1
|
Atiroğlu V, Atiroğlu A, Atiroğlu A, Al-Hajri AS, Özacar M. Green immobilization: Enhancing enzyme stability and reusability on eco-friendly support. Food Chem 2024; 448:138978. [PMID: 38522291 DOI: 10.1016/j.foodchem.2024.138978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
In the current years of heightened focus on green chemistry and sustainable materials, this study delves into the untapped potential of hyaluronic acid (HA), chitin, and chitosan-prominent polysaccharides for groundbreaking applications. The primary aim is to effectively immobilize catalase enzymes onto matrices composed of chitosan, chitin, HA/chitin, and HA/chitosan. The rigorous investigation covers a spectrum of structural enhancements encompassing pH and temperature stability, thermal resilience, half-life extension, storage durability, reusability, and comprehensive FTIR analyses of the catalase immobilization. Notably, catalase activity demonstrated remarkable resilience on HA/chitin and HA/chitosan matrices, maintaining 73.80% and 79.55% efficacy even after 25 cycles. The introduction of covalent cross-linking between catalase and HA/chitin or HA/chitosan, facilitated by a cross-linking agent, significantly amplified stability and recycling efficiency. Consequently, the immobilized catalase showcases substantial promise across a spectrum of industrial applications, spanning from food and detergent production to bioremediation and diverse commercial processes. This underscores its pivotal role as a versatile and invaluable innovation in the realm of sustainable technologies.
Collapse
Affiliation(s)
- Vesen Atiroğlu
- Sakarya University, Biomedical, Magnetic and Semiconductor Materials Application and Research Center (BIMAS-RC), 54050, Sakarya, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, EnzymeTechnology, Nan &Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R & D Group), 54050, Sakarya, Turkey.
| | - Atheer Atiroğlu
- Sakarya University, Biomedical, Magnetic and Semiconductor Materials Application and Research Center (BIMAS-RC), 54050, Sakarya, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, EnzymeTechnology, Nan &Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R & D Group), 54050, Sakarya, Turkey
| | - Ahmed Atiroğlu
- Sakarya University, Faculty of Medicine, 54290, Sakarya, Turkey
| | | | - Mahmut Özacar
- Sakarya University, Biomaterials, Energy, Photocatalysis, EnzymeTechnology, Nan &Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R & D Group), 54050, Sakarya, Turkey; Sakarya University, Faculty of Science, Department of Chemistry, 54050, Sakarya, Turkey
| |
Collapse
|
2
|
Yip YS, Manas NHA, Jaafar NR, Rahman RA, Puspaningsih NNT, Illias RM. Combined cross-linked enzyme aggregates of cyclodextrin glucanotransferase and maltogenic amylase from Bacillus lehensis G1 for maltooligosaccharides synthesis. Int J Biol Macromol 2023; 242:124675. [PMID: 37127056 DOI: 10.1016/j.ijbiomac.2023.124675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
Maltooligosaccharides (MOS) are functional oligosaccharides that can be synthesized through enzymatic cascade reaction between cyclodextrin glucanotransferase (CGTase) and maltogenic amylase (Mag1) from Bacillus lehensis G1. To address the problems of low operational stability and non-reusability of free enzymes, both enzymes were co-immobilized as combined cross-linked enzyme aggregates (Combi-CLEAs-CM) with incorporation of bovine serum albumin (BSA) and Tween 80 (Combi-CLEAs-CM-add). Combi-CLEAs-CM and Combi-CLEAs-CM-add showed activity recoveries of 54.12 % and 69.44 %, respectively after optimization. Combi-CLEAs-CM-add showed higher thermal stability at higher temperatures (40 °C) with longer half-life (46.20 min) as compared to those of free enzymes (36.67 min) and Combi-CLEAs-CM (41.51 min). Both combi-CLEAs also exhibited higher pH stability over pH 5 to pH 9, and displayed excellent reusability with >50 % of initial activity retained after four cycles. The reduction in Km value of about 22.80 % and 1.76-fold increase in starch hydrolysis in comparison to Combi-CLEAs-CM attested the improvement of enzyme-substrate interaction by Tween 80 and pores formation by BSA in Combi-CLEAs-CM-add. The improved product specificity of Combi-CLEAs-CM-add also produced the highest yield of MOS (492 mg/g) after 3 h. Therefore, Combi-CLEAs-CM-add with ease of preparation, excellent reusability and high operational stability is believed to be highly efficacious biocatalyst for MOS production.
