1
|
Chałupka J, Marszałł MP, Sikora A. Enzymatic Kinetic Resolution of Racemic 1-(Isopropylamine)-3-phenoxy-2-propanol: A Building Block for β-Blockers. Int J Mol Sci 2024; 25:10730. [PMID: 39409060 PMCID: PMC11476467 DOI: 10.3390/ijms251910730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
This study aimed to optimize the kinetic resolution of building blocks for the synthesis of β-blockers using Candida rugosa lipases, which could be potentially used to synthesize enantiomerically pure β-blockers further. Reaction mixtures were incubated in a thermostated shaker. Qualitative and quantitative analyses of the reaction mixtures were performed using chiral stationary phases and the UPLC-IT-TOF system. Of the 24 catalytic systems prepared, a system containing lipase from Candida rugosa MY, [EMIM][BF4] and toluene as a two-phase reaction medium and isopropenyl acetate as an acetylating agent was optimal. This resulted in a product with high enantiomeric purity produced via biotransformation, whose enantioselectivity was E = 67.5. Using lipases from Candida rugosa enables the enantioselective biotransformation of the β-blockers building block. The biocatalyst used, the reaction environment, and the acetylating agent significantly influence the efficiency of performer kinetic resolutions. The studies made it possible to select an optimum system, a prerequisite for obtaining a product of high enantiomeric purity. As a result of the performed biotransformation, the (S)-enantiomer of the β-blocker derivative was obtained, which can be used to further synthesize enantiomerically pure β-blockers.
Collapse
Affiliation(s)
- Joanna Chałupka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 71-251 Szczecin, Poland
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Michał Piotr Marszałł
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Adam Sikora
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 71-251 Szczecin, Poland
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
2
|
Bai Y, Jing Z, Ma R, Wan X, Liu J, Huang W. A critical review of enzymes immobilized on chitosan composites: characterization and applications. Bioprocess Biosyst Eng 2023; 46:1539-1567. [PMID: 37540309 DOI: 10.1007/s00449-023-02914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Enzymes with industrial significance are typically used in biological processes. However, instability, high sensitivity, and impractical recovery are the major drawbacks of enzymes in practical applications. In recent years, the immobilization technology has attracted wide attention to overcoming these restrictions and improving the efficiency of enzyme applications. Chitosan (CS) is a unique functional substance with biocompatibility, biodegradability, non-toxicity, and antibacterial properties. Chitosan composites are anticipated to be widely used in the near future for a variety of purposes, including as supports for enzyme immobilization, because of their advantages. Therefor this review explores the effects of the chitosan's structure, molecular weight, degree of deacetylation on the enzyme immobilized, effect of key factors, and the enzymes immobilized on chitosan based composites for numerous applications, including the fields of biosensor, biomedical science, food industry, environmental protection, and industrial production. Moreover, this study carefully investigates the advantages and disadvantages of using these composites as well as their potential in the future.
Collapse
Affiliation(s)
- Yuan Bai
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China.
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China.
| | - Zongxian Jing
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Rui Ma
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Xinwen Wan
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Jie Liu
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Weiting Huang
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
3
|
Wang Y, Li J, Tang M, Peng C, Wang G, Wang J, Wang X, Chang X, Guo J, Gui S. Smart stimuli-responsive hydrogels for drug delivery in periodontitis treatment. Biomed Pharmacother 2023; 162:114688. [PMID: 37068334 DOI: 10.1016/j.biopha.2023.114688] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease initiated by pathogenic biofilms and host immunity that damages tooth-supporting tissues, including the gingiva, periodontal ligament and alveolar bone. The physiological functions of the oral cavity, such as saliva secretion and chewing, greatly reduce the residence of therapeutic drugs in the area of a periodontal lesion. In addition, complex and diverse pathogenic mechanisms make effectively treating periodontitis difficult. Therefore, designing advanced local drug delivery systems and rational therapeutic strategies are the basis for successful periodontitis treatment. Hydrogels have attracted considerable interest in the field of periodontitis treatment due to their biocompatibility, biodegradability and convenient administration to the periodontal pocket. In recent years, the focus of hydrogel research has shifted to smart stimuli-responsive hydrogels, which can undergo flexible sol-gel transitions in situ and control drug release in response to stimulation by temperature, light, pH, ROS, glucose, or enzymes. In this review, we systematically introduce the development and rational design of emerging smart stimuli-responsive hydrogels for periodontitis treatment. We also discuss the state-of-the-art therapeutic strategies of smart hydrogels based on the pathogenesis of periodontitis. Additionally, the challenges and future research directions of smart hydrogels for periodontitis treatment are discussed from the perspective of developing efficient hydrogel delivery systems and potential clinical applications.
