1
|
Hao B, Zhang R, Zhang C, Wen N, Xia Y, Zhao Y, Li Q, Qiao L, Li W. Characterization of OsPIN2 Mutants Reveal Novel Roles for Reactive Oxygen Species in Modulating Not Only Root Gravitropism but Also Hypoxia Tolerance in Rice Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:476. [PMID: 38498461 PMCID: PMC10892736 DOI: 10.3390/plants13040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
Tolerance to submergence-induced hypoxia is an important agronomic trait especially for crops in lowland and flooding-affected areas. Although rice (Oryza sativa) is considered a flood-tolerant crop, only limited cultivars display strong tolerance to prolonged submergence and/or hypoxic stress. Therefore, characterization of hypoxic resistant genes and/or germplasms have important theoretical and practical significance for rice breeding and sustained improvements. Previous investigations have demonstrated that loss-of-function of OsPIN2, a gene encoding an auxin efflux transporter, results in the loss of root gravitropism due to disrupted auxin transport in the root tip. In this study, we revealed a novel connection between OsPIN2 and reactive oxygen species (ROS) in modulating root gravitropism and hypoxia tolerance in rice. It is shown that the OsPIN2 mutant had decreased accumulation of ROS in root tip, due to the downregulation of glycolate oxidase encoding gene OsGOX6, one of the main H2O2 sources. The morphological defects of root including waved rooting and agravitropism in OsPIN2 mutant may be rescued partly by exogenous application of H2O2. The OsPIN2 mutant exhibited increased resistance to ROS toxicity in roots due to treatment with H2O2. Furthermore, it is shown that the OsPIN2 mutant had increased tolerance to hypoxic stress accompanied by lower ROS accumulation in roots, because the hypoxia stress led to over production of ROS in the roots of the wild type but not in that of OsPIN2 mutant. Accordingly, the anoxic resistance-related gene SUB1B showed differential expression in the root of the WT and OsPIN2 mutant in response to hypoxic conditions. Notably, compared with the wild type, the OsPIN2 mutant displayed a different pattern of auxin distribution in the root under hypoxia stress. It was shown that hypoxia stress caused a significant increase in auxin distribution in the root tip of the WT but not in that of the war1 mutant. In summary, these results suggested that OsPIN2 may play a role in regulating ROS accumulation probably via mediating auxin transport and distribution in the root tip, affecting root gravitropism and hypoxic tolerance in rice seedlings. These findings may contribute to the genetic improvement and identification of potential hypoxic tolerant lines in rice.
Collapse
Affiliation(s)
- Bowen Hao
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Ruihan Zhang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Chengwei Zhang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Na Wen
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Yu Xia
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Yang Zhao
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Qinying Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Lei Qiao
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Wenqiang Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
2
|
Ito G, Tatara Y, Itoh K, Yamada M, Yamashita T, Sakamoto K, Nozaki T, Ishida K, Wake Y, Kaneko T, Fukuda T, Sugano E, Tomita H, Ozaki T. Novel dicarbonyl metabolic pathway via mitochondrial ES1 possessing glyoxalase III activity. BBA ADVANCES 2023; 3:100092. [PMID: 37250100 PMCID: PMC10209487 DOI: 10.1016/j.bbadva.2023.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Glycation, caused by reactive dicarbonyls, plays a role in various diseases by forming advanced glycation end products. In live cells, reactive dicarbonyls such as glyoxal (GO) and methylglyoxal (MGO) are produced during cell metabolism, and these should be removed consistently. However, the dicarbonyl metabolic system in the mitochondria remains unclear. It has been speculated that the mammalian mitochondrial protein ES1 is a homolog of bacterial elbB possessing glyoxalase III (GLO3) activity. Therefore, in this study, to investigate ES1 functions and GLO3 activity, we generated ES1-knockout (KO) mice and recombinant mouse ES1 protein and investigated the biochemical and histological analyses. In the mitochondrial fraction obtained from ES1-KO mouse brains, the GO metabolism and cytochrome c oxidase activity were significantly lower than those in the mitochondrial fraction obtained from wildtype (WT) mouse brains. However, the morphological features of the mitochondria did not change noticeably in the ES1-KO mouse brains compared with those in the WT mouse brains. The mitochondrial proteome analysis showed that the MGO degradation III pathway and oxidative phosphorylation-related proteins were increased. These should be the response to the reduced GO metabolism caused by ES1 deletion to compensate for the dicarbonyl metabolism and damaged cytochrome c oxidase by elevated GO. Recombinant mouse ES1 protein exhibited catalytic activity of converting GO to glycolic acid. These results indicate that ES1 possesses GLO3 activity and modulates the metabolism of GO in the mitochondria. To our knowledge, this is the first study to show a novel metabolic pathway for reactive dicarbonyls in mitochondria.
