1
|
Cintori L, Di Guilmi AM, Canitrot Y, Huet S, Campalans A. Spatio-temporal dynamics of the DNA glycosylase OGG1 in finding and processing 8-oxoguanine. DNA Repair (Amst) 2023; 129:103550. [PMID: 37542751 DOI: 10.1016/j.dnarep.2023.103550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
OGG1 is the DNA glycosylase responsible for the removal of the oxidative lesion 8-oxoguanine (8-oxoG) from DNA. The recognition of this lesion by OGG1 is a complex process that involves scanning the DNA for the presence of 8-oxoG, followed by recognition and lesion removal. Structural data have shown that OGG1 evolves through different stages of conformation onto the DNA, corresponding to elementary steps of the 8-oxoG recognition and extrusion from the double helix. Single-molecule studies of OGG1 on naked DNA have shown that OGG1 slides in persistent contact with the DNA, displaying different binding states probably corresponding to the different conformation stages. However, in cells, the DNA is not naked and OGG1 has to navigate into a complex and highly crowded environment within the nucleus. To ensure rapid detection of 8-oxoG, OGG1 alternates between 3D diffusion and sliding along the DNA. This process is regulated by the local chromatin state but also by protein co-factors that could facilitate the detection of oxidized lesions. We will review here the different methods that have been used over the last years to better understand how OGG1 detects and process 8-oxoG lesions.
Collapse
Affiliation(s)
- Luana Cintori
- Molecular, Cellular and Developmental Biology unit, Centre de Biologie Integrative, University of Toulouse, CNRS, F-31062 Toulouse, France
| | - Anne-Marie Di Guilmi
- Université de Paris-Cite, CEA /IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA /IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
| | - Yvan Canitrot
- Molecular, Cellular and Developmental Biology unit, Centre de Biologie Integrative, University of Toulouse, CNRS, F-31062 Toulouse, France
| | - Sebastien Huet
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, ´ Sante, Innovation Technologique de Rennes) - UMS 3480, US 018, F-35000 Rennes, France; Institut Universitaire de France, Paris, France
| | - Anna Campalans
- Université de Paris-Cite, CEA /IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA /IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France.
| |
Collapse
|
2
|
Zeitler L, Denby Wilkes C, Goldar A, Soutourina J. A quantitative modelling approach for DNA repair on a population scale. PLoS Comput Biol 2022; 18:e1010488. [PMID: 36094963 PMCID: PMC9499311 DOI: 10.1371/journal.pcbi.1010488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/22/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
The great advances of sequencing technologies allow the in vivo measurement of nuclear processes-such as DNA repair after UV exposure-over entire cell populations. However, data sets usually contain only a few samples over several hours, missing possibly important information in between time points. We developed a data-driven approach to analyse CPD repair kinetics over time in Saccharomyces cerevisiae. In contrast to other studies that consider sequencing signals as an average behaviour, we understand them as the superposition of signals from independent cells. By motivating repair as a stochastic process, we derive a minimal model for which the parameters can be conveniently estimated. We correlate repair parameters to a variety of genomic features that are assumed to influence repair, including transcription rate and nucleosome density. The clearest link was found for the transcription unit length, which has been unreported for budding yeast to our knowledge. The framework hence allows a comprehensive analysis of nuclear processes on a population scale.
Collapse
Affiliation(s)
- Leo Zeitler
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Cyril Denby Wilkes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Julie Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
3
|
Donnio LM, Cerutti E, Magnani C, Neuillet D, Mari PO, Giglia-Mari G. XAB2 dynamics during DNA damage-dependent transcription inhibition. eLife 2022; 11:77094. [PMID: 35880862 PMCID: PMC9436415 DOI: 10.7554/elife.77094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Xeroderma Pigmentosum group A-binding protein 2 (XAB2) is a multifunctional protein playing a critical role in distinct cellular processes including transcription, splicing, DNA repair, and messenger RNA export. In this study, we demonstrate that XAB2 is involved specifically and exclusively in Transcription-Coupled Nucleotide Excision Repair (TC-NER) reactions and solely for RNA polymerase 2 (RNAP2)-transcribed genes. Surprisingly, contrary to all the other NER proteins studied so far, XAB2 does not accumulate on the local UV-C damage; on the contrary, it becomes more mobile after damage induction. XAB2 mobility is restored when DNA repair reactions are completed. By scrutinizing from which cellular complex/partner/structure XAB2 is released, we have identified that XAB2 is detached after DNA damage induction from DNA:RNA hybrids, commonly known as R-loops, and from the CSA and XPG proteins. This release contributes to the DNA damage recognition step during TC-NER, as in the absence of XAB2, RNAP2 is blocked longer on UV lesions. Moreover, we also demonstrate that XAB2 has a role in retaining RNAP2 on its substrate without any DNA damage.