Collapse
Affiliation(s)
- Yuxiao Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Jiaxin Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Maomao Tang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Chengjun Peng
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui 230012, China
| | - Guichun Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Jingjing Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Xinrui Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Xiangwei Chang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui 230012, China
| | - Jian Guo
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui 230012, China.
| | - Shuangying Gui
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui 230012, China.
| |
Collapse
|
4
|
Polymer/Enzyme Composite Materials—Versatile Catalysts with Multiple Applications. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A significant interest was granted lately to enzymes, which are versatile catalysts characterized by natural origin, with high specificity and selectivity for particular substrates. Additionally, some enzymes are involved in the production of high-valuable products, such as antibiotics, while others are known for their ability to transform emerging contaminates, such as dyes and pesticides, to simpler molecules with a lower environmental impact. Nevertheless, the use of enzymes in industrial applications is limited by their reduced stability in extreme conditions and by their difficult recovery and reusability. Rationally, enzyme immobilization on organic or inorganic matrices proved to be one of the most successful innovative approaches to increase the stability of enzymatic catalysts. By the immobilization of enzymes on support materials, composite biocatalysts are obtained that pose an improved stability, preserving the enzymatic activity and some of the support material’s properties. Of high interest are the polymer/enzyme composites, which are obtained by the chemical or physical attachment of enzymes on polymer matrices. This review highlights some of the latest findings in the field of polymer/enzyme composites, classified according to the morphology of the resulting materials, following their most important applications.
Collapse
|
5
|
Enhanced MOF-immobilized lipase CAL-A with polyethylene glycol for efficient stereoselective hydrolysis of aromatic acid esters. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
The Utilization of Two-Phase Catalytic System in Enantioselective Biotransformation of Racemic Atenolol. Catalysts 2022. [DOI: 10.3390/catal12091068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
There are several methods that allow enantiomerically pure compounds to be obtained. In the study presented herein, the enantioselective biotransformations of (R,S)-atenolol were performed with the use of various catalytic systems containing ionic liquids and toluene as a reaction medium, vinyl acetate as an acetylating agent as well as lipases from Candida rugosa. The conducted studies profs that, the use of the two-phase reaction system enables the reuse of the biocatalyst in another cycle and allows to achieve satisfactory kinetic resolution parameters.
Collapse
|
7
|
Borowiecki P, Zdun B, Popow N, Wiklińska M, Reiter T, Kroutil W. Development of a novel chemoenzymatic route to enantiomerically enriched β-adrenolytic agents. A case study toward propranolol, alprenolol, pindolol, carazolol, moprolol, and metoprolol. RSC Adv 2022; 12:22150-22160. [PMID: 36043081 PMCID: PMC9364081 DOI: 10.1039/d2ra04302e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Efficient chemoenzymatic routes toward the synthesis of both enantiomers of adrenergic β-blockers were accomplished by identifying a central chiral building block, which was first prepared using lipase-catalyzed kinetic resolution (KR, Amano PS-IM) as the asymmetric step at a five gram-scale (209 mM conc.). The enantiopure (R)-chlorohydrin (>99% ee) subsequently obtained was used for the synthesis of a series of model (R)-(+)-β-blockers (i.e., propranolol, alprenolol, pindolol, carazolol, moprolol, and metoprolol), which were produced with enantiomeric excess in the range of 96–99.9%. The pharmaceutically relevant (S)-counterpart, taking propranolol as a model, was synthesized in excellent enantiomeric purity (99% ee) via acetolysis of the respective enantiomerically pure (R)-mesylate by using cesium acetate and a catalytic amount of 18-Crown-6, followed by acidic hydrolysis of the formed (S)-acetate. Alternatively, asymmetric reduction of a prochiral ketone, namely 2-(3-chloro-2-oxopropyl)-1H-isoindole-1,3(2H)-dione, was performed using lyophilized E. coli cells harboring overexpressed recombinant alcohol dehydrogenase from Lactobacillus kefir (E. coli/Lk-ADH-Lica) giving the corresponding chlorohydrin with >99% ee. Setting the stereocenter early in the synthesis and performing a 4-step reaction sequence in a ‘one-pot two-step’ procedure allowed the design of a ‘step-economic’ route with a potential dramatic improvement in process efficiency. The synthetic method can serve for the preparation of a broad scope of enantiomerically enriched β-blockers, the chemical structures of which rely on the common α-hydroxy-N-isopropylamine moiety, and in this sense, might be industrially attractive. Efficient chemoenzymatic routes toward both enantiomers of β-blockers were accomplished by identifying a central chiral building block prepared using either lipase-catalyzed kinetic resolution methodology or ADH-catalyzed biotranshydrogenation.![]()
