1
|
Vega-Rodríguez MAD, Rodríguez-González JA, Armendáriz-Ruiz MA, Asaff-Torres A, Sotelo-Mundo RR, Velasco-Lozano S, Mateos-Díaz JC. Feruloyl Esterases Protein Engineering to Enhance Their Performance as Biocatalysts: A Review. Chembiochem 2022; 23:e202200354. [PMID: 35781918 DOI: 10.1002/cbic.202200354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/01/2022] [Indexed: 02/03/2023]
Abstract
Feruloyl esterases (FAEs) are versatile enzymes able to release hydroxycinnamic acids or synthesize their ester derivatives, both molecules with interesting biological activities such as: antioxidants, antifungals, antivirals, antifibrotic, anti-inflammatory, among others. The importance of these molecules in medicine, food or cosmetic industries provides FAEs with several biotechnological applications as key industrial biocatalysts. However, FAEs have some operational limitations that must be overcome, which can be addressed through different protein engineering approaches to enhance their thermal stability, catalytic efficiencies, and selectivity. This review aims to present a brief historical tour through the mutagenesis strategies employed to improve enzymes performance and analyze the current protein engineering strategies applied to FAEs as interesting biocatalysts. Finally, an outlook of the future of FAEs protein engineering approaches to achieve successful industrial biocatalysts is given.
Collapse
Affiliation(s)
- Ms Ana Daniela Vega-Rodríguez
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Camino Arenero No. 1227 Colonia El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | - Jorge Alberto Rodríguez-González
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Camino Arenero No. 1227 Colonia El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | | | - Ali Asaff-Torres
- Unidad de Biotecnología Industrial, Centro de Investigación en Alimentación y Desarrollo (CIAD), Carretera a la Victoria Km 0.6, 83304, Hermosillo, Sonora, Mexico
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo (CIAD), Carretera a la Victoria Km 0.6, 83304, Hermosillo, Sonora (Mexico
| | - Susana Velasco-Lozano
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Miramon Pasealekua, 182, 20014, Donostia, Spain
| | - Juan Carlos Mateos-Díaz
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Camino Arenero No. 1227 Colonia El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| |
Collapse
|
2
|
Gherbovet O, Ferreira F, Clément A, Ragon M, Durand J, Bozonnet S, O'Donohue MJ, Fauré R. Regioselective chemoenzymatic syntheses of ferulate conjugates as chromogenic substrates for feruloyl esterases. Beilstein J Org Chem 2021; 17:325-333. [PMID: 33828614 PMCID: PMC7871029 DOI: 10.3762/bjoc.17.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/15/2021] [Indexed: 11/30/2022] Open
Abstract
Generally, carbohydrate-active enzymes are studied using chromogenic substrates that provide quick and easy color-based detection of enzyme-mediated hydrolysis. For feruloyl esterases, commercially available chromogenic ferulate derivatives are both costly and limited in terms of their experimental application. In this study, we describe solutions for these two issues, using a chemoenzymatic approach to synthesize different ferulate compounds. The overall synthetic routes towards commercially available 5-bromo-4-chloro-3-indolyl and 4-nitrophenyl 5-O-feruloyl-α-ʟ-arabinofuranosides were significantly shortened (from 7 or 8 to 4–6 steps), and the transesterification yields were enhanced (from 46 to 73% and from 47 to 86%, respectively). This was achieved using enzymatic (immobilized Lipozyme® TL IM from Thermomyces lanuginosus) transesterification of unprotected vinyl ferulate to the primary hydroxy group of α‐ʟ‐arabinofuranosides. Moreover, a novel feruloylated 4-nitrocatechol-1-yl-substituted butanetriol analog, containing a cleavable hydroxylated linker, was also synthesized in 32% overall yield in 3 steps (convergent synthesis). The latter route combined the regioselective functionalization of 4-nitrocatechol and enzymatic transferuloylation. The use of this strategy to characterize type A feruloyl esterase from Aspergillus niger reveals the advantages of this substrate for the characterizations of feruloyl esterases.