Collapse
Affiliation(s)
- Lise-Marie Donnio
- Institut NeuroMyogène (INMG), CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Elena Cerutti
- Institut NeuroMyogène (INMG), CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Charlene Magnani
- Institut NeuroMyogène (INMG), CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Damien Neuillet
- Institut NeuroMyogène (INMG), CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Pierre-Olivier Mari
- Institut NeuroMyogène (INMG), CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Giuseppina Giglia-Mari
- Institut NeuroMyogène (INMG), CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
4
|
Envisioning how the prototypic molecular machine TFIIH functions in transcription initiation and DNA repair. DNA Repair (Amst) 2020; 96:102972. [PMID: 33007515 DOI: 10.1016/j.dnarep.2020.102972] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
Critical for transcription initiation and bulky lesion DNA repair, TFIIH provides an exemplary system to connect molecular mechanisms to biological outcomes due to its strong genetic links to different specific human diseases. Recent advances in structural and computational biology provide a unique opportunity to re-examine biologically relevant molecular structures and develop possible mechanistic insights for the large dynamic TFIIH complex. TFIIH presents many puzzles involving how its two SF2 helicase family enzymes, XPB and XPD, function in transcription initiation and repair: how do they initiate transcription, detect and verify DNA damage, select the damaged strand for incision, coordinate repair with transcription and cell cycle through Cdk-activating-kinase (CAK) signaling, and result in very different specific human diseases associated with cancer, aging, and development from single missense mutations? By joining analyses of breakthrough cryo-electron microscopy (cryo-EM) structures and advanced computation with data from biochemistry and human genetics, we develop unified concepts and molecular level understanding for TFIIH functions with a focus on structural mechanisms. We provocatively consider that TFIIH may have first evolved from evolutionary pressure for TCR to resolve arrested transcription blocks to DNA replication and later added its key roles in transcription initiation and global DNA repair. We anticipate that this level of mechanistic information will have significant impact on thinking about TFIIH, laying a robust foundation suitable to develop new paradigms for DNA transcription initiation and repair along with insights into disease prevention, susceptibility, diagnosis and interventions.
Collapse
|
5
|
Modeling the interplay between DNA-PK, Artemis, and ATM in non-homologous end-joining repair in G1 phase of the cell cycle. J Biol Phys 2019; 45:127-146. [PMID: 30707386 DOI: 10.1007/s10867-018-9519-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/28/2018] [Indexed: 01/02/2023] Open
Abstract
Modeling a biological process equips us with more comprehensive insight into the process and a more advantageous experimental design. Non-homologous end joining (NHEJ) is a major double-strand break (DSB) repair pathway that occurs throughout the cell cycle. The objective of the current work is to model the fast and slow phases of NHEJ in G1 phase of the cell cycle following exposure to ionizing radiation (IR). The fast phase contains the major components of NHEJ; Ku70/80 complex, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and XLF/XRCC4/ligase IV complex (XXL). The slow phase in G1 phase of the cell cycle is associated with more complex lesions and involves ATM and Artemis proteins in addition to the major components. Parameters are mainly obtained from experimental data. The model is successful in predicting the kinetics of DSB foci in 13 normal, ATM-deficient, and Artemis-deficient mammalian fibroblast cell lines in G1 phase of the cell cycle after exposure to low doses of IR. The involvement of ATM provides the model with the potency to be connected to different signaling pathways. Ku70/80 concentration and DNA-binding rate as well as XXL concentration and enzymatic activity are introduced as the best targets for affecting NHEJ DSB repair process. On the basis of the current model, decreasing concentration and DNA binding rate of DNA-PKcs is more effective than inhibiting its activity towards the Artemis protein.
Collapse
|
6
|
Robustness of DNA repair through collective rate control. PLoS Comput Biol 2014; 10:e1003438. [PMID: 24499930 PMCID: PMC3907289 DOI: 10.1371/journal.pcbi.1003438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/29/2013] [Indexed: 11/19/2022] Open
Abstract
DNA repair and other chromatin-associated processes are carried out by enzymatic macromolecular complexes that assemble at specific sites on the chromatin fiber. How the rate of these molecular machineries is regulated by their constituent parts is poorly understood. Here we quantify nucleotide-excision DNA repair in mammalian cells and find that, despite the pathways' molecular complexity, repair effectively obeys slow first-order kinetics. Theoretical analysis and data-based modeling indicate that these kinetics are not due to a singular rate-limiting step. Rather, first-order kinetics emerge from the interplay of rapidly and reversibly assembling repair proteins, stochastically distributing DNA lesion repair over a broad time period. Based on this mechanism, the model predicts that the repair proteins collectively control the repair rate. Exploiting natural cell-to-cell variability, we corroborate this prediction for the lesion-recognition factor XPC and the downstream factor XPA. Our findings provide a rationale for the emergence of slow time scales in chromatin-associated processes from fast molecular steps and suggest that collective rate control might be a widespread mode of robust regulation in DNA repair and transcription. The nucleotide-excision repair pathway removes mutagen-inflicted DNA lesions from the genome. Repair proteins recognize DNA lesions and form multi-protein complexes that catalyze the excision of the lesion and the re-synthesis of the excised part. Imaging the dynamics of fluorescently labeled repair proteins in living human cells has revealed that all factors continuously and rapidly exchange at repair sites. We asked how this dynamic mode of protein-complex assembly shapes the repair process. Measuring repair DNA synthesis in intact cells, we obtained a surprisingly simple result. Over the entire process, the rate is proportional to the amount of DNA lesions, where the proportionality factor is a single ‘slow’ rate constant. Such kinetic behavior is often regarded as evidence for a rate-limiting step, but we show here that it is an emergent property of the dynamic interplay of many repair proteins. As a consequence, the rate of DNA repair is a systems property that is controlled collectively by the expression levels of all repair factors. Given that transcription in living cells has similar dynamic features – rapidly exchanging components of the transcription machinery and slow bursts of mRNA synthesis – collective rate control might be a general property of chromatin-associated molecular machines.