Collapse
Affiliation(s)
- Yee Seng Yip
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nor Hasmaliana Abdul Manas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nardiah Rizwana Jaafar
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Roshanida A Rahman
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Ni Nyoman Tri Puspaningsih
- Laboratory of Proteomics, University-CoE Research Center for Bio-Molecule Engineering, Universitas Airlangga, Kampus C-UNAIR, Surabaya, East Java, Indonesia
| | - Rosli Md Illias
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
3
|
Cross-linked β-Mannanase Aggregates: Preparation, Characterization, and Application for Producing Partially Hydrolyzed Guar Gum. Appl Biochem Biotechnol 2022; 194:1981-2004. [DOI: 10.1007/s12010-022-03807-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 11/02/2022]
|
4
|
Siqueira LA, Almeida LF, Fernandes JPA, Araújo MCU, Lima RAC. Ultrasonic-assisted extraction and automated determination of catalase and lipase activities in bovine and poultry livers using a digital movie-based flow-batch analyzer. ULTRASONICS SONOCHEMISTRY 2021; 79:105774. [PMID: 34628308 PMCID: PMC8501505 DOI: 10.1016/j.ultsonch.2021.105774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 05/26/2023]
Abstract
An ultrasonic reactor (UR) was developed and coupled to a digital movie-based flow-batch analyzer (DM-FBA) for the ultrasonic-assisted extraction (UAE) and fast determination of catalase and lipase activities in bovine and poultry livers. The lab-made UR mainly consisted of a borosilicate glass container and a piezoelectric disc. The DM-FBA mainly consisted of a webcam, an ultrasonic actuator controller, a peristaltic pump, six solenoid valves, a valve driver, a mixing chamber, a magnetic stirrer, an Arduino Mega 2560, and a personal computer. This setup, named UR-DM-FBA, was controlled by custom software. Ultrasound (US) frequency, US power, sonication time, and concentration of extraction agent were optimized using the Taguchi method. Experiments at silent conditions (mechanical stirring at 1500 rpm) were carried out to evaluate extraction efficiency. Optimized parameters for the UAE of catalase were US frequency of 30 kHz, 2.0 mL of Triton X-100, sonication time of 270 s, and US power of 10.8 W. For the UAE of lipase, the optimized parameters were US frequency of 20 kHz, 0.30 mL of triethanolamine, sonication time of 270 s, and US power of 18 W. Catalase and lipase activities obtained with the UR were, on average, 1.9 × 103% and 2.0 × 103% higher than those obtained at silent conditions, respectively, which indicates that that the lab-made UR was capable of extracting these enzymes more efficiently. Determinations using the UR-DM-FBA were highly accurate (relative error ranging from -1.98% to 1.96% for bovine catalase, -0.65% to 0.76% for bovine lipase, -2.03 to 2.08% for poultry catalase, and -0.55% to 0.64% for poultry lipase) and precise (overall coefficient of variation <0.02% for bovine and poultry catalase and <0.2% for bovine and poultry lipase). Results obtained with the proposed system and reference methods were in good agreement according to the paired t-test (95% confidence level). High sampling rates (>69 h-1) and low sample/reagent consumption (<1.6 mL) were also obtained. Due to the highly efficient UAE, the proposed system can be applied for fast and accurate quantification of lipase and catalase in biological samples with low waste generation.
Collapse
Affiliation(s)
- Lucas A Siqueira
- Departamento de Química, Universidade Federal da Paraíba, 58.051-970, João Pessoa City, Paraíba State, Brazil
| | - Luciano F Almeida
- Departamento de Química, Universidade Federal da Paraíba, 58.051-970, João Pessoa City, Paraíba State, Brazil
| | | | - Mario Cesar U Araújo
- Departamento de Química, Universidade Federal da Paraíba, 58.051-970, João Pessoa City, Paraíba State, Brazil
| | - Ricardo Alexandre C Lima
- Departamento de Química, Universidade Federal da Paraíba, 58.051-970, João Pessoa City, Paraíba State, Brazil.
