1
|
Shi Y, Long G, Wang F, Xie Y, Bai M. Innovative co-treatment technology for effective disposal of electrolytic manganese residue. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122234. [PMID: 37482335 DOI: 10.1016/j.envpol.2023.122234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Electrolytic manganese residue (EMR) stockpiles contain significant amounts of Mn2+ and NH4+-N which pose a risk of environmental pollution. For EMR safe disposal, an innovative approach is proposed that involves direct sodium silicate-sodium hydroxide (Na2SiO3-NaOH) collaborative technology. This approach utilises Na2SiO3 and NaOH as the solidifying agent and activator, respectively, to treat EMR without hazardous effects. The study also provides insights into the kinetics of Mn2+ leaching under the effect of Na2SiO3-NaOH. Leaching efficiency was determined by varying parameters such as stirring rate, reaction temperature, pH of the initial solution, Na2SiO3 concentration, and reaction time to investigate the efficacy of this method. The study indicates that the co-treatment technology of Na2SiO3-NaOH can achieve maximum solidification efficiencies of 99.7% and 98.2% for Mn2+ and NH4+-N, respectively. The process can successfully solidify Mn2+ by synthesising Mn(OH)2 and MnSiO3 in an alkaline environment under optimal conditions including stirring rate of 450 rpm, initial solution pH of 8, test temperature of 40 °C, test time of 420 min, and Na2SiO3 content of 5%. The findings of this study have confirmed that surface chemistry plays a vital role in regulating the test rate and the proposed equation accurately describes Mn2+ leaching kinetics. Overall, the co-treatment technology involving Na2SiO3-NaOH is a viable solution for EMR resource utilisation without compromising environmental safety. This method has the potential to be implemented for other waste streams with comparable compositions, ultimately promoting the sustainable management of waste.
Collapse
Affiliation(s)
- Yingying Shi
- School of Civil Engineering, Central South University, 68 South Shaoshan Road, Changsha, Hunan, 410075, China
| | - Guangcheng Long
- School of Civil Engineering, Central South University, 68 South Shaoshan Road, Changsha, Hunan, 410075, China.
| | - Fan Wang
- School of Civil Engineering, Central South University, 68 South Shaoshan Road, Changsha, Hunan, 410075, China
| | - Youjun Xie
- School of Civil Engineering, Central South University, 68 South Shaoshan Road, Changsha, Hunan, 410075, China
| | - Min Bai
- School of Civil Engineering, Central South University, 68 South Shaoshan Road, Changsha, Hunan, 410075, China
| |
Collapse
|
2
|
Tang H, Zhang Y, Deng Y, Du S, Li D, Wang Z, Li H, Gao X, Wang F. Optimization of Synthesis of (S)-Omeprazole Catalyzed by Soybean Pod Peroxidase in Water-in-Oil Microemulsions Using RSM. Catal Letters 2021. [DOI: 10.1007/s10562-021-03681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Cipolatti EP, Rios NS, Sousa JS, Robert JDM, da Silva AAT, Pinto MC, Simas ABC, Vilarrasa-García E, Fernandez-Lafuente R, Gonçalves LRB, Freire DMG, Manoel EA. Synthesis of lipase/silica biocatalysts through the immobilization of CALB on porous SBA-15 and their application on the resolution of pharmaceutical derivatives and on nutraceutical enrichment of natural oil. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Evaluation of Designed Immobilized Catalytic Systems: Activity Enhancement of Lipase B from Candida antarctica. Catalysts 2020. [DOI: 10.3390/catal10080876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Immobilized enzymatic catalysts are widely used in the chemical and pharmaceutical industries. As Candida antarctica lipase B (CALB) is one of the more commonly used biocatalysts, we attempted to design an optimal lipase-catalytic system. In order to do that, we investigated the enantioselectivity and lipolytic activity of CALB immobilized on 12 different supports. Immobilization of lipase on IB-D152 allowed us to achieve hyperactivation (178%) in lipolytic activity tests. Moreover, the conversion in enantioselective esterification increased 43-fold, when proceeding with lipase-immobilized on IB-S861. The immobilized form exhibited a constant high catalytic activity in the temperature range of 25 to 55 °C. Additionally, the lipase immobilized on IB-D152 exhibited a higher lipolytic activity in the pH range of 6 to 9 compared with the native form. Interestingly, our investigations showed that IB-S500 and IB-S60S offered a possibility of application in catalysis in both organic and aqueous solvents. A significant link between the reaction media, the substrates, the supports and the lipase was confirmed. In our enzymatic investigations, high-performance liquid chromatography (HPLC) and the titrimetric method, as well as the Bradford method were employed.