Collapse
|
7
|
Tycon MA, Daddysman MK, Fecko CJ. RNA polymerase II subunits exhibit a broad distribution of macromolecular assembly states in the interchromatin space of cell nuclei. J Phys Chem B 2013; 118:423-33. [PMID: 24354435 DOI: 10.1021/jp4082933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nearly all cellular processes are enacted by multi-subunit protein complexes, yet the assembly mechanism of most complexes is not well understood. The anthropomorphism "protein recruitment" that is used to describe the concerted binding of proteins to accomplish a specific function conceals significant uncertainty about the underlying physical phenomena and chemical interactions governing the formation of macromolecular complexes. We address this deficiency by investigating the diffusion dynamics of two RNA polymerase II subunits, Rpb3 and Rpb9, in regions of live Drosophila cell nuclei that are devoid of chromatin binding sites. Using FRAP microscopy, we demonstrate that both unengaged subunits are incorporated into a broad distribution of complexes, with sizes ranging from free (unincorporated) proteins to those that have been predicted for fully assembled gene transcription units. In live cells, Rpb3 exhibits regions of stability at both size extremes connected by a continuous distribution of complexes. Corresponding measurements on cellular extracts reveal a distribution that retains peaks at the extremes but not in between, suggesting that partially assembled complexes are less stable. We propose that the broad distribution of macromolecular species allows for mechanistic flexibility in the assembly of transcription complexes.
Collapse
Affiliation(s)
- Michael A Tycon
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | | | | |
Collapse
|
8
|
ELL, a novel TFIIH partner, is involved in transcription restart after DNA repair. Proc Natl Acad Sci U S A 2013; 110:17927-32. [PMID: 24127601 DOI: 10.1073/pnas.1305009110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA lesions that block transcription may cause cell death even when repaired, if transcription does not restart to reestablish cellular metabolism. However, transcription resumption after individual DNA-lesion repair remains poorly described in mechanistic terms and its players are largely unknown. The general transcription factor II H (TFIIH) is a major actor of both nucleotide excision repair subpathways of which transcription-coupled repair highlights the interplay between DNA repair and transcription. Using an unbiased proteomic approach, we have identified the protein eleven-nineteen lysine-rich leukemia (ELL) as a TFIIH partner. Here we show that ELL is recruited to UV-damaged chromatin in a Cdk7- dependent manner (a component of the cyclin-dependent activating kinase subcomplex of TFIIH). We demonstrate that depletion of ELL strongly hinders RNA polymerase II (RNA Pol II) transcription resumption after lesion removal and DNA gap filling. Lack of ELL was also observed to increase RNA Pol II retention to the chromatin during this process. Identifying ELL as an essential player for RNA Pol II restart during cellular DNA damage response opens the way to obtaining a mechanistic description of transcription resumption after DNA repair.
Collapse
|
9
|
Abstract
Cellular DNA damage is reversed by balanced repair pathways that avoid accumulation of toxic intermediates. Despite their importance, the organization of DNA repair pathways and the function of repair enzymes in vivo have remained unclear because of the inability to directly observe individual reactions in living cells. Here, we used photoactivation, localization, and tracking in live Escherichia coli to directly visualize single fluorescent labeled DNA polymerase I (Pol) and ligase (Lig) molecules searching for DNA gaps and nicks, performing transient reactions, and releasing their products. Our general approach provides enzymatic rates and copy numbers, substrate-search times, diffusion characteristics, and the spatial distribution of reaction sites, at the single-cell level, all in one measurement. Single repair events last 2.1 s (Pol) and 2.5 s (Lig), respectively. Pol and Lig activities increased fivefold over the basal level within minutes of DNA methylation damage; their rates were limited by upstream base excision repair pathway steps. Pol and Lig spent >80% of their time searching for free substrates, thereby minimizing both the number and lifetime of toxic repair intermediates. We integrated these single-molecule observations to generate a quantitative, systems-level description of a model repair pathway in vivo.