| |
Collapse
|
5
|
Muley AB, Awasthi S, Bhalerao PP, Jadhav NL, Singhal RS. Preparation of cross-linked enzyme aggregates of lipase from Aspergillus niger: process optimization, characterization, stability, and application for epoxidation of lemongrass oil. Bioprocess Biosyst Eng 2021; 44:1383-1404. [PMID: 33660099 DOI: 10.1007/s00449-021-02509-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/04/2021] [Indexed: 12/01/2022]
Abstract
Cross-linked enzyme aggregates (CLEAs) of lipase were prepared after fractional precipitation with 40-50% ammonium sulfate and then cross-linking with glutaraldehyde. The process variables for the preparation of lipase-CLEAs such as glutaraldehyde concentration, cross-linking period, and initial pH of medium were optimized. The optimized conditions for the preparation of lipase-CLEAs were 25 mM/80 min/pH 7.0, and 31.62 mM/90 min/pH 6.0 with one factor at a time approach and numerical optimization with central composite design, respectively. Lipase-CLEAs were characterized by particle size analysis, SEM, and FTIR. Cross-linking not only shifted the optimal pH and temperature from 7.0 to 7.5 and 40-45 to 45-50 °C, but also altered the secondary structure. Lipase-CLEAs showed an increase in Km by 7.70%, and a decrease in Vmax by 16.63%. Lipase-CLEAs presented better thermostability than free lipase as evident from thermal inactivation constants (t1/2, D and Ed value), and thermodynamic parameters (Ed, ΔH°, ΔG°, and ΔS°) in the range of 50-70 °C. Lipase-CLEAs retained more than 65% activity up to four cycles and showed good storage stability for 12 days when stored at 4 ± 2 °C. They were successfully utilized for the epoxidation of lemongrass oil which was confirmed by changes in iodine value, epoxide value, and FTIR spectra.
Collapse
Affiliation(s)
- Abhijeet Bhimrao Muley
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| | - Sneha Awasthi
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Prasanna Prakash Bhalerao
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Nilesh Lakshaman Jadhav
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Rekha Satishchandra Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| |
Collapse
|
6
|
Alves NR, Pereira MM, Giordano RLC, Tardioli PW, Lima ÁS, Soares CMF, Souza RL. Design for preparation of more active cross-linked enzyme aggregates of Burkholderia cepacia lipase using palm fiber residue. Bioprocess Biosyst Eng 2020; 44:57-66. [PMID: 32767112 DOI: 10.1007/s00449-020-02419-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/29/2020] [Indexed: 01/18/2023]
Abstract
A new design of cross-linked enzyme aggregates (CLEAs) of Burkholderia cepacia lipase (BCL) based mainly on the use of lignocellulosic residue of palm fiber as an additive was proposed. Different parameters for the preparation of active CLEAs in the hydrolysis of olive oil, such as precipitation agents, crosslinking agent concentration, additives, and coating agents were investigated. The highest activity yield (121.1 ± 0.1%) and volumetric activity (1578.1 ± 2.5 U/mL) were achieved for CLEAs prepared using the combination of a coating step with Triton® X-100 and polyethyleneimine plus the use of palm fiber as an additive. The variations of the secondary structures of BCL-CLEAs were analyzed by second-derivative infrared spectra, mainly indicating a reduction of the α-helix structure, which was responsible for the lipase activation in the supramolecular structure of the CLEAs. Thus, these results provided evidence of an innovative design of BCL-CLEAs as a sustainable and biocompatible opportunity for biotechnology applications.
Collapse
Affiliation(s)
- Nanda R Alves
- UNIT, Universidade Tiradentes, Av. Murilo Dantas, 300, Farolândia, Aracaju, SE, Brazil
| | - Matheus M Pereira
- Chemistry Department, CICECO, University of Aveiro, Campus Universitário de Santiago Aveiro, 3810-193, Aveiro, Portugal
| | - Raquel L C Giordano
- Programa de Pós-Graduação Em Engenharia Química (PPG-EQ), Departamento de Engenharia Química, Universidade Federal de São Carlos (DEQ/UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Paulo W Tardioli
- Programa de Pós-Graduação Em Engenharia Química (PPG-EQ), Departamento de Engenharia Química, Universidade Federal de São Carlos (DEQ/UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Álvaro S Lima
- UNIT, Universidade Tiradentes, Av. Murilo Dantas, 300, Farolândia, Aracaju, SE, Brazil.,ITP, Instituto de Tecnologia E Pesquisa, Av. Murilo Dantas, 300, ITP, Farolândia, Aracaju, SE, Brazil
| | - Cleide M F Soares
- UNIT, Universidade Tiradentes, Av. Murilo Dantas, 300, Farolândia, Aracaju, SE, Brazil.,ITP, Instituto de Tecnologia E Pesquisa, Av. Murilo Dantas, 300, ITP, Farolândia, Aracaju, SE, Brazil
| | - Ranyere L Souza
- UNIT, Universidade Tiradentes, Av. Murilo Dantas, 300, Farolândia, Aracaju, SE, Brazil. .,ITP, Instituto de Tecnologia E Pesquisa, Av. Murilo Dantas, 300, ITP, Farolândia, Aracaju, SE, Brazil.