Collapse
Affiliation(s)
- Ginga Ito
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Yota Tatara
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifuchou, Hirosaki, Aomori 036-8562, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifuchou, Hirosaki, Aomori 036-8562, Japan
| | - Miwa Yamada
- Department of Biological Chemistry, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Tetsuro Yamashita
- Department of Biological Chemistry, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Kimitoshi Sakamoto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Takayuki Nozaki
- Technical Support Center for Life Science Research, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Kinji Ishida
- Technical Support Center for Life Science Research, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Yui Wake
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Takehito Kaneko
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Tomokazu Fukuda
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Eriko Sugano
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Hiroshi Tomita
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Taku Ozaki
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| |
Collapse
|
3
|
Efficient Oxidation of Methyl Glycolate to Methyl Glyoxylate Using a Fusion Enzyme of Glycolate Oxidase, Catalase and Hemoglobin. Catalysts 2020. [DOI: 10.3390/catal10080943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Possessing aldehyde and carboxyl groups, glyoxylic acid and its ester derivatives serve as platform chemicals for the synthesis of vanillin, (R)-pantolactone, antibiotics or agrochemicals. Methyl glycolate is one of the by-products in the coal-to-glycol industry, and we attempted its value-added use through enzymatic oxidation of methyl glycolate to methyl glyoxylate. The cascade catalysis of glycolate oxidase from Spinacia oleracea (SoGOX), catalase from Helicobacter pylori (HpCAT) and hemoglobin from Vitreoscilla stercoraria (VsHGB) was firstly constructed, despite poor catalytic performance. To enable efficient oxidation of methyl glycolate, eight fusion enzymes of SoGOX, HpCAT and VsHGB were constructed by varying the orientation and the linker length. The fusion enzyme VsHGB-GSG-SoGOX-GGGGS-HpCAT was proved to be best, which reaction yield was 2.9 times higher than that of separated enzymes. The enzyme SoGOX was further subjected to directed evolution and site-saturation mutagenesis. The reaction yield of the resulting variant M267T/S362G was 1.9 times higher than that of the wild type. Then, the double substitution M267T/S362G was integrated with fusion expression to give the fusion enzyme VsHGB-GSG-SoGOXmut-GGGGS-HpCAT, which crude enzyme was used as biocatalyst. The use of crude enzyme virtually eliminated side reactions and simplified the preparation of biocatalysts. Under the optimized conditions, the crude enzyme VsHGB-GSG-SoGOXmut-GGGGS-HpCAT catalyzed the oxidation of 200 mM methyl glycolate for 6 h, giving a yield of 95.3%. The development of efficient fusion enzyme and the use of its crude enzyme paved the way for preparative scale application on enzymatic oxidation of methyl glycolate to methyl glyoxylate.