Collapse
Affiliation(s)
- Paweł Borowiecki
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology Koszykowa St. 75 00-662 Warsaw Poland
| | - Beata Zdun
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology Koszykowa St. 75 00-662 Warsaw Poland
| | - Natalia Popow
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology Koszykowa St. 75 00-662 Warsaw Poland
| | - Magdalena Wiklińska
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology Koszykowa St. 75 00-662 Warsaw Poland
| | - Tamara Reiter
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth Heinrichstrasse 28 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
8
|
Liu J, Liu H, Jia Y, Tan Z, Hou R, Lu J, Luo D, Fu X, Wang L, Wang X. Glucose-sensitive delivery of tannic acid by a photo-crosslinked chitosan hydrogel film for antibacterial and anti-inflammatory therapy. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1644-1663. [PMID: 35446748 DOI: 10.1080/09205063.2022.2068948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A glucose-sensitive antibacterial and anti-inflammatory hydrogel film with controlled release of tannic acid (TA) was synthesized using chitosan (CS). Specifically, the photo-crosslinked CS hydrogel was first obtained and then immersed in TA solution to generate composite hydrogel film with enhanced mechanical properties. Subsequently, N-hydroxysuccinimide/1-ethyl-3-(3-dimethylaminopropyl) carbodiimide based coupling chemistry was used to covalently crosslink glucose oxidase (GOx) to CS to obtain glucose sensitivity. The physicochemical properties, including chemical composition, enzyme-related characteristics, glucose responsiveness, and mechanical strength, were thoroughly investigated, followed by the cytotoxicity, antibacterial and anti-inflammatory tests. The results showed that the GOx immobilized on the film surface by covalent bonding gave better stability than those that were physically adsorbed. In addition, it could quickly and correspondingly modify its inner pore structure in response to the glucose stimulus and then control the loaded TA release. Meanwhile, the TA addition could enhance the film's mechanical properties. The composite hydrogel film demonstrated adequate biocompatibility and can inhibit NO, IL-6, and TNF-α production in stimulated macrophages, as well as Porphyromonas gingivalis growth, demonstrating effective antibacterial and anti-inflammatory activity.
Collapse
Affiliation(s)
- Junyu Liu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Haifeng Liu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Yongliang Jia
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Ziwei Tan
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Ruxia Hou
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Jie Lu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Dongmei Luo
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xinyu Fu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Lu Wang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xiangyu Wang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| |
Collapse
|
9
|
Different strategies for the lipase immobilization on the chitosan based supports and their applications. Int J Biol Macromol 2021; 179:170-195. [PMID: 33667561 DOI: 10.1016/j.ijbiomac.2021.02.198] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 01/15/2023]
Abstract
Immobilized enzymes have received incredible interests in industry, pharmaceuticals, chemistry and biochemistry sectors due to their various advantages such as ease of separation, multiple reusability, non-toxicity, biocompatibility, high activity and resistant to environmental changes. This review in between various immobilized enzymes focuses on lipase as one of the most practical enzyme and chitosan as a preferred biosupport for lipase immobilization and provides a broad range of studies of recent decade. We highlight several aspects of lipase immobilization on the surface of chitosan support containing various types of lipase and immobilization techniques from physical adsorption to covalent bonding and cross-linking with their benefits and drawbacks. The recent advances and future perspectives that can improve the present problems with lipase and chitosan such as high-price of lipase and low mechanical resistance of chitosan are also discussed. According to the literature, optimization of immobilization methods, combination of these methods with other techniques, physical and chemical modifications of chitosan, co-immobilization and protein engineering can be useful as a solution to overcome the mentioned limitations.