Collapse
|
5
|
Zhang Y, Sun Y, Tang H, Zhao Q, Ren W, Lv K, Yang F, Wang F, Liu J. One-Pot Enzymatic Synthesis of Enantiopure 1,3-Oxathiolanes Using Trichosporon laibachii Lipase and the Kinetic Model. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210,United States
| | - Yangjian Sun
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210,United States
| | - Hui Tang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Qiuxiang Zhao
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Wenjie Ren
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Kuiying Lv
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Fengke Yang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Fanye Wang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Junhong Liu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
| |
Collapse
|
6
|
Development of novel support for penicillin acylase and its application in 6-aminopenicillanic acid production. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Muley AB, Chaudhari SA, Bankar SB, Singhal RS. Stabilization of cutinase by covalent attachment on magnetic nanoparticles and improvement of its catalytic activity by ultrasonication. ULTRASONICS SONOCHEMISTRY 2019; 55:174-185. [PMID: 30852153 DOI: 10.1016/j.ultsonch.2019.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
This paper reports on stabilization of serine cutinase activity by immobilizing it through cross linking with glutaraldehyde on magnetic nanoparticles (Fe-NPs) and intensification of catalytic activity by ultrasonic treatment. The optimum parameters were cross linking with 10.52 mM glutaraldehyde for 90 min using 1:2 (w/w) ratio of enzyme:Fe-NPs. The characterization of cutinase-Fe-NPs was done by different instrumental analysis. Ultrasonic power showed a beneficial effect on the activity of free and immobilized cutinase at 5.76 and 7.63 W, respectively, after 12 min. Immobilization and ultrasonic treatment led to increments in kinetic parameters (Km and Vmax) along with noticeable changes in the secondary structural fractions of cutinase. Cutinase-Fe-NPs showed augmented pH (4-8) and thermal stability (40-60 °C). Considerably higher thermal inactivation kinetic constants (kd, t1/2 and D-value) and thermodynamic constants (Ed, ΔH°, ΔG° and ΔS°) highlighted superior thermostability of cutinase-Fe-NPs. Cutinase-Fe-NPs and ultrasound treated cutinase-Fe-NPs retained 61.88% and 38.76% activity during 21-day storage, and 82.82 and 80.69% activity after fifth reusability cycle, respectively.
Collapse
Affiliation(s)
- Abhijeet B Muley
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Sandeep A Chaudhari
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India; Department of Bioprocess and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Helsinki, Finland
| | - Sandip B Bankar
- Department of Bioprocess and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Helsinki, Finland
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
8
|
Zhang Y, Zhao Y, Gao X, Jiang W, Li Z, Yao Q, Yang F, Wang F, Liu J. Kinetic model of the enzymatic Michael addition for synthesis of mitomycin analogs catalyzed by immobilized lipase from T. laibacchii. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Salvi HM, Yadav GD. Surface functionalization of SBA-15 for immobilization of lipase and its application in synthesis of alkyl levulinates: Optimization and kinetics. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Yadav GD, Kamble MP. A Green Process for Synthesis of Geraniol Esters by Immobilized Lipase from Candida Antarctica B Fraction in Non-Aqueous Reaction Media: Optimization and Kinetic Modeling. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2018. [DOI: 10.1515/ijcre-2017-0179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Enzymatic synthesis of molecules such as flavors, perfumes and fragrances has a great commercial advantage of being marketed as “natural” and also it offers exquisite selectivity of enzymes that can be superior over chemical catalysis. The current work focuses on the enzymatic synthesis of geranyl acetate as model compound, including optimization of reaction conditions such as nature of catalyst, reaction media, speed of agitation, mole ratio and temperature. A variety of esters were also synthesized. Geraniol was esterified with various acids, aromatic esters and vinyl esters in 1:4 molar ratio. Among all vinyl ester was the best giving in good yield (77–100 %) as compared to aromatic esters (5–82 %) and acids (7–31 %). Novozym 435 was found to be most active catalyst with ~96 % conversion and 100 % selectivity in 60 min at 55 °C in n-heptane as solvent for geranyl acetate. The maximum reaction rate was estimated (Vmax = 0.2712 mol L−1 min-1) by using the double reciprocal plot. It is a ternary complex (ordered bi-bi) mechanism with inhibition by geraniol.