Collapse
|
4
|
Pan J, Li D, Zhu J, Shu Z, Ye X, Xing A, Wen B, Ma Y, Zhu X, Fang W, Wang Y. Aluminum relieves fluoride stress through stimulation of organic acid production in Camellia sinensis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1127-1137. [PMID: 32549678 PMCID: PMC7266864 DOI: 10.1007/s12298-020-00813-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/10/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Tea plants (Camellia sinensis O. Kuntze) can hyperaccumulate fluoride (F) in leaves. Although, aluminum (Al) can alleviate F toxicity in C. sinensis, the mechanisms driving this process remain unclear. Here, we measured root length, root activity, soluble proteins content, and levels of peroxidase, superoxide dismutase, catalase, malondialdehyde (MDA), and chlorophyll in tea leaves after treatment with different F concentrations. In addition, we focused on the content of organic acids, the gene transcription of malate dehydrogenase (MDH), glycolate oxidase (GO) and citrate synthase (CS) and the relative enzyme activity involved in the tolerance to F in C. sinensis. We also examined the role of Al in this process by analyzing the content of these physiological indicators in tea leaves treated with F and Al. Our results demonstrate that increased MDA content, together with decreased chlorophyll content and soluble proteins are responsible for oxidative damage and metabolism inhibition at high F concentration. Moreover, increased antioxidant enzymes activity regulates ROS damage to protect tea leaves during F stress. Furthermore, exogenous Al alleviated F stress in tea leaves through the regulation of MDA content and antioxidant enzymes activity. In addition, organic acids in exudate stimulated root growth in tea plants exposed to low F concentrations are regulated by MDH, GO, and CS. In addition, Al can stimulate the exudation of organic acids, and may participate in regulating rhizosphere pH of the roots through the interaction with F, eventually leading to the response to F stress in C. sinensis.
Collapse
Affiliation(s)
- Junting Pan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dongqin Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiaojiao Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zaifa Shu
- Lishui Academy of Agricultural Sciences, Lishui, 323000 Zhejiang China
| | - Xiaoli Ye
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Anqi Xing
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Bo Wen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
5
|
Venkatesagowda B, Dekker RFH. A rapid method to detect and estimate the activity of the enzyme, alcohol oxidase by the use of two chemical complexes - acetylacetone (3,5-diacetyl-1,4-dihydrolutidine) and acetylacetanilide (3,5-di-N-phenylacetyl-1,4-dihydrolutidine). J Microbiol Methods 2019; 158:71-79. [PMID: 30716345 DOI: 10.1016/j.mimet.2019.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 12/18/2022]
Abstract
A rapid and sensitive method has been devised in order to detect and estimate the synthesis of the enzyme alcohol oxidase (AOX) by fungi, by way of the use of two chemical complexes, namely, acetylacetone (3,5-diacetyl-1,4-dihydrolutidine) and acetylacetanilide (3,5-di-N-phenylacetyl-1,4-dihydrolutidine). This method involves the use of the AOX enzyme that could specifically oxidize methanol, giving rise to equimolar equivalents each of formaldehyde (HCHO) and hydrogen peroxide (H2O2) as the end products. Further, the formaldehyde, thus produced was allowed to interact with the neutral solutions of acetylacetone and the ammonium salt, gradually developing a yellow color, owing to the synthesis and release of 3,5-diacetyl-1,4-dihydrolutidine (yellow product; λ = 420 nm; λex/em = 390/470 nm) and the product, so generated was quantified spectrophotometrically by measureing its absorbance at 412 nm. In another set up, the amount of formaldehyde produced as a sequel to the oxidation of methanol by the AOX enzyme was determined by allowing it to react with the acetylacetanilide reagent, after which the volume of the fluorescent product - 3,5-di-N-phenylacetyl-1,4-dihydrolutidine (colorless product; λex/em = 390/470 nm) that was generated was estimated by measuring its emission at 460 nm (excitation wavelength at 360 nm) in a spectrophotometer. Of the various substrates tested, a commercial source of the AOX enzyme appreciably oxidizes methanol, thereby generating formaldehyde, and further reacts with acetylacetone, to give rise to a bright yellow complex, displaying a maximum activity of 1402 U/mL. Determination of the AOX activity by the use of acetylacetone and acetylacetanilide could serve as a viable alternative to the conventional alcohol oxidase-peroxidase-2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (AOX-POD-ABTS) based method. In view of this, this method appears to be invaluable for application at the various food, pharmaceutical, fuel, biosensor, biorefinery, biopolymer, biomaterial, platform chemical, and biodiesel industries.