Collapse
|
10
|
Piosik E, Ziegler-Borowska M, Chełminiak-Dudkiewicz D, Martyński T. Effect of Aminated Chitosan-Coated Fe 3O 4 Nanoparticles with Applicational Potential in Nanomedicine on DPPG, DSPC, and POPC Langmuir Monolayers as Cell Membrane Models. Int J Mol Sci 2021; 22:ijms22052467. [PMID: 33671105 PMCID: PMC7957775 DOI: 10.3390/ijms22052467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022] Open
Abstract
An adsorption process of magnetite nanoparticles functionalized with aminated chitosan (Fe3O4-AChit) showing application potential in nanomedicine into cell membrane models was studied. The cell membrane models were formed using a Langmuir technique from three selected phospholipids with different polar head-groups as well as length and carbon saturation of alkyl chains. The research presented in this work reveals the existence of membrane model composition-dependent regulation of phospholipid-nanoparticle interactions. The influence of the positively charged Fe3O4-AChit nanoparticles on a Langmuir film stability, phase state, and textures is much greater in the case of these formed by negatively charged 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DPPG) than those created by zwitterionic 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC). The adsorption kinetics recorded during penetration experiments show that this effect is caused by the strongest adsorption of the investigated nanoparticles into the DPPG monolayer driven very likely by the electrostatic attraction. The differences in the adsorption strength of the Fe3O4-AChit nanoparticles into the Langmuir films formed by the phosphatidylcholines were also observed. The nanoparticles adsorbed more easily into more loosely packed POPC monolayer.
Collapse
Affiliation(s)
- Emilia Piosik
- Faculty of Material Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland;
- Correspondence: (E.P.); (M.Z.-B.)
| | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
- Correspondence: (E.P.); (M.Z.-B.)
| | | | - Tomasz Martyński
- Faculty of Material Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland;
| |
Collapse
|
11
|
Mylkie K, Nowak P, Rybczynski P, Ziegler-Borowska M. Polymer-Coated Magnetite Nanoparticles for Protein Immobilization. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E248. [PMID: 33419055 PMCID: PMC7825442 DOI: 10.3390/ma14020248] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022]
Abstract
Since their discovery, magnetic nanoparticles (MNPs) have become materials with great potential, especially considering the applications of biomedical sciences. A series of works on the preparation, characterization, and application of MNPs has shown that the biological activity of such materials depends on their size, shape, core, and shell nature. Some of the most commonly used MNPs are those based on a magnetite core. On the other hand, synthetic biopolymers are used as a protective surface coating for these nanoparticles. This review describes the advances in the field of polymer-coated MNPs for protein immobilization over the past decade. General methods of MNP preparation and protein immobilization are presented. The most extensive section of this article discusses the latest work on the use of polymer-coated MNPs for the physical and chemical immobilization of three types of proteins: enzymes, antibodies, and serum proteins. Where possible, the effectiveness of the immobilization and the activity and use of the immobilized protein are reported. Finally, the information available in the peer-reviewed literature and the application perspectives for the MNP-immobilized protein systems are summarized as well.