Collapse
Affiliation(s)
- Olga Gherbovet
- Toulouse Biotechnology Institute, Bio & Chemical Engineering (TBI), Université de Toulouse, CNRS 5504, INRAE 792, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Fernando Ferreira
- Toulouse Biotechnology Institute, Bio & Chemical Engineering (TBI), Université de Toulouse, CNRS 5504, INRAE 792, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Apolline Clément
- Toulouse Biotechnology Institute, Bio & Chemical Engineering (TBI), Université de Toulouse, CNRS 5504, INRAE 792, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Mélanie Ragon
- Toulouse Biotechnology Institute, Bio & Chemical Engineering (TBI), Université de Toulouse, CNRS 5504, INRAE 792, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Julien Durand
- Toulouse Biotechnology Institute, Bio & Chemical Engineering (TBI), Université de Toulouse, CNRS 5504, INRAE 792, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Sophie Bozonnet
- Toulouse Biotechnology Institute, Bio & Chemical Engineering (TBI), Université de Toulouse, CNRS 5504, INRAE 792, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Michael J O'Donohue
- Toulouse Biotechnology Institute, Bio & Chemical Engineering (TBI), Université de Toulouse, CNRS 5504, INRAE 792, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Régis Fauré
- Toulouse Biotechnology Institute, Bio & Chemical Engineering (TBI), Université de Toulouse, CNRS 5504, INRAE 792, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| |
Collapse
|
3
|
Oliveira DM, Mota TR, Salatta FV, de Almeida GHG, Olher VGA, Oliveira MAS, Marchiosi R, Ferrarese-Filho O, Dos Santos WD. Feruloyl esterase activity and its role in regulating the feruloylation of maize cell walls. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:49-54. [PMID: 32906021 DOI: 10.1016/j.plaphy.2020.08.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Cell walls of grasses have ferulic acid (FA) ester-linked to the arabinosyl substitutions of arabinoxylan (AX). Feruloyl esterases (FAE) are carboxylic acid esterases that release FA from cell walls and synthetic substrates. Despite the importance of FA for cell wall recalcitrance and in response to biotic and abiotic stresses, the physiological function of plant FAEs remains unclear. Here, we developed a simple method for the determination of FAE activity (ZmFAE) in maize using the total protein extract and investigated its role in regulating the feruloylation of cell wall. The method includes a single protein extraction and enzymatic reaction with protein concentration as low as 65 μg at 35 °C for 30 min, using methyl ferulate as the substrate. The methodology allowed the determination of the apparent Km (392.82 μM) and Vmax (79.15 pkat mg-1 protein). We also found that ZmFAE activity was correlated (r = 0.829) with the levels of FA in seedling roots, plant roots and leaves of maize. Furthermore, the exposure to osmotic stress resulted in a 50% increase in ZmFAE activity in seedling roots. These data suggest that FAE-catalyzed reaction is important for cell wall feruloylation during plant development and in response to abiotic stress. We conclude proposing a model for the feruloylation and deferuloylation of AX, which explains the role of FAE in regulating the levels of ester-linked FA. Our model might orient further studies investigating the role of plant FAEs and assist strategies for genetic engineering of grasses to obtain plants with reduced biomass recalcitrance.
Collapse
Affiliation(s)
- Dyoni M Oliveira
- Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil.