| |
Collapse
|
7
|
Composites of Crosslinked Aggregates of Eversa® Transform and Magnetic Nanoparticles. Performance in the Ethanolysis of Soybean Oil. Catalysts 2020. [DOI: 10.3390/catal10080817] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eversa® Transform 2.0 has been launched to be used in free form, but its immobilization may improve its performance. This work aimed to optimize the immobilization of Eversa® Transform 2.0 by the crosslinked enzyme aggregates (CLEAs) technique, using almost all the available tools to improve its performance. Several variables in the CLEA preparation were optimized to improve the recovered activity, such as precipitant nature and crosslinker concentration. Moreover, some feeders were co-precipitated to improve the crosslinking step, such as bovine serum albumin, soy protein, or polyethyleneimine. Starch (later enzymatically degraded) was utilized as a porogenic agent to decrease the substrate diffusion limitations. Silica magnetic nanoparticles were also utilized to simplify the CLEA handling, but it was found that a large percentage of the Eversa activity could be immobilized on these nanoparticles before aggregation. The best CLEA protocol gave a 98.9% immobilization yield and 30.1% recovered activity, exhibited a porous structure, and an excellent performance in the transesterification of soybean oil with ethanol: 89.8 wt% of fatty acid ethyl esters (FAEEs) yield after 12 h of reaction, while the free enzyme required a 48 h reaction to give the same yield. A caustic polishing step of the product yielded a biodiesel containing 98.9 wt% of FAEEs and a free fatty acids content lower than 0.25%, thus the final product met the international standards for biodiesel. The immobilized biocatalyst could be reused for at least five 12 h-batches maintaining 89.6% of the first-batch yield, showing the efficient catalyst recovery by applying an external magnetic field.
Collapse
|
8
|
Gupta MN, Perwez M, Sardar M. Protein crosslinking: Uses in chemistry, biology and biotechnology. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1733990] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Mohammad Perwez
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
9
|
Hojnik Podrepšek G, Knez Ž, Leitgeb M. Activation of cellulase cross-linked enzyme aggregates (CLEAs) in scCO2. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.104629] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Kulkarni NH, Muley AB, Bedade DK, Singhal RS. Cross-linked enzyme aggregates of arylamidase from Cupriavidus oxalaticus ICTDB921: process optimization, characterization, and application for mitigation of acrylamide in industrial wastewater. Bioprocess Biosyst Eng 2019; 43:457-471. [PMID: 31705314 DOI: 10.1007/s00449-019-02240-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022]
Abstract
Acrylamidase produced by Cupriavidus oxalaticus ICTDB921 was recovered directly from the fermentation broth by ammonium sulfate (40-50%) precipitation and then stabilized by cross-linking with glutaraldehyde. The optimum conditions for the preparation of cross-linked enzyme aggregates of acrylamidase (acrylamidase-CLEAs) were using 60 mM glutaraldehyde for 10 min at 35 °C and initial broth pH of 7.0. Acrylamidase-CLEAs were characterized by SDS-PAGE, FTIR, particle size analyzer and SEM. Cross-linking shifted the optimal temperature and pH from 70 to 50 °C and 5-7 to 6-8, respectively. It also altered the secondary structure fractions, pH and thermal stability along with the kinetic constants, Km and Vmax, respectively. A complete degradation of acrylamide ~ 1.75 g/L in industrial wastewater was achieved after 60 min in a batch process under optimum operating conditions, and the kinetics was best represented by Edward model (R2 = 0.70). Acrylamidase-CLEAs retained ~ 40% of its initial activity after three cycles for both pure acrylamide and industrial wastewater, and were stable for 15 days at 4 °C, retaining ~ 25% of its original activity.