Collapse
Affiliation(s)
| | | | | | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.M.); (P.N.); (P.R.)
| |
Collapse
|
12
|
Chałupka J, Sikora A, Kozicka A, Marszałł MP. Overview: Enzyme-catalyzed Enantioselective Biotransformation of Chiral Active Compounds Used in Hypertension Treatment. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201020204256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enzymatic kinetic resolution is one of the methods which allows for the synthesis
of enantiomerically pure various active pharmaceutical ingredients. In contrast to chemical
routes, enzymatic reactions have characteristics, including mild reaction conditions, a few byproducts,
and relatively high activity of the used enzymes. β-adrenolytic drugs are widely
used in the treatment of hypertension and cardiovascular disorders. Due to the fact that β-
blockers possess an asymmetric carbon atom in their structure, they are presented in two
enantiomeric forms. It was reported by many studies that only the (S)-enantiomers of these
drugs possess the desired therapeutic effect, whereas the administration of the racemate may
cause dangerous side effects, such as bronchoconstriction or diabetes. Nevertheless, β-
blockers are still commercially available drugs mainly used in medicine as racemates, whereas there are several
methods that are widely used in order to obtain enantiomerically pure compounds.
Collapse
Affiliation(s)
- Joanna Chałupka
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Adam Sikora
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Aleksandra Kozicka
- Department of Medical Genetics, University in Cambridge, Lv 6 Addenbrooke’s Treatment Centre, Cambridge, United Kingdom
| | - Michał Piotr Marszałł
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
13
|
Immobilization of Candida antarctica Lipase on Nanomaterials and Investigation of the Enzyme Activity and Enantioselectivity. Appl Biochem Biotechnol 2020; 193:430-445. [PMID: 33025565 DOI: 10.1007/s12010-020-03443-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/29/2020] [Indexed: 11/27/2022]
Abstract
This study defines the lipase immobilization protocol and enzymatic kinetic resolution of 1-phenyl ethanol with the use of immobilized lipases (LI) as a biocatalyst. Commercially available lipase Candida antarctica B (Cal-B) was immobilized onto graphene oxide (GO), iron oxide (Fe3O4) nanoparticles, and graphene oxide/iron oxide (GO/Fe3O4) nanocomposites. Characterization of pure and enzyme-loaded supports was carried out by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The influences of pH, temperature, immobilization time, crosslinker concentration, glutaraldehyde (GLA), epichlorohydrin (EPH), and surfactant concentrations (Tween 80 and Triton X-100) on the catalytic activity were evaluated for these three immobilized biocatalysts. The highest immobilized enzyme activities were 15.03 U/mg, 14.72 U/mg, and 13.56 U/mg for GO-GLA-CalB, Fe3O4-GLA-CalB, and GO/Fe3O4-GLA-CalB, respectively. Moreover, enantioselectivity and reusability of these immobilized lipases were compared for the kinetic resolution of 1-phenyl ethanol, using toluene as organic solvent and vinyl acetate as acyl donor. The highest values of enantiomeric excess (ees = 99%), enantioselectivity (E = 507.74), and conversion (c = 50.73%) were obtained by using lipase immobilized onto graphene oxide (GO-GLA-CalB). It was obtained that this enzymatic process may be repeated five times without important loss of enantioselectivity.
Collapse
|
14
|
The Use of Ion Liquids as a Trojan Horse Strategy in Enzyme-Catalyzed Biotransformation of (R,S)-Atenolol. Catalysts 2020. [DOI: 10.3390/catal10070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The enzymatic method was used for the direct biotransformation of racemic atenolol. The catalytic activities of commercially available lipases from Candida rugosa were tested for the kinetic resolution of (R,S)-atenolol by enantioselective acetylation in various two-phase reaction media containing ionic liquids. The composed catalytic system gave the possibility to easy separate substrates and products of the conducted enantioselective reaction and after specific procedure to reuse utilized enzymes in another catalytic cycle.