Collapse
|
11
|
Kamble MP, Yadav GD. Biocatalytic resolution of ( R,S )-styrene oxide using a novel epoxide hydrolase from red mung beans. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Yan XH, Xue P. Tailoring magnetic mesoporous silica spheres-immobilized lipase for kinetic resolution of methyl 2-bromopropionate in a co-solvent system. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3369-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Kamble MP, Yadav GD. Kinetic resolution of ( R,S ) phenyl glycidyl ether by red mung beans ( Vigna angularis ) epoxide hydrolases. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Synthesis of Geraniol Esters in a Continuous-Flow Packed-Bed Reactor of Immobilized Lipase: Optimization of Process Parameters and Kinetic Modeling. Appl Biochem Biotechnol 2017; 184:630-643. [PMID: 28836237 DOI: 10.1007/s12010-017-2572-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/31/2017] [Indexed: 01/01/2023]
Abstract
With increasing demand for perfumes, flavors, beverages, and pharmaceuticals, the various associated industries are resorting to different approaches to enhance yields of desired compounds. The use of fixed-bed biocatalytic reactors in some of the processes for making fine chemicals will be of great value because the reaction times could be reduced substantially as well as high conversion and yields obtained. In the current study, a continuous-flow packed-bed reactor of immobilized Candida antarctica lipase B (Novozym 435) was employed for synthesis of various geraniol esters. Optimization of process parameters such as biocatalyst screening, effect of solvent, mole ratio, temperature and acyl donors was studied in a continuous-flow packed-bed reactor. Maximum conversion of ~ 87% of geranyl propionate was achieved in 15 min residence time at 70 °C using geraniol and propionic acid with a 1:1 mol ratio. Novozym 435 was found to be the most active and stable biocatalyst among all tested. Ternary complex mechanism with propionic acid inhibition was found to fit the data.
Collapse
|
15
|
Dai H, Ou S, Liu Z, Huang H. Pineapple peel carboxymethyl cellulose/polyvinyl alcohol/mesoporous silica SBA-15 hydrogel composites for papain immobilization. Carbohydr Polym 2017; 169:504-514. [DOI: 10.1016/j.carbpol.2017.04.057] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 11/17/2022]
|
16
|
Enantioselective resolution of (R,S)-α-methyl-4-pyridinemethanol using immobilized biocatalyst: Optimization and kinetic modeling. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Kamble MP, Yadav GD. Kinetic Resolution of (R,S)-α-Tetralol by Immobilized Candida antarctica Lipase B: Comparison of Packed-Bed over Stirred-Tank Batch Bioreactor. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b03401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manoj P. Kamble
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019 India
| | - Ganapati D. Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019 India
| |
Collapse
|
18
|
Chaudhari SA, Singhal RS. A strategic approach for direct recovery and stabilization of Fusarium sp. ICT SAC1 cutinase from solid state fermented broth by carrier free cross-linked enzyme aggregates. Int J Biol Macromol 2017; 98:610-621. [PMID: 28192137 DOI: 10.1016/j.ijbiomac.2017.02.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 11/18/2022]
Abstract
The major hurdles in commercial exploitation of cutinase (having both esterolytic and lipolytic activities) with potent industrial applications are its high production cost, operational instability and reusability. Although commercially available in immobilized form, its immobilization process (synthesis of support/carrier) makes it expensive. Herein we tried to address multiple issues of production cost, stability, and reusability, associated with cutinase. Waste watermelon rinds, an agroindustrial waste was considered as a cheap support for solid state fermentation (SSF) for cutinase production by newly isolated Fusarium sp. ICT SAC1. Subsequently, carrier free cross-linked enzyme aggregates of cutinase (cut-CLEA) directly from the SSF crude broth were developed. All the process variables affecting CLEA formation along with the different additives were evaluated. It was found that 50% (w/v) of ammonium sulphate, 125μmol of glutaraldehyde, cross-linking for 1h at 30°C and broth pH of 7.0, yielded 58.12% activity recovery. All other additives (hexane, butyric acid, sodium dodecyl sulphate, Trition-X 100, Tween-20, BSA) evaluated presented negative results to our hypothesis. Kinetics and morphology studies confirmed the diffusive nature of cut-CLEA and BSA cut-CLEA. Developed CLEA showed better thermal, solvent, detergent and storage stability, making it more elegant and efficient for industrial biocatalytic process.
Collapse
Affiliation(s)
- Sandeep A Chaudhari
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai-400019, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai-400019, India.
| |
Collapse
|