Collapse
Affiliation(s)
- Nidhi H Kulkarni
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Abhijeet B Muley
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Dattatray K Bedade
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| |
Collapse
|
11
|
Abdul Wahab MKH, El-Enshasy HA, Bakar FDA, Murad AMA, Jahim JM, Illias RM. Improvement of cross-linking and stability on cross-linked enzyme aggregate (CLEA)-xylanase by protein surface engineering. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Zhao L, Xie S, Liu Y, Liu Q, Song X, Li X. Janus micromotors for motion-capture-lighting of bacteria. NANOSCALE 2019; 11:17831-17840. [PMID: 31552986 DOI: 10.1039/c9nr05503g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The rapid and sensitive identification of bacteria has long been a major challenge in quality control, environmental monitoring and food safety. In the current study, the "motion-capture-lighting" strategy is proposed via integration of motion-enhanced capture of bacteria and capture-induced fluorescence turn-on of micromotors. Compared with the commonly used microtubes and microparticles, micromotors of flexible fiber rods could offer multiple interactions with the bacterial surface with less steric hindrance. Janus fiber rods (JFRs) are prepared by cryocutting of aligned fibers prepared by side-by-side electrospinning. Catalase is grafted on one side of JFRs to produce oxygen bubbles for propulsion of Janus micromotors (JMs), and mannose is conjugated on the other side for specific recognition of FimH proteins from fimbriae on the bacterial surface. The biphasic Janus structure of JFRs and the separate grafting of catalase and mannose on the opposite sides of JMs are confirmed after fluorescent labelling. JMs with aspect ratios of 0.5, 1, 2 and 4 are fabricated, and the aspect ratios of JMs show significant effects on the tracking trajectories and motion speed. JMs with the aspect ratio of 2 exhibit significantly higher magnitudes of mean square displacement (MSD) with a directional motion trajectory, leading to higher bacterial capture and larger fluorescence intensity changes. The bacteria capture leads to lighting up of JMs due to the aggregation-induced emission (AIE) effect of tetraphenylethene (TPE) derivatives. Under an ultraviolet lamp, the fluorescence color of JM suspensions turns from blue to bluish-green and to green after incubation with E. coli of 102 and 105 CFU mL-1, respectively. The fluorescence intensities of JM suspensions could be fitted to an equation versus bacterial concentrations, and the limit of detection (LOD) was around 45 CFU mL-1 within 1 min. Thus, this study demonstrates a motion-capture-lighting strategy for visual, rapid and real-time detection of bacteria without complicated sample pretreatment, expensive apparatus, and trained operators.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China.
| | | | | | | | | | | |
Collapse
|
13
|
Combi-CLEAs of Glucose Oxidase and Catalase for Conversion of Glucose to Gluconic Acid Eliminating the Hydrogen Peroxide to Maintain Enzyme Activity in a Bubble Column Reactor. Catalysts 2019. [DOI: 10.3390/catal9080657] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In this study combined cross-linked aggregates of catalase from bovine liver and glucose-oxidase from Aspergillus niger were prepared, and the effects of the precipitant and crosslinking agents, as well as the use of bovine serum albumin (BSA) as a feeder protein, on enzyme immobilization yield and thermal stability of both enzymes, were evaluated. Combi- crosslinking of enzyme aggregates (CLEAs) prepared using dimethoxyethane as precipitant, 25 mM glutaraldehyde and BSA/enzymes mass ratio of 5.45 (w/w), exhibited the highest enzyme activities and stabilities at 40 °C, pH 6.0, and 250 rpm for 5 h. The stability of both immobilized enzymes was fairly similar, eliminating one of the problems of enzyme coimmobilization. Combi-CLEAs were used in gluconic acid (GA) production in a bubble column reactor operated at 40 °C, pH 6.0 and 10 vvm of aeration, using 26 g L−1 glucose as the substrate. Results showed conversion of around 96% and a reaction course very similar to the same process using free enzymes. The operational half-life was 34 h, determined from kinetic profiles and the first order inactivation model. Combi-CLEAs of glucose-oxidase and catalase were shown to be a robust biocatalyst for applications in the production of gluconic acid from glucose.