Collapse
|
15
|
Activation and stabilization of lipase by grafting copolymer of hydrophobic and zwitterionic monomers onto the enzyme. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Spelmezan CG, Bencze LC, Katona G, Irimie FD, Paizs C, Toșa MI. Efficient and Stable Magnetic Chitosan-Lipase B from Candida Antarctica Bioconjugates in the Enzymatic Kinetic Resolution of Racemic Heteroarylethanols. Molecules 2020; 25:molecules25020350. [PMID: 31952168 PMCID: PMC7024219 DOI: 10.3390/molecules25020350] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 01/19/2023] Open
Abstract
Lipase B from Candida antarctica immobilized by covalent binding on sebacoyl-activated chitosan-coated magnetic nanoparticles proved to be an efficient biocatalyst (49.2-50% conversion in 3-16 h and >96% enantiomeric excess) for the enzymatic kinetic resolution of some racemic heteroarylethanols through transesterification with vinyl acetate. Under optimal conditions (vinyl acetate, n-hexane, 45 °C), the biocatalyst remains active after 10 cycles.
Collapse
|
17
|
Ziegler-Borowska M. Magnetic nanoparticles coated with aminated starch for HSA immobilization- simple and fast polymer surface functionalization. Int J Biol Macromol 2019; 136:106-114. [PMID: 31185240 DOI: 10.1016/j.ijbiomac.2019.06.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
Abstract
Magnetic nanoparticles coated with polymer shell containing reactive functional groups are of great interest especially as substrates for immobilization of ligands in biomedicine and catalysis. This article describes synthesis of novel functional MNPs coated with aminated starch via simple, fast and efficient method of functionalization of the surface by one-minute pounding in mortar. The concept is based on simplifying the synthesis of the magnetic support and obtaining a material that allows for effective bioligand immobilization. Basing on our previous research in the area of MNPs synthesis and biomedical applications, the high yield (149.96 mg/g of support) and effective immobilization of HSA was demonstrated for these nanoparticles without loss of protein activity. Obtained materials were characterized with ATR-FTIR spectroscopy, scanning (SEM) and transmission (TEM) electron microscopy, dynamic light scattering (DLS), X-ray diffraction, TGA-DTA and SQUID analysis. The developed method allows for modification of polysaccharides and nanoparticles towards materials enriched with amino groups in a quick and easy way. It can be expected that this method of quick solvent-free amination will find application in the chemistry of materials and polymers. In addition, the new obtained amino-rich MNPs may find use as carriers for the immobilization of bioligands in catalysis and pharmaceutical analysis.
Collapse
Affiliation(s)
- Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland.
| |
Collapse
|
18
|
Foley AM, Maguire AR. The Impact of Recent Developments in Technologies which Enable the Increased Use of Biocatalysts. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Aoife M. Foley
- School of Chemistry; Analytical & Biological Chemistry Research Facility; Synthesis & Solid State Pharmaceutical Centre; University College Cork; Cork Ireland
| | - Anita R. Maguire
- School of Chemistry & School of Pharmacy; Analytical & Biological Chemistry Research Facility; Synthesis & Solid State Pharmaceutical Centre; University College Cork; Cork Ireland
| |
Collapse
|
19
|
Cysteine-modified poly(glycidyl methacrylate) grafted onto silica nanoparticles: New supports for significantly enhanced performance of immobilized lipase. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.02.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Facin BR, Melchiors MS, Valério A, Oliveira JV, Oliveira DD. Driving Immobilized Lipases as Biocatalysts: 10 Years State of the Art and Future Prospects. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00448] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bruno R. Facin
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Marina S. Melchiors
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Alexsandra Valério
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - J. Vladimir Oliveira
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
21
|
Catalytic potency of ionic liquid-stabilized metal nanoparticles towards greening biomass processing: Insights, limitations and prospects. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Albarrán-Velo J, González-Martínez D, Gotor-Fernández V. Stereoselective biocatalysis: A mature technology for the asymmetric synthesis of pharmaceutical building blocks. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1340457] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jesús Albarrán-Velo
- Organic and Inorganic Chemistry Department, Biotechnology Institute of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Daniel González-Martínez
- Organic and Inorganic Chemistry Department, Biotechnology Institute of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, Biotechnology Institute of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
23
|
Enantioseparation of (RS)-atenolol with the use of lipases immobilized onto new-synthesized magnetic nanoparticles. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Chitosan–Collagen Coated Magnetic Nanoparticles for Lipase Immobilization—New Type of “Enzyme Friendly” Polymer Shell Crosslinking with Squaric Acid. Catalysts 2017. [DOI: 10.3390/catal7010026] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|