Collapse
|
10
|
Amara F, Colombo R, Cazzaniga P, Pescini D, Csikász-Nagy A, Falconi MM, Besozzi D, Plevani P. In vivo and in silico analysis of PCNA ubiquitylation in the activation of the Post Replication Repair pathway in S. cerevisiae. BMC SYSTEMS BIOLOGY 2013; 7:24. [PMID: 23514624 PMCID: PMC3668150 DOI: 10.1186/1752-0509-7-24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 02/05/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND The genome of living organisms is constantly exposed to several damaging agents that induce different types of DNA lesions, leading to cellular malfunctioning and onset of many diseases. To maintain genome stability, cells developed various repair and tolerance systems to counteract the effects of DNA damage. Here we focus on Post Replication Repair (PRR), the pathway involved in the bypass of DNA lesions induced by sunlight exposure and UV radiation. PRR acts through two different mechanisms, activated by mono- and poly-ubiquitylation of the DNA sliding clamp, called Proliferating Cell Nuclear Antigen (PCNA). RESULTS We developed a novel protocol to measure the time-course ratios between mono-, di- and tri-ubiquitylated PCNA isoforms on a single western blot, which were used as the wet readout for PRR events in wild type and mutant S. cerevisiae cells exposed to acute UV radiation doses. Stochastic simulations of PCNA ubiquitylation dynamics, performed by exploiting a novel mechanistic model of PRR, well fitted the experimental data at low UV doses, but evidenced divergent behaviors at high UV doses, thus driving the design of further experiments to verify new hypothesis on the functioning of PRR. The model predicted the existence of a UV dose threshold for the proper functioning of the PRR model, and highlighted an overlapping effect of Nucleotide Excision Repair (the pathway effectively responsible to clean the genome from UV lesions) on the dynamics of PCNA ubiquitylation in different phases of the cell cycle. In addition, we showed that ubiquitin concentration can affect the rate of PCNA ubiquitylation in PRR, offering a possible explanation to the DNA damage sensitivity of yeast strains lacking deubiquitylating enzymes. CONCLUSIONS We exploited an in vivo and in silico combinational approach to analyze for the first time in a Systems Biology context the events of PCNA ubiquitylation occurring in PRR in budding yeast cells. Our findings highlighted an intricate functional crosstalk between PRR and other events controlling genome stability, and evidenced that PRR is more complicated and still far less characterized than previously thought.
Collapse
Affiliation(s)
- Flavio Amara
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Riccardo Colombo
- Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Paolo Cazzaniga
- Dipartimento di Scienze Umane e Sociali, Università degli Studi di Bergamo, Bergamo, Italy
| | - Dario Pescini
- Dipartimento di Statistica e Metodi Quantitativi, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Attila Csikász-Nagy
- , The Microsoft Research - Università degli Studi di Trento, Centre for Computational and Systems Biology, Rovereto (Trento), Italy
| | - Marco Muzi Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Daniela Besozzi
- Dipartimento di Informatica, Università degli Studi di Milano, Milano, Italy
| | - Paolo Plevani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
11
|
Tobias F, Löb D, Lengert N, Durante M, Drossel B, Taucher-Scholz G, Jakob B. Spatiotemporal dynamics of early DNA damage response proteins on complex DNA lesions. PLoS One 2013; 8:e57953. [PMID: 23469115 PMCID: PMC3582506 DOI: 10.1371/journal.pone.0057953] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/29/2013] [Indexed: 11/18/2022] Open
Abstract
The response of cells to ionizing radiation-induced DNA double-strand breaks (DSB) is determined by the activation of multiple pathways aimed at repairing the injury and maintaining genomic integrity. Densely ionizing radiation induces complex damage consisting of different types of DNA lesions in close proximity that are difficult to repair and may promote carcinogenesis. Little is known about the dynamic behavior of repair proteins on complex lesions. In this study we use live-cell imaging for the spatio-temporal characterization of early protein interactions at damage sites of increasing complexity. Beamline microscopy was used to image living cells expressing fluorescently-tagged proteins during and immediately after charged particle irradiation to reveal protein accumulation at damaged sites in real time. Information on the mobility and binding rates of the recruited proteins was obtained from fluorescence recovery after photobleaching (FRAP). Recruitment of the DNA damage sensor protein NBS1 accelerates with increasing lesion density and saturates at very high damage levels. FRAP measurements revealed two different binding modalities of NBS1 to damage sites and a direct impact of lesion complexity on the binding. Faster recruitment with increasing lesion complexity was also observed for the mediator MDC1, but mobility was limited at very high damage densities due to nuclear-wide binding. We constructed a minimal computer model of the initial response to DSB based on known protein interactions only. By fitting all measured data using the same set of parameters, we can reproduce the experimentally characterized steps of the DNA damage response over a wide range of damage densities. The model suggests that the influence of increasing lesion density accelerating NBS1 recruitment is only dependent on the different binding modes of NBS1, directly to DSB and to the surrounding chromatin via MDC1. This elucidates an impact of damage clustering on repair without the need of invoking extra processing steps.
Collapse
Affiliation(s)
- Frank Tobias
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Daniel Löb
- TU Darmstadt, Institut für Festkörperphysik, Darmstadt, Germany
| | - Nicor Lengert
- TU Darmstadt, Institut für Festkörperphysik, Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- TU Darmstadt, Institut für Festkörperphysik, Darmstadt, Germany
| | - Barbara Drossel
- TU Darmstadt, Institut für Festkörperphysik, Darmstadt, Germany
| | | | - Burkhard Jakob
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- * E-mail:
| |
Collapse
|
12
|
Menoni H, Hoeijmakers JHJ, Vermeulen W. Nucleotide excision repair-initiating proteins bind to oxidative DNA lesions in vivo. ACTA ACUST UNITED AC 2012; 199:1037-46. [PMID: 23253478 PMCID: PMC3529521 DOI: 10.1083/jcb.201205149] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In vivo imaging reveals that CSB and XPC promote the repair of oxidative DNA lesions independent of the canonical nucleotide excision repair process. Base excision repair (BER) is the main repair pathway to eliminate abundant oxidative DNA lesions such as 8-oxo-7,8-dihydroguanine. Recent data suggest that the key transcription-coupled nucleotide excision repair factor (TC-NER) Cockayne syndrome group B (CSB) and the global genome NER-initiating factor XPC are implicated in the protection of cells against oxidative DNA damages. Our novel live-cell imaging approach revealed a strong and very rapid recruitment of XPC and CSB to sites of oxidative DNA lesions in living cells. The absence of detectable accumulation of downstream NER factors at the site of local oxidative DNA damage provide the first in vivo indication of the involvement of CSB and XPC in the repair of oxidative DNA lesions independent of the remainder of the NER reaction. Interestingly, CSB exhibited different and transcription-dependent kinetics in the two compartments studied (nucleolus and nucleoplasm), suggesting a direct transcription-dependent involvement of CSB in the repair of oxidative lesions associated with different RNA polymerases but not involving other NER proteins.