Collapse
Affiliation(s)
- Balaji Venkatesagowda
- Biorefining Research Institute, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada.
| | - Robert F H Dekker
- Biorefining Research Institute, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| |
Collapse
|
6
|
Matsumura K, Yamada M, Yamashita T, Muto H, Nishiyama KI, Shimoi H, Isobe K. Expression of alcohol oxidase gene from Ochrobactrum sp. AIU 033 in recombinant Escherichia coli through the twin-arginine translocation pathway. J Biosci Bioeng 2019; 128:13-21. [PMID: 30704918 DOI: 10.1016/j.jbiosc.2018.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 11/26/2022]
Abstract
We cloned a set of genes encoding alcohol oxidase from Ochrobactrum sp. AIU 033 (OcAOD), which exhibits the appropriate substrate specificity for glyoxylic acid production from glycolic acid. The set of genes for OcAOD contained two open reading frames consisting of 555-bp (aodB) and 1572-bp (aodA) nucleotides, which encode the precursor for the β-subunit and α-subunit of OcAOD, respectively. We expressed the cloned genes as an active product in Escherichia coli BL21(DE3). The recombinant OcAOD oxidized glycolic acid and primary alcohols with C2-C8 but not glyoxylic acid (as is the case for native OcAOD), whereas the Km and Vmax values for glycolic acid and the pH stability were higher than those of native OcAOD. A consensus sequence for the twin-arginine translocation (Tat) pathway was identified in the N-terminal region of the precursor for the β-subunit, and the active form of OcAOD was localized in the periplasm of recombinant E. coli, which indicated that OcAOD would be transported from the cytoplasm to the periplasm by the hitchhiker mechanism through the Tat pathway. The OcAOD productivity of the recombinant E. coli was 24-fold higher than that of Ochrobactrum sp. AIU 033, and it was further enhanced by 1.2 times by the co-expression of additional tatABC from E. coli BL21(DE3). Our findings thus suggest a function of the β-subunit of OcAOD in membrane translocation, and that the recombinant OcAOD has characteristics that are suitable for the enzymatic synthesis of glyoxylic acid as well as native OcAOD.
Collapse
Affiliation(s)
- Kenji Matsumura
- Department of Biological Chemistry and Food Science, Iwate University, Ueda-3, Morioka 020-8550, Japan
| | - Miwa Yamada
- Department of Biological Chemistry and Food Science, Iwate University, Ueda-3, Morioka 020-8550, Japan.
