization of carbonic anhydrase on amine functionalized alumino-Siloxane aerogel beads for biomimetic sequestration of CO2. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Immobilization of carbonic anhydrase for CO2 capture and its industrial implementation: A review. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101475] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Verma M, Bhaduri GA, Phani Kumar VS, Deshpande PA. Biomimetic Catalysis of CO 2 Hydration: A Materials Perspective. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Manju Verma
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Gaurav A. Bhaduri
- Department of Chemical Engineering, Indian Institute of Technology Jammu, Jammu and Kashmir, 181221, India
| | - V. Sai Phani Kumar
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Parag A. Deshpande
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
10
|
Sharma T, Kumar A. Bioprocess development for efficient conversion of CO2 into calcium carbonate using keratin microparticles immobilized Corynebacterium flavescens. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Ren S, Jiang S, Yan X, Chen R, Cui H. Challenges and Opportunities: Porous Supports in Carbonic Anhydrase Immobilization. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101305] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Lim HK, Kim DR, Hwang IT. Sequestration of CO2 into CaCO3 using Carbonic Anhydrase Immobilization on Functionalized Aluminum Oxide. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819040112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Bose H, Satyanarayana T. Utility of thermo-alkali-stable γ-CA from polyextremophilic bacterium Aeribacillus pallidus TSHB1 in biomimetic sequestration of CO 2 and as a virtual peroxidase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:10869-10884. [PMID: 28293826 DOI: 10.1007/s11356-017-8739-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
Aeribacillus pallidus TSHB1 polyextremophilic bacterium produces a γ-carbonic anhydrase (ApCA), which is a homotrimeric biocatalyst with a subunit molecular mass of 32 ± 2 kDa. The enzyme is stable in the pH range between 8.0 and 11.0 and thus alkali-stable and moderately thermostable with T1/2 values of 40 ± 1, 15 ± 1, and 8 ± 0.5 min at 60, 70, and 80 °C, respectively. Activation energy for irreversible inactivation "E d " of carbonic anhydrase is 67.119 kJ mol-1. The enzyme is stable in the presence of various flue gas contaminants such as SO32-,SO42-, and NO3- and cations Mg2+, Mn2+, Ca2+, and Ba2+. Fluorescence studies in the presence of N-bromosuccinimide and fluorescence quenching using KI and acrylamide revealed the importance of tryptophan residues in maintaining the structural integrity of the enzyme. ApCA is more efficient than the commercially available bovine carbonic anhydrase (BCA) in CO2 sequestration. The enzyme was successfully used in biomineralization of CO2 from flue gas. Replacement of active site Zn2+ with Mn2+ enabled ApCA to function as a peroxidase which exhibited alkali-stability and moderate thermostability like ApCA.
Collapse
Affiliation(s)
- Himadri Bose
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Tulasi Satyanarayana
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
- Netaji Subhas Institute of Technology, Azad Hind Fauz Marg, Sector 3, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
14
|
Fei X, Chen S, Huang C, Liu D, Zhang Y. Immobilization of bovine carbonic anhydrase on glycidoxypropyl-functionalized nanostructured mesoporous silicas for carbonation reaction. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Kanth BK, Lee J, Pack SP. Carbonic anhydrase: Its biocatalytic mechanisms and functional properties for efficient CO2capture process development. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200157] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering; Sogang University; Seoul Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics; Korea University; Sejong Korea
| |
Collapse
|
16
|
Oviya M, Sukumaran V, Giri SS. Immobilization and characterization of carbonic anhydrase purified from E. coli MO1 and its influence on CO₂ sequestration. World J Microbiol Biotechnol 2013; 29:1813-20. [PMID: 23546830 DOI: 10.1007/s11274-013-1343-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/28/2013] [Indexed: 11/25/2022]
Abstract
The present investigation entails the immobilisation and characterisation of Escherichia coli MO1-derived carbonic anhydrase (CA) and its influence on the transformation of CO₂ to CaCO₃. CA was purified from MO1 using a combination of Sephadex G-75 and DEAE cellulose column chromatography, resulting in 4.64-fold purification. The purified CA was immobilised in chitosan-alginate polyelectrolyte complex (C-A PEC) with an immobilisation potential of 94.5 %. Both the immobilised and free forms of the enzyme were most active and stable at pH 8.2 and at 37 °C. The K(m) and V(max) of the immobilised enzyme were found to be 19.12 mM and 416.66 μmol min⁻¹ mg⁻¹, respectively; whereas, the K(m) and V(max) of free enzyme were 18.26 mM and 434.78 μmol min⁻¹ mg⁻¹, respectively. The presence of metal ions such as Cu²⁺, Fe²⁺, and Mg²⁺ stimulated the enzyme activity. Immobilised CA showed higher storage stability and maintained its catalytic efficiency after repeated operational cycles. Furthermore, both forms of the enzyme were tested for targeted application of the carbonation reaction to convert CO₂ to CaCO₃. The amounts of CaCO₃ precipitated over free and immobilised CA were 267 and 253 mg/mg of enzyme, respectively. The results of this study show that immobilised CA in chitosan-alginate beads can be useful for CO₂ sequestration by the biomimetic route.