| | - Thatiane R Mota
- Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | - Fábio V Salatta
- Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | | | | | - Marco A S Oliveira
- Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | - Rogério Marchiosi
- Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | | | | |
Collapse
|
4
|
Liu Y, Mo WJ, Shi TF, Wang MZ, Zhou JG, Yu Y, Yew WS, Lu H. Mutational Mtc6p attenuates autophagy and improves secretory expression of heterologous proteins in Kluyveromyces marxianus. Microb Cell Fact 2018; 17:144. [PMID: 30217195 PMCID: PMC6138896 DOI: 10.1186/s12934-018-0993-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/08/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The yeast Kluyveromyces marxianus is an emerging cell factory for heterologous protein biosynthesis and its use holds tremendous advantages for multiple applications. However, which genes influence the productivity of desired proteins in K. marxianus has so far been investigated by very few studies. RESULTS In this study, we constructed a K. marxianus recombinant (FIM1/Est1E), which expressed the heterologous ruminal feruloyl esterase Est1E as reporter. UV-60Co-γ irradiation mutagenesis was performed on this recombinant, and one mutant (be termed as T1) was screened and reported, in which the productivity of heterologous Est1E was increased by at least tenfold compared to the parental FIM1/Est1E recombinant. Transcriptional perturbance was profiled and presented that the intracellular vesicle trafficking was enhanced while autophagy be weakened in the T1 mutant. Moreover, whole-genome sequencing combined with CRISPR/Cas9 mediated gene-editing identified a novel functional protein Mtc6p, which was prematurely terminated at Tyr251 by deletion of a single cytosine at 755 loci of its ORF in the T1 mutant. We found that deleting C755 of MTC6 in FIM1 led to 4.86-fold increase in the production of Est1E compared to FIM1, while the autophagy level decreased by 47%; on the contrary, when reinstating C755 of MTC6 in the T1 mutant, the production of Est1E decreased by 66% compared to T1, while the autophagy level increased by 124%. Additionally, in the recombinant with attenuated autophagy (i.e., FIM1 mtc6C755Δ and T1) or interdicted autophagy (i.e., FIM1 atg1Δ and T1 atg1Δ), the productivity of three other heterologous proteins was also increased, specifically the heterologous mannase Man330, the β-1,4-endoxylanase XynCDBFV or the conventional EGFP. CONCLUSIONS Our results demonstrated that Mtc6p was involved in regulating autophagy; attenuating or interdicting autophagy would dramatically improve the yields of desired proteins in K. marxianus, and this modulation could be achieved by focusing on the premature mutation of Mtc6p target.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438, People's Republic of China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, People's Republic of China
| | - Wen-Juan Mo
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438, People's Republic of China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, People's Republic of China
| | - Tian-Fang Shi
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438, People's Republic of China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, People's Republic of China
| | - Meng-Zhu Wang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438, People's Republic of China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, People's Republic of China
| | - Jun-Gang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438, People's Republic of China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, People's Republic of China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438, People's Republic of China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, People's Republic of China
| | - Wen-Shan Yew
- NUS Synthetic Biology for Clinical and Technological Innovation, 28 Medical Drive, Singapore, 117456, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438, People's Republic of China. .,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
5
|
Zhou J, Zhu P, Hu X, Lu H, Yu Y. Improved secretory expression of lignocellulolytic enzymes in Kluyveromyces marxianus by promoter and signal sequence engineering. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:235. [PMID: 30279722 PMCID: PMC6116501 DOI: 10.1186/s13068-018-1232-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/20/2018] [Indexed: 06/05/2023]
Abstract
BACKGROUND Taking into account its thermotolerance, high growth rate, and broad substrate spectrum, Kluyveromyces marxianus can be considered an ideal consolidated bioprocessing (CBP). A major obstacle to ethanol production using K. marxianus is the low production of lignocellulolytic enzymes, which reduces the cellulose hydrolysis and ethanol production. Thus, further improvement of enzyme expression and secretion is essential. RESULTS To improve the expression of lignocellulolytic enzymes, the inulinase promoter and signal sequence from K. marxianus was optimized through mutagenesis. A T(-361)A mutation inside the promoter, a deletion of AT-rich region inside 5'UTR (UTR∆A), and a P10L substitution in the signal sequence increased the secretory expression of the feruloyl esterase Est1E by up to sixfold. T(-361)A and UTR∆A increased the mRNA expression, while the P10L substitution extended the hydrophobic core of signal sequence and promoted secretion of mature protein. P10L and T(-361)A mutations increased secretory expressions of other types of lignocellulolytic enzymes by up to threefold, including endo-1,4-β-glucanase RuCelA, endo-1,4-β-endoxylanase Xyn-CDBFV, and endo-1,4-β-mannanase MAN330. During the fed-batch fermentation of strains carrying optimized modules, the peak activities of RuCelA, Xyn-CDBFV, MAN330, and Est1E reached 24 U/mL, 25,600 U/mL, 10,200 U/mL, and 1220 U/mL, respectively. Importantly, higher yield of enzymes by optimized promoter and signal sequence were achieved in all tested carbon sources, including the major end products of lignocellulose saccharification and fermentation, with growth on xylose resulting in the highest production. CONCLUSIONS The engineered promoter and signal sequence presented increased secretory expressions of different lignocellulolytic enzymes in K. marxianus by means of various carbon resources. Activities of lignocellulolytic enzymes in fed-batch fermentation were the highest activities reported for K. marxianus so far. Our engineered modules are valuable in producing lignocellulolytic enzymes by K. marxianus and in constructing efficient CBP strains for cellulosic ethanol production.