Collapse
Affiliation(s)
- Hervé Menoni
- Department of Genetics, Erasmus MC, 3015 GE Rotterdam, Netherlands.
| | | | | |
Collapse
|
13
|
Kleppa L, Mari PO, Larsen E, Lien GF, Godon C, Theil AF, Nesse GJ, Wiksen H, Vermeulen W, Giglia-Mari G, Klungland A. Kinetics of endogenous mouse FEN1 in base excision repair. Nucleic Acids Res 2012; 40:9044-59. [PMID: 22810208 PMCID: PMC3467068 DOI: 10.1093/nar/gks673] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The structure specific flap endonuclease 1 (FEN1) plays an essential role in long-patch base excision repair (BER) and in DNA replication. We have generated a fluorescently tagged FEN1 expressing mouse which allows monitoring the localization and kinetics of FEN1 in response to DNA damage in living cells and tissues. The expression of FEN1, which is tagged at its C-terminal end with enhanced yellow fluorescent protein (FEN1-YFP), is under control of the endogenous Fen1 transcriptional regulatory elements. In line with its role in processing of Okazaki fragments during DNA replication, we found that FEN1-YFP expression is mainly observed in highly proliferating tissue. Moreover, the FEN1-YFP fusion protein allowed us to investigate repair kinetics in cells challenged with local and global DNA damage. In vivo multi-photon fluorescence microscopy demonstrates rapid localization of FEN1 to local laser-induced DNA damage sites in nuclei, providing evidence of a highly mobile protein that accumulates fast at DNA lesion sites with high turnover rate. Inhibition of poly (ADP-ribose) polymerase 1 (PARP1) disrupts FEN1 accumulation at sites of DNA damage, indicating that PARP1 is required for FEN1 recruitment to DNA repair intermediates in BER.
Collapse
Affiliation(s)
- Liv Kleppa
- Centre for Molecular Biology and Neuroscience and Institute of Clinical Medicine, Oslo University Hospital, Rikshospitalet, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Richard M, Fryett M, Miller S, Booth I, Grebogi C, Moura A. Optimality in DNA repair. J Theor Biol 2011; 292:39-43. [PMID: 21945337 PMCID: PMC4071444 DOI: 10.1016/j.jtbi.2011.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 07/07/2011] [Accepted: 08/22/2011] [Indexed: 12/25/2022]
Abstract
DNA within cells is subject to damage from various sources. Organisms have evolved a number of mechanisms to repair DNA damage. The activity of repair enzymes carries its own risk, however, because the repair of two nearby lesions may lead to the breakup of DNA and result in cell death. We propose a mathematical theory of the damage and repair process in the important scenario where lesions are caused in bursts. We use this model to show that there is an optimum level of repair enzymes within cells which optimises the cell's response to damage. This optimal level is explained as the best trade-off between fast repair and a low probability of causing double-stranded breaks. We derive our results analytically and test them using stochastic simulations, and compare our predictions with current biological knowledge.
Collapse
Affiliation(s)
- Morgiane Richard
- Institute of Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Aberdeen, UK
| | | | | | | | | | | |
Collapse
|
15
|
Episkopou H, Kyrtopoulos SA, Sfikakis PP, Dimopoulos MA, Souliotis VL. The repair of melphalan-induced DNA adducts in the transcribed strand of active genes is subject to a strong polarity effect. Mutat Res 2011; 714:78-87. [PMID: 21762707 DOI: 10.1016/j.mrfmmm.2011.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/10/2011] [Accepted: 06/28/2011] [Indexed: 11/18/2022]
Abstract
To investigate the mechanisms of the therapeutic action and drug resistance to the nitrogen mustard melphalan, melphalan-induced DNA damage repair and chromatin structure were examined along the p53, N-ras and d-globin gene loci in cells carrying different repair activities. In nucleotide excision repair-deficient XP-A cells, similar levels of adducts were found in all fragments examined, indicating uniform distribution of DNA damage. In both, repair-proficient CS-B and XP-C cells, faster repair was observed in regions inside the transcribed N-ras and p53 genes, compared to regions on both sides outside of the genes, while no such difference was observed for the inactive d-globin gene. Moreover, very fast adduct repair on the transcribed strand of the active genes was seen immediately downstream of the transcription start site, together with a steeply decreasing gradient of repair efficiency along the gene towards the 3'-end. In all cells analyzed, the above variation in DNA repair efficiency was paralleled exactly by the variation in the degree of local chromatin condensation, more relaxed chromatin being associated with faster repair. Similar results were obtained using peripheral blood mononuclear cells from healthy volunteers, suggesting that the existence of a repair gradient along transcribed genes may be a universal phenomenon. In conclusion, these findings demonstrate that the repair of melphalan adducts in the transcribed strand of active genes is subject to a strong polarity effect arising from variations in the chromatin structure.