Collapse
Affiliation(s)
- M Oviya
- Department of Biotechnology, Periyar Maniammai University, Thanjavur, 613403, Tamil Nadu, India
| | | | | |
Collapse
|
17
|
|
18
|
Carbonic Anhydrase: An Efficient Enzyme with Possible Global Implications. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2013. [DOI: 10.1155/2013/813931] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As the global atmospheric emissions of carbon dioxide (CO2) and other greenhouse gases continue to grow to record-setting levels, so do the demands for an efficient and inexpensive carbon sequestration system. Concurrently, the first-world dependence on crude oil and natural gas provokes concerns for long-term availability and emphasizes the need for alternative fuel sources. At the forefront of both of these research areas are a family of enzymes known as the carbonic anhydrases (CAs), which reversibly catalyze the hydration of CO2into bicarbonate. CAs are among the fastest enzymes known, which have a maximum catalytic efficiency approaching the diffusion limit of 108 M−1s−1. As such, CAs are being utilized in various industrial and research settings to help lower CO2atmospheric emissions and promote biofuel production. This review will highlight some of the recent accomplishments in these areas along with a discussion on their current limitations.
Collapse
|
19
|
Bhaduri GA, Šiller L. Nickel nanoparticles catalyse reversible hydration of carbon dioxide for mineralization carbon capture and storage. Catal Sci Technol 2013. [DOI: 10.1039/c3cy20791a] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Abstract
In the past decade, the capture of anthropic carbonic dioxide and its storage or transformation have emerged as major tasks to achieve, in order to control the increasing atmospheric temperature of our planet. One possibility rests on the use of carbonic anhydrase enzymes, which have been long known to accelerate the hydration of neutral aqueous CO2 molecules to ionic bicarbonate species. In this paper, the principle underlying the use of these enzymes is summarized. Their main characteristics, including their structure and catalysis kinetics, are presented. A special section is next devoted to the main types of CO2 capture reactors under development, to possibly use these enzymes industrially. Finally, the possible application of carbonic anhydrases to directly store the captured CO2 as inert solid carbonates deserves a review presented in a final section.
Collapse
Affiliation(s)
- Alain C. Pierre
- Institut de Recherches sur la Catalyse et L’environnement de Lyon, Université Claude Bernard Lyon 1 CNRS, UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne, France
| |
Collapse
|
21
|
Rayalu S, Yadav R, Wanjari S, Prabhu C, Mushnoori SC, Labhsetwar N, Satyanarayanan T, Kotwal S, Wate SR, Hong SG, Kim J. Nanobiocatalysts for Carbon Capture, Sequestration and Valorisation. Top Catal 2012. [DOI: 10.1007/s11244-012-9896-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Sahoo PC, Jang YN, Lee SW. Immobilization of carbonic anhydrase and an artificial Zn(II) complex on a magnetic support for biomimetic carbon dioxide sequestration. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.05.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Park JM, Kim M, Lee HJ, Jang A, Min J, Kim YH. Enhancing the Production of Rhodobacter sphaeroides-Derived Physiologically Active Substances Using Carbonic Anhydrase-Immobilized Electrospun Nanofibers. Biomacromolecules 2012; 13:3780-6. [DOI: 10.1021/bm3012264] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jae-Min Park
- Departmet of Microbiology, Chungbuk National University, 52 Naesudong-Ro, Heungduk-Gu,
Cheongju 361-763, South Korea
| | - Mina Kim
- Departmet of Microbiology, Chungbuk National University, 52 Naesudong-Ro, Heungduk-Gu,
Cheongju 361-763, South Korea
| | - Hyun Jeong Lee
- Graduate School of Semiconductor
and Chemical Engineering, Chonbuk National University, 664-14 Deokjin-dong, 1Ga Deokjin-Gu Jeonju 561-756, South Korea
| | - Am Jang
- School of Civil and Environmental
Engineering, SungKyunKwan University, Suwon
440-746, South Korea
| | - Jiho Min
- Graduate School of Semiconductor
and Chemical Engineering, Chonbuk National University, 664-14 Deokjin-dong, 1Ga Deokjin-Gu Jeonju 561-756, South Korea
| | - Yang-Hoon Kim
- Departmet of Microbiology, Chungbuk National University, 52 Naesudong-Ro, Heungduk-Gu,
Cheongju 361-763, South Korea
| |
Collapse
|
24
|
Larachi F, Lacroix O, Grandjean BP. CO2 hydration by immobilized carbonic anhydrase in Robinson–Mahoney and packed-bed scrubbers—Role of mass transfer and inhibitor removal. Chem Eng Sci 2012. [DOI: 10.1016/j.ces.2012.01.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|