Collapse
|
14
|
Sánchez-deAlcázar D, Velasco-Lozano S, Zeballos N, López-Gallego F, Cortajarena AL. Biocatalytic Protein-Based Materials for Integration into Energy Devices. Chembiochem 2019; 20:1977-1985. [PMID: 30939214 DOI: 10.1002/cbic.201900047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/01/2019] [Indexed: 01/23/2023]
Abstract
There is a current need to fabricate new biobased functional materials. Bottom-up approaches to assemble simple molecular units have shown promise for biomaterial fabrication due to their tunability and versatility for the incorporation of functionalities. Herein, the fabrication of catalytic protein thin films by the entrapment of catalase into protein films composed of a scaffolding protein is demonstrated. Extensive structural and functional characterization of the films provide evidence of the structural integrity, order, stability, catalytic activity, and reusability of the biocatalytic materials. Finally, these functional biomaterials are coupled with piezoelectric disks to fabricate a second generation of bio-inorganic generators. These devices are capable of producing electricity from renewable fuels through catalase-driven gas production that mechanically stimulates the piezoelectric material.
Collapse
Affiliation(s)
| | - Susana Velasco-Lozano
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Nicoll Zeballos
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain.,ARAID, Aragon I+D Foundation, Av. de Ranillas 1-D, planta 2ª, oficina B, 50018, Zaragoza, Spain
| | - Aitziber L Cortajarena
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia-San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, Mª Díaz de Haro 3, 48013, Bilbao, Spain
| |
Collapse
|
15
|
Verma R, Kumar A, Kumar S. Synthesis and characterization of cross-linked enzyme aggregates (CLEAs) of thermostable xylanase from Geobacillus thermodenitrificans X1. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Diaz‐Vidal T, Armenta‐Perez VP, Rosales‐Rivera LC, Mateos‐Díaz JC, Rodríguez JA. Cross‐linked enzyme aggregates of recombinant
Candida antarctica
lipase B for the efficient synthesis of olvanil, a nonpungent capsaicin analogue. Biotechnol Prog 2019; 35:e2807. [DOI: 10.1002/btpr.2807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Tania Diaz‐Vidal
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, CIATEJ Zapopan Jalisco Mexico
| | - Vicente Paul Armenta‐Perez
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, CIATEJ Zapopan Jalisco Mexico
| | | | - Juan C. Mateos‐Díaz
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, CIATEJ Zapopan Jalisco Mexico
| | - Jorge A. Rodríguez
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, CIATEJ Zapopan Jalisco Mexico
| |
Collapse
|
17
|
Preparation of Crosslinked Enzyme Aggregates of a Thermostable Cyclodextrin Glucosyltransferase from Thermoanaerobacter sp. Critical Effect of the Crosslinking Agent. Catalysts 2019. [DOI: 10.3390/catal9020120] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Crosslinked enzyme aggregates (CLEAs) of a thermostable cyclodextrin glucosyltransferase (CGTase) from Thermoanaerobacter sp. have been prepared for the production of cyclodextrins (CDs). Different parameters in the precipitation (nature and concentration of precipitant) and crosslinking steps (time of reaction with cross-linker, nature and concentration of the crosslinker) were evaluated on the production of CLEAs of CGTase. Among the seven studied precipitants, acetone with a 75% (v/v) concentration produced the aggregates of CGTase with higher activity, which retained 97% of the initial activity. Concerning the cross-linker (glutaraldehyde, starch–aldehyde, and pectin–aldehyde), starch–aldehyde produced the most active CLEAs. The use of bovine serum albumin as co-feeder decreased the expressed activity. Addition of polyethylenimine at the end of cross-linking step prevented the leakage of the enzyme and the subsequent Schiff’s bases reduction with sodium borohydride permitted to maintain 24% of the initial activity even with the large dextrin as substrate. The optimal conditions for the immobilization process required were defined as 75% (v/v) acetone as precipitation reagent for 1 h at 20 °C, 20 mM starch–aldehyde as crosslinking reagent for 2 h at 20 °C, treatment with 1 mg/mL of polyethylenimine for 5 min, reduction with 1 mg/mL of sodium borohydride. The CLEAs of CGTase were active catalyst (similarly to the free enzyme) in the production of cyclodextrins at 50 °C and pH 6.0 for 6 h reaction, maintaining intact their structures. Besides this, after five cycles of 3 h the total cyclodextrin yield was 80% of the initial value (first batch, with around 45% CD yield).