Collapse
Affiliation(s)
- Hara Episkopou
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Abstract
The cell nucleus is responsible for the storage, expression, propagation, and maintenance of the genetic material it contains. Highly organized macromolecular complexes are required for these processes to occur faithfully in an extremely crowded nuclear environment. In addition to chromosome territories, the nucleus is characterized by the presence of nuclear substructures, such as the nuclear envelope, the nucleolus, and other nuclear bodies. Other smaller structural entities assemble on chromatin in response to required functions including RNA transcription, DNA replication, and DNA repair. Experiments in living cells over the last decade have revealed that many DNA binding proteins have very short residence times on chromatin. These observations have led to a model in which the assembly of nuclear macromolecular complexes is based on the transient binding of their components. While indeed most nuclear proteins are highly dynamic, we found after an extensive survey of the FRAP literature that an important subset of nuclear proteins shows either very slow turnover or complete immobility. These examples provide compelling evidence for the establishment of stable protein complexes in the nucleus over significant fractions of the cell cycle. Stable interactions in the nucleus may, therefore, contribute to the maintenance of genome integrity. Based on our compilation of FRAP data, we propose an extension of the existing model for nuclear organization which now incorporates stable interactions. Our new “induced stability” model suggests that self-organization, self-assembly, and assisted assembly contribute to nuclear architecture and function.
Collapse
|
18
|
Abstract
Despite detailed knowledge on the genetic network and biochemical properties of most of the nucleotide excision repair (NER) proteins, cell biological analysis has only recently made it possible to investigate the temporal and spatial organization of NER. In contrast to several other DNA damage response mechanisms that occur in specific subnuclear structures, NER is not confined to nuclear foci, which has severely hampered the analysis of its arrangement in time and space. In this review the recently developed tools to study the dynamic molecular transactions between the NER factors and the chromatin template are summarized. First, different procedures to inflict DNA damage in a part of the cell nucleus are discussed. In addition, technologies to measure protein dynamics of NER factors tagged with the green fluorescent protein (GFP) will be reviewed. Most of the dynamic parameters of GFP-tagged NER factors are deduced from different variants of 'fluorescence recovery after photobleaching' (FRAP) experiments and FRAP analysis procedures will be briefly evaluated. The combination of local damage induction, genetic tagging of repair factors with GFP and microscopy innovations have provided the basis for the determination of NER kinetics within living mammalian cells. These new cell biological approaches have disclosed a highly dynamic arrangement of NER factors that assemble in an orderly fashion on damaged DNA. The spatio-temporal analysis tools developed for the study of NER and the kinetic model derived from these studies can serve as a paradigm for the understanding of other chromatin-associated processes.
Collapse
Affiliation(s)
- Wim Vermeulen
- Department of Genetics, Erasmus University Medical Center, GE Rotterdam, The Netherlands.
| |
Collapse
|
19
|
Overmeer RM, Moser J, Volker M, Kool H, Tomkinson AE, van Zeeland AA, Mullenders LHF, Fousteri M. Replication protein A safeguards genome integrity by controlling NER incision events. ACTA ACUST UNITED AC 2011; 192:401-15. [PMID: 21282463 PMCID: PMC3101093 DOI: 10.1083/jcb.201006011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Continued association of RPA with sites of incomplete nucleotide excision repair averts further incision events until repair is completed. Single-stranded DNA gaps that might arise by futile repair processes can lead to mutagenic events and challenge genome integrity. Nucleotide excision repair (NER) is an evolutionarily conserved repair mechanism, essential for removal of helix-distorting DNA lesions. In the currently prevailing model, NER operates through coordinated assembly of repair factors into pre- and post-incision complexes; however, its regulation in vivo is poorly understood. Notably, the transition from dual incision to repair synthesis should be rigidly synchronized as it might lead to accumulation of unprocessed repair intermediates. We monitored NER regulatory events in vivo using sequential UV irradiations. Under conditions that allow incision yet prevent completion of repair synthesis or ligation, preincision factors can reassociate with new damage sites. In contrast, replication protein A remains at the incomplete NER sites and regulates a feedback loop from completion of DNA repair synthesis to subsequent damage recognition, independently of ATR signaling. Our data reveal an important function for replication protein A in averting further generation of DNA strand breaks that could lead to mutagenic and recombinogenic events.
Collapse
Affiliation(s)
- René M Overmeer
- Department of Toxicogenetics, Leiden University Medical Center, 2333 RC Leiden, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
OBJECTIVE Human mutations in the DNA repair genes, Xeroderma pigmentosum (XP)-C and XPA result in hearing loss, which has fueled the hypothesis that there is a significant demand for these genes in protecting cochlear genetic material. Therefore, we quantified the level of XPC and XPA mRNA in the mammalian cochlea. DESIGN XPC and XPA mRNAs were purified from the cochlea of 15 Fischer344 rats and quantified using SYBR Green chemistry. Another 15 Fischer344 rats were sacrificed for immunolocalization of XPC and XPA polypeptides in the cochlea and kidney (control organ). RESULTS XP mRNA levels were up to 95% (XPA) and 69% (XPC) of the respective maximum expression capacity of each gene. In addition, these cochlear levels were up to sixfold (XPC) and threefold (XPA) greater than that of the kidney, which is known to exhibit XP-DNA repair activity that is greater than most organs of the body. Immunohistochemistry revealed that most kidney and cochlear cells were immunopositive. CONCLUSION These data suggest that under normal conditions the cochlea is experiencing persistent genomic stress that helps to explain the hypersensitivity of the cochlea to exogenous stressors (ototoxic xenobiotics and/or acoustic-overexposure) as well as provide a basis to interpret hearing loss among patients with XP.