| | - Takeshi Yamashita
- Department of Biological Chemistry and Food Science, Iwate University, Ueda-3, Morioka 020-8550, Japan
| | - Hitomi Muto
- Department of Biological Chemistry and Food Science, Iwate University, Ueda-3, Morioka 020-8550, Japan
| | - Ken-Ichi Nishiyama
- Department of Biological Chemistry and Food Science, Iwate University, Ueda-3, Morioka 020-8550, Japan
| | - Hitoshi Shimoi
- Department of Biological Chemistry and Food Science, Iwate University, Ueda-3, Morioka 020-8550, Japan
| | - Kimiyasu Isobe
- Department of Biological Chemistry and Food Science, Iwate University, Ueda-3, Morioka 020-8550, Japan
| |
Collapse
|
7
|
Cloning and coexpression of recombinant N-demethylase B and Glycolate oxidase genes in Escherichia coli. Mol Biol Rep 2018; 46:505-510. [PMID: 30498881 DOI: 10.1007/s11033-018-4504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
NdmB genes from Pseudomonas putida CBB5 and GO genes from spinach, which encode N-demethylase B (NdmB) and Glycolate oxidase (GO) respectively, were separately ligated into expression vectors of pACYCDuet-1 and pET32a to construct recombinant plasmids of pACYCDuet-1-ndmBHis (pBH) and pET32a-GOHis (pGOH). Then the two plasmids were both transformed in Escherichia coli (E. coli) strain BL21 (DE3) and screening the recombinants (pBHGOH) using ampicillin and chloramphonicol as two antibiotics in Luria-Bertani medium. After induction with IPTG, both recombinant ndmB and GO genes were coexpressed in E. coli. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed that the estimated molecular weight of NdmB and GO was 35 kDa and 40 kDa, respectively. By two-step purification of Ni affinity chromatography and Q-Sepharose chromatography, the coexpressed NdmB and GO were separated and resulted in a 15.8-fold purification with 8.7% yield and 12.8-fold purification with 7.2% yield, respectively.
Collapse
|
8
|
Li LK, Shi LL, Hong PH, Tan TW, Li ZJ. Metabolic engineering of Escherichia coli for the production of glyoxylate from xylose. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Li D, Shu Z, Ye X, Zhu J, Pan J, Wang W, Chang P, Cui C, Shen J, Fang W, Zhu X, Wang Y. Cell wall pectin methyl-esterification and organic acids of root tips involve in aluminum tolerance in Camellia sinensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:265-274. [PMID: 28917145 DOI: 10.1016/j.plaphy.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 05/21/2023]
Abstract
Tea plant (Camellia sinensis (O.) Kuntze) can survive from high levels of aluminum (Al) in strongly acidic soils. However, the mechanism driving its tolerance to Al, the predominant factor limiting plant growth in acid condition, is still not fully understood. Here, two-year-old rooted cuttings of C. sinensis cultivar 'Longjingchangye' were used for Al resistance experiments. We found that the tea plants grew better in the presence of 0.4 mM Al than those grew under lower concentration of Al treatments (0 and 0.1 mM) as well as higher levels treatment (2 and 4 mM), confirming that appropriate Al increased tea plant growth. Hematoxylin staining assay showed that the apical region was the main accumulator in tea plant root. Subsequently, immunolocalization of pectins in the root tip cell wall showed a rise in low-methyl-ester pectin levels and a reduction of high-methyl-ester pectin content with the increasing Al concentration of treatments. Furthermore, we observed the increased expressions of C. sinensis pectin methylesterase (CsPME) genes along with the increasing de-esterified pectin levels during response to Al treatments. Additionally, the levels of organic acids increased steadily after treatment with 0.1, 0.4 or 2 mM Al, while they dropped after treatment with 4 mM Al. The organic acids secretion from root followed a similar trend. Similarly, a gradual increase in malate dehydrogenase (MDH), citrate synthase (CS) and glycolate oxidase (GO) enzyme activities and relevant metabolic genes expression were detected after the treatment of 0.1, 0.4 or 2 mM Al, while a sharp decrease was resulted from treatment with 4 mM Al. These results confirm that both pectin methylesterases and organic acids contribute to Al tolerance in C. sinensis.
Collapse
Affiliation(s)
- Dongqin Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zaifa Shu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaoli Ye
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiaojiao Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Junting Pan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Weidong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Pinpin Chang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chuanlei Cui
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiazhi Shen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Yamada M, Adachi K, Ogawa N, Kishino S, Ogawa J, Kataoka M, Shimizu S, Isobe K. A new aldehyde oxidase catalyzing the conversion of glycolaldehyde to glycolate from Burkholderia sp. AIU 129. J Biosci Bioeng 2015; 119:410-5. [DOI: 10.1016/j.jbiosc.2014.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/26/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
|