Collapse
|
18
|
Guimarães JR, Giordano RDLC, Fernandez-Lafuente R, Tardioli PW. Evaluation of Strategies to Produce Highly Porous Cross-Linked Aggregates of Porcine Pancreas Lipase with Magnetic Properties. Molecules 2018; 23:E2993. [PMID: 30453506 PMCID: PMC6278321 DOI: 10.3390/molecules23112993] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Abstract
The preparation of highly porous magnetic crosslinked aggregates (pm-CLEA) of porcine pancreas lipase (PPL) is reported. Some strategies to improve the volumetric activity of the immobilized biocatalyst were evaluated, such as treatment of PPL with enzyme surface-modifying agents (polyethyleneimine or dodecyl aldehyde), co-aggregation with protein co-feeders (bovine serum albumin and/or soy protein), use of silica magnetic nanoparticles functionalized with amino groups (SMNPs) as separation aid, and starch as pore-making agent. The combination of enzyme surface modification with dodecyl aldehyde, co-aggregation with SMNPs and soy protein, in the presence of 0.8% starch (followed by hydrolysis of the starch with α-amylase), yielded CLEAs expressing high activity (immobilization yield around 100% and recovered activity around 80%), high effectiveness factor (approximately 65% of the equivalent free enzyme activity) and high stability at 40 °C and pH 8.0, i.e., PPL CLEAs co-aggregated with SMNPs/bovine serum albumin or SMNPs/soy protein retained 80% and 50% activity after 10 h incubation, respectively, while free PPL was fully inactivated after 2 h. Besides, highly porous magnetic CLEAs co-aggregated with soy protein and magnetic nanoparticles (pm-SP-CLEAs) showed good performance and reusability in the hydrolysis of tributyrin for five 4h-batches.
Collapse
Affiliation(s)
- José Renato Guimarães
- Graduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, SP-310, São Carlos 13565-905, Brazil.
| | - Raquel de Lima Camargo Giordano
- Graduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, SP-310, São Carlos 13565-905, Brazil.
| | | | - Paulo Waldir Tardioli
- Graduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, SP-310, São Carlos 13565-905, Brazil.
| |
Collapse
|
19
|
Preparation of Magnetic Cross-Linked Amyloglucosidase Aggregates: Solving Some Activity Problems. Catalysts 2018. [DOI: 10.3390/catal8110496] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The preparation of Cross-Linked Enzyme Aggregates (CLEAs) is a simple and cost-effective technique capable of generating insoluble biocatalysts with high volumetric activity and improved stability. The standard CLEA preparation consists of the aggregation of the enzyme and its further crosslinking, usually with glutaraldehyde. However, some enzymes have too low a content of surface lysine groups to permit effective crosslinking with glutaraldehyde, requiring co-aggregation with feeders rich in amino groups to aid the formation of CLEAs. The co-aggregation with magnetic particles makes their handling easier. In this work, CLEAs of a commercial amyloglucosidase (AMG) produced by Aspergillus niger were prepared by co-aggregation in the presence of polyethyleneimine (PEI) or starch with aminated magnetic nanoparticles (MNPs) or bovine serum albumin (BSA). First, CLEAs were prepared only with MNPs at different glutaraldehyde concentrations, yielding a recovered activity of around 20%. The addition of starch during the precipitation and crosslinking steps nearly doubled the recovered activity. Similar recovered activity (around 40%) was achieved when changing starch by PEI. Moreover, under the same conditions, AMG co-aggregated with BSA was also synthesized, yielding CLEAs with very similar recovered activity. Both CLEAs (co-aggregated with MNPs or BSA) were four times more stable than the soluble enzyme. These CLEAs were evaluated in the hydrolysis of starch at typical industrial conditions, achieving more than 95% starch-to-glucose conversion, measured as Dextrose Equivalent (DE). Moreover, both CLEAS could be reused for five cycles, maintaining a DE of around 90%. Although both CLEAs had good properties, magnetic CLEAs could be more attractive for industrial purposes because of their easy separation by an external magnetic field, avoiding the formation of clusters during the filtration or centrifugation recovery methods usually used.
Collapse
|
20
|
Abstract
Enzymes are efficient biocatalysts providing an important tool in many industrial biocatalytic processes. Currently, the immobilized enzymes prepared by the cross-linked enzyme aggregates (CLEAs) have drawn much attention due to their simple preparation and high catalytic efficiency. Combined cross-linked enzyme aggregates (combi-CLEAs) including multiple enzymes have significant advantages for practical applications. In this review, the conditions or factors for the preparation of combi-CLEAs such as the proportion of enzymes, the type of cross-linker, and coupling temperature were discussed based on the reaction mechanism. The recent applications of combi-CLEAs were also reviewed.