Collapse
|
21
|
Abstract
Structural changes to DNA severely affect its functions, such as replication and transcription, and play a major role in age-related diseases and cancer. A complicated and entangled network of DNA damage response (DDR) mechanisms, including multiple DNA repair pathways, damage tolerance processes, and cell-cycle checkpoints safeguard genomic integrity. Like transcription and replication, DDR is a chromatin-associated process that is generally tightly controlled in time and space. As DNA damage can occur at any time on any genomic location, a specialized spatio-temporal orchestration of this defense apparatus is required.
Collapse
|
22
|
Luijsterburg MS, von Bornstaedt G, Gourdin AM, Politi AZ, Moné MJ, Warmerdam DO, Goedhart J, Vermeulen W, van Driel R, Höfer T. Stochastic and reversible assembly of a multiprotein DNA repair complex ensures accurate target site recognition and efficient repair. ACTA ACUST UNITED AC 2010; 189:445-63. [PMID: 20439997 PMCID: PMC2867314 DOI: 10.1083/jcb.200909175] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Computational modeling and quantitative analysis show that although accumulation of repair complexes can take hours, the individual components rapidly exchange between the nucleoplasm and DNA damage sites. To understand how multiprotein complexes assemble and function on chromatin, we combined quantitative analysis of the mammalian nucleotide excision DNA repair (NER) machinery in living cells with computational modeling. We found that individual NER components exchange within tens of seconds between the bound state in repair complexes and the diffusive state in the nucleoplasm, whereas their net accumulation at repair sites evolves over several hours. Based on these in vivo data, we developed a predictive kinetic model for the assembly and function of repair complexes. DNA repair is orchestrated by the interplay of reversible protein-binding events and progressive enzymatic modifications of the chromatin substrate. We demonstrate that faithful recognition of DNA lesions is time consuming, whereas subsequently, repair complexes form rapidly through random and reversible assembly of NER proteins. Our kinetic analysis of the NER system reveals a fundamental conflict between specificity and efficiency of chromatin-associated protein machineries and shows how a trade off is negotiated through reversibility of protein binding.
Collapse
|
23
|
Amouroux R, Campalans A, Epe B, Radicella JP. Oxidative stress triggers the preferential assembly of base excision repair complexes on open chromatin regions. Nucleic Acids Res 2010; 38:2878-90. [PMID: 20071746 PMCID: PMC2875005 DOI: 10.1093/nar/gkp1247] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
How DNA repair machineries detect and access, within the context of chromatin, lesions inducing little or no distortion of the DNA structure is a poorly understood process. Removal of oxidized bases is initiated by a DNA glycosylase that recognises and excises the damaged base, initiating the base excision repair (BER) pathway. We show that upon induction of 8-oxoguanine, a mutagenic product of guanine oxidation, the mammalian 8-oxoguanine DNA glycosylase OGG1 is recruited together with other proteins involved in BER to euchromatin regions rich in RNA and RNA polymerase II and completely excluded from heterochromatin. The underlying mechanism does not require direct interaction of the protein with the oxidized base, however, the release of the protein from the chromatin fraction requires completion of repair. Inducing chromatin compaction by sucrose results in a complete but reversible inhibition of the in vivo repair of 8-oxoguanine. We conclude that after induction of oxidative DNA damage, the DNA glycosylase is actively recruited to regions of open chromatin allowing the access of the BER machinery to the lesions, suggesting preferential repair of active chromosome regions.
Collapse
Affiliation(s)
- Rachel Amouroux
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire, 18 route du Panorama, UMR217 F-92265 Fontenay aux Roses, France
| | | | | | | |
Collapse
|
24
|
Lenser T, Weisshart K, Ulbricht T, Klement K, Hemmerich P. Fluorescence Fluctuation Microscopy to Reveal 3D Architecture and Function in the Cell Nucleus. Methods Cell Biol 2010; 98:2-33. [DOI: 10.1016/s0091-679x(10)98001-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
The spliceosome: a self-organized macromolecular machine in the nucleus? Trends Cell Biol 2009; 19:375-84. [DOI: 10.1016/j.tcb.2009.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/04/2009] [Accepted: 05/08/2009] [Indexed: 12/17/2022]
|
26
|
Two-stage dynamic DNA quality check by xeroderma pigmentosum group C protein. EMBO J 2009; 28:2387-99. [PMID: 19609301 DOI: 10.1038/emboj.2009.187] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 06/17/2009] [Indexed: 11/08/2022] Open
Abstract
Xeroderma pigmentosum group C (XPC) protein initiates the DNA excision repair of helix-distorting base lesions. To understand how this versatile subunit searches for aberrant sites within the vast background of normal genomic DNA, the real-time redistribution of fluorescent fusion constructs was monitored after high-resolution DNA damage induction. Bidirectional truncation analyses disclosed a surprisingly short recognition hotspot, comprising approximately 15% of human XPC, that includes two beta-hairpin domains with a preference for non-hydrogen-bonded bases in double-stranded DNA. However, to detect damaged sites in living cells, these DNA-attractive domains depend on the partially DNA-repulsive action of an adjacent beta-turn extension that promotes the mobility of XPC molecules searching for lesions. The key function of this dynamic interaction surface is shown by a site-directed charge inversion, which results in increased affinity for native DNA, retarded nuclear mobility and diminished repair efficiency. These studies reveal a two-stage discrimination process, whereby XPC protein first deploys a dynamic sensor interface to rapidly interrogate the double helix, thus forming a transient recognition intermediate before the final installation of a more static repair-initiating complex.