Collapse
Affiliation(s)
- Jungang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Peixia Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Xiaoyue Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, 200237 China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| |
Collapse
|
6
|
He D, Luo W, Wang Z, Lv P, Yuan Z, Huang S, Xv J. Establishment and application of a modified membrane-blot assay for Rhizomucor miehei lipases aimed at improving their methanol tolerance and thermostability. Enzyme Microb Technol 2017; 102:35-40. [DOI: 10.1016/j.enzmictec.2017.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
|
7
|
|
8
|
Gherbovet O, Fauré R, Ferreira F, Durand J, Ragon M, Hostyn G, Record E, Bozonnet S, O’Donohue MJ. Design of chromogenic probes for efficient screening and evaluation of feruloyl esterase-like activities. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
|
10
|
Zhang SB, Wang L, Liu Y, Zhai HC, Cai JP, Hu YS. Expression of feruloyl esterase A from Aspergillus terreus and its application in biomass degradation. Protein Expr Purif 2015; 115:153-7. [PMID: 26282562 DOI: 10.1016/j.pep.2015.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
Abstract
Feruloyl esterases (FAEs) are key enzymes involved in the complete biodegradation of lignocelluloses, which could hydrolyze the ester bonds between hemicellulose and lignin. The coding sequence of a feruloyl esterase A (AtFaeA) was cloned from Aspergillus terreus and the recombinant AtFaeA was constitutively expressed in Pichia pastoris. The SDS-PAGE analysis of purified AtFaeA showed two protein bands owing to the different extent of glycosylation, and the recombinant AtFaeA had an optimum temperature of 50°C and an optimum pH of 5.0. The substrate utilization and primary sequence identity of AtFaeA demonstrated that it is a type-A feruloyl esterase. The hydrolysis of corn stalk and corncob by xylanase from Aspergillus niger could be significantly improved in concert with recombinant AfFaeA.
Collapse
Affiliation(s)
- Shuai-Bing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Le Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yan Liu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, China
| | - Huan-Chen Zhai
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jing-Ping Cai
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuan-Sen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
11
|
Li J, Zhang S, Yi Z, Pei X, Wu Z. Removal of the free cysteine residue reduces irreversible thermal inactivation of feruloyl esterase: evidence from circular dichroism and fluorescence spectra. Acta Biochim Biophys Sin (Shanghai) 2015; 47:612-9. [PMID: 26079173 DOI: 10.1093/abbs/gmv057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/18/2015] [Indexed: 11/13/2022] Open
Abstract
Feruloyl esterase A from Aspergillus niger (AnFaeA) contains three intramolecular disulfide bonds and one free cysteine at position 235. Saturated mutagenesis at Cys235 was carried out to produce five active mutants, all of which displayed unusual thermal inactivation patterns with the most residual activity achieved at 75°C, much higher than the parental AnFaeA. But their optimal reaction temperatures were lower than the parental AnFaeA. Extensive investigation into their free thiol and disulfide bond, circular dichroism spectra and fluorescence spectra revealed that the unfolding of the parental enzyme was irreversible on all the tested conditions, while that of the Cys235 mutants was reversible, and their ability to refold was highly dependent on the denaturing temperature. Mutants denatured at 75°C were able to efficiently reverse the unfolding to regain native structure during the cooling process. This study provided valid evidence that free cysteine substitutions can reduce irreversible thermal inactivation of proteins.