Collapse
|
21
|
Combined CLEAs of invertase and soy protein for economically feasible conversion of sucrose in a fed-batch reactor. FOOD AND BIOPRODUCTS PROCESSING 2018. [DOI: 10.1016/j.fbp.2018.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Ramos MD, Miranda LP, Giordano RLC, Fernandez-Lafuente R, Kopp W, Tardioli PW. 1,3-Regiospecific ethanolysis of soybean oil catalyzed by crosslinked porcine pancreas lipase aggregates. Biotechnol Prog 2018; 34:910-920. [DOI: 10.1002/btpr.2636] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/11/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Margarita D. Ramos
- Dept. de Engenharia Química, PPG-EQ; Univ. Federal de São Carlos (UFSCar); São Carlos SP 13565-905 Brazil
| | - Letícia P. Miranda
- Dept. de Engenharia Química, PPG-EQ; Univ. Federal de São Carlos (UFSCar); São Carlos SP 13565-905 Brazil
| | - Raquel L. C. Giordano
- Dept. de Engenharia Química, PPG-EQ; Univ. Federal de São Carlos (UFSCar); São Carlos SP 13565-905 Brazil
| | | | - William Kopp
- Kopp Technologies (KTech); São Carlos SP 13560-460 Brazil
| | - Paulo W. Tardioli
- Dept. de Engenharia Química, PPG-EQ; Univ. Federal de São Carlos (UFSCar); São Carlos SP 13565-905 Brazil
| |
Collapse
|
23
|
Maltose Production Using Starch from Cassava Bagasse Catalyzed by Cross-Linked β-Amylase Aggregates. Catalysts 2018. [DOI: 10.3390/catal8040170] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
24
|
Chaudhari SA, Singhal RS. A strategic approach for direct recovery and stabilization of Fusarium sp. ICT SAC1 cutinase from solid state fermented broth by carrier free cross-linked enzyme aggregates. Int J Biol Macromol 2017; 98:610-621. [PMID: 28192137 DOI: 10.1016/j.ijbiomac.2017.02.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 11/18/2022]
Abstract
The major hurdles in commercial exploitation of cutinase (having both esterolytic and lipolytic activities) with potent industrial applications are its high production cost, operational instability and reusability. Although commercially available in immobilized form, its immobilization process (synthesis of support/carrier) makes it expensive. Herein we tried to address multiple issues of production cost, stability, and reusability, associated with cutinase. Waste watermelon rinds, an agroindustrial waste was considered as a cheap support for solid state fermentation (SSF) for cutinase production by newly isolated Fusarium sp. ICT SAC1. Subsequently, carrier free cross-linked enzyme aggregates of cutinase (cut-CLEA) directly from the SSF crude broth were developed. All the process variables affecting CLEA formation along with the different additives were evaluated. It was found that 50% (w/v) of ammonium sulphate, 125μmol of glutaraldehyde, cross-linking for 1h at 30°C and broth pH of 7.0, yielded 58.12% activity recovery. All other additives (hexane, butyric acid, sodium dodecyl sulphate, Trition-X 100, Tween-20, BSA) evaluated presented negative results to our hypothesis. Kinetics and morphology studies confirmed the diffusive nature of cut-CLEA and BSA cut-CLEA. Developed CLEA showed better thermal, solvent, detergent and storage stability, making it more elegant and efficient for industrial biocatalytic process.
Collapse
Affiliation(s)
- Sandeep A Chaudhari
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai-400019, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai-400019, India.
| |
Collapse
|
25
|
Virgen-Ortíz JJ, dos Santos JCS, Berenguer-Murcia Á, Barbosa O, Rodrigues RC, Fernandez-Lafuente R. Polyethylenimine: a very useful ionic polymer in the design of immobilized enzyme biocatalysts. J Mater Chem B 2017; 5:7461-7490. [DOI: 10.1039/c7tb01639e] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review discusses the possible roles of polyethylenimine (PEI) in the design of improved immobilized biocatalysts from diverse perspectives.
Collapse
Affiliation(s)
- Jose J. Virgen-Ortíz
- CONACYT-Centro de Investigación en Alimentación y Desarrollo
- A.C. (CIAD)-Consorcio CIDAM
- 58341 Morelia
- Mexico
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Acarape
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Campus de San Vicente del Raspeig
- Ap. 99-03080 Alicante
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Av. Bento Gonçalves
- Porto Alegre
| | | |
Collapse
|