Collapse
Affiliation(s)
- Jingjing Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China University of Chinese Academy of Sciences, Beijing 10049, China
| | - Shuaibing Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhuolin Yi
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaoqiong Pei
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China University of Chinese Academy of Sciences, Beijing 10049, China
| | - Zhongliu Wu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
| |
Collapse
|
12
|
Chyba A, Mastihuba V, Mastihubová M. Synthesis of 4-nitrophenyl caffeate and its use in assays of caffeoyl esterases. Anal Biochem 2014; 445:49-53. [DOI: 10.1016/j.ab.2013.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
|
13
|
Zhang SB, Zhai HC, Wang L, Yu GH. Expression, purification and characterization of a feruloyl esterase A from Aspergillus flavus. Protein Expr Purif 2013; 92:36-40. [DOI: 10.1016/j.pep.2013.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/16/2013] [Accepted: 08/16/2013] [Indexed: 11/24/2022]
|
14
|
Akeroyd M, Olsthoorn M, Gerritsma J, Gutker-Vermaas D, Ekkelkamp L, van Rij T, Klaassen P, Plugge W, Smit E, Strupat K, Wenzel T, van Tilborg M, van der Hoeven R. Searching for microbial protein over-expression in a complex matrix using automated high throughput MS-based proteomics tools. J Biotechnol 2012; 164:112-20. [PMID: 23220267 DOI: 10.1016/j.jbiotec.2012.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 11/26/2012] [Accepted: 11/26/2012] [Indexed: 01/10/2023]
Abstract
In the discovery of new enzymes genomic and cDNA expression libraries containing thousands of differential clones are generated to obtain biodiversity. These libraries need to be screened for the activity of interest. Removing so-called empty and redundant clones significantly reduces the size of these expression libraries and therefore speeds up new enzyme discovery. Here, we present a sensitive, generic workflow for high throughput screening of successful microbial protein over-expression in microtiter plates containing a complex matrix based on mass spectrometry techniques. MALDI-LTQ-Orbitrap screening followed by principal component analysis and peptide mass fingerprinting was developed to obtain a throughput of ∼12,000 samples per week. Alternatively, a UHPLC-MS(2) approach including MS(2) protein identification was developed for microorganisms with a complex protein secretome with a throughput of ∼2000 samples per week. TCA-induced protein precipitation enhanced by addition of bovine serum albumin is used for protein purification prior to MS detection. We show that this generic workflow can effectively reduce large expression libraries from fungi and bacteria to their minimal size by detection of successful protein over-expression using MS.
Collapse
Affiliation(s)
- Michiel Akeroyd
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613AX Delft, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhang SB, Pei XQ, Wu ZL. Multiple amino acid substitutions significantly improve the thermostability of feruloyl esterase A from Aspergillus niger. BIORESOURCE TECHNOLOGY 2012; 117:140-7. [PMID: 22613889 DOI: 10.1016/j.biortech.2012.04.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/23/2012] [Accepted: 04/10/2012] [Indexed: 05/11/2023]
Abstract
Feruloyl esterase A from Aspergillus niger (AnFaeA) is one of the most important feruloyl esterases of industrial relevance. Previous work aided by the PoPMuSiC algorithm has identified two beneficial mutants (D93G and S187F) with thermostabilization effect. In this work, twelve additional amino acid substitutions were identified to be beneficial to the thermostability of AnFaeA after screening a random mutagenesis library constructed in Pichia pastoris. Combination of these mutations resulted in a mutant with 80% residual activity after heat treatment at 90 °C for 15 min and a half-life increasing from 15 min to >4000 min at 55 °C. The thermostabilized mutant displayed significantly enhanced performance compared to the parental AnFaeA when applied to the treatment of steam-exploded corn stalk at 60 °C together with an xylanase, demonstrating its great potential for industrial application.
Collapse
Affiliation(s)
- Shuai-Bing Zhang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China
| | | | | |
Collapse
|