Collapse
|
27
|
Misteli T, Soutoglou E. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol 2009; 10:243-54. [PMID: 19277046 PMCID: PMC3478884 DOI: 10.1038/nrm2651] [Citation(s) in RCA: 348] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA repair and maintenance of genome stability are crucial to cellular and organismal function, and defects in these processes have been implicated in cancer and ageing. Detailed molecular, biochemical and genetic analyses have outlined the molecular framework involved in cellular DNA-repair pathways, but recent cell-biological approaches have revealed important roles for the spatial and temporal organization of the DNA-repair machinery during the recognition of DNA lesions and the assembly of repair complexes. It has also become clear that local higher-order chromatin structure, chromatin dynamics and non-random global genome organization are key factors in genome maintenance. These cell-biological features of DNA repair illustrate an emerging role for nuclear architecture in multiple aspects of genome maintenance.
Collapse
Affiliation(s)
- Tom Misteli
- National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - Evi Soutoglou
- Department of Cancer Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U 596, ILLKIRCH Cedex, CU de Strasbourg, France
| |
Collapse
|
28
|
Dinant C, Luijsterburg MS, Höfer T, von Bornstaedt G, Vermeulen W, Houtsmuller AB, van Driel R. Assembly of multiprotein complexes that control genome function. ACTA ACUST UNITED AC 2009; 185:21-6. [PMID: 19332890 PMCID: PMC2700518 DOI: 10.1083/jcb.200811080] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Live-cell imaging studies aided by mathematical modeling have provided unprecedented insight into assembly mechanisms of multiprotein complexes that control genome function. Such studies have unveiled emerging properties of chromatin-associated systems involved in DNA repair and transcription.
Collapse
Affiliation(s)
- Christoffel Dinant
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | | | | | | | | | | | | |
Collapse
|
29
|
Brown JB, Akutsu T. Identification of novel DNA repair proteins via primary sequence, secondary structure, and homology. BMC Bioinformatics 2009; 10:25. [PMID: 19154573 PMCID: PMC2660303 DOI: 10.1186/1471-2105-10-25] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 01/20/2009] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND DNA repair is the general term for the collection of critical mechanisms which repair many forms of DNA damage such as methylation or ionizing radiation. DNA repair has mainly been studied in experimental and clinical situations, and relatively few information-based approaches to new extracting DNA repair knowledge exist. As a first step, automatic detection of DNA repair proteins in genomes via informatics techniques is desirable; however, there are many forms of DNA repair and it is not a straightforward process to identify and classify repair proteins with a single optimal method. We perform a study of the ability of homology and machine learning-based methods to identify and classify DNA repair proteins, as well as scan vertebrate genomes for the presence of novel repair proteins. Combinations of primary sequence polypeptide frequency, secondary structure, and homology information are used as feature information for input to a Support Vector Machine (SVM). RESULTS We identify that SVM techniques are capable of identifying portions of DNA repair protein datasets without admitting false positives; at low levels of false positive tolerance, homology can also identify and classify proteins with good performance. Secondary structure information provides improved performance compared to using primary structure alone. Furthermore, we observe that machine learning methods incorporating homology information perform best when data is filtered by some clustering technique. Analysis by applying these methodologies to the scanning of multiple vertebrate genomes confirms a positive correlation between the size of a genome and the number of DNA repair protein transcripts it is likely to contain, and simultaneously suggests that all organisms have a non-zero minimum number of repair genes. In addition, the scan result clusters several organisms' repair abilities in an evolutionarily consistent fashion. Analysis also identifies several functionally unconfirmed proteins that are highly likely to be involved in the repair process. A new web service, INTREPED, has been made available for the immediate search and annotation of DNA repair proteins in newly sequenced genomes. CONCLUSION Despite complexity due to a multitude of repair pathways, combinations of sequence, structure, and homology with Support Vector Machines offer good methods in addition to existing homology searches for DNA repair protein identification and functional annotation. Most importantly, this study has uncovered relationships between the size of a genome and a genome's available repair repertoire, and offers a number of new predictions as well as a prediction service, both which reduce the search time and cost for novel repair genes and proteins.
Collapse
Affiliation(s)
- J B Brown
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| | | |
Collapse
|
30
|
Camenisch U, Nägeli H. XPA gene, its product and biological roles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 637:28-38. [PMID: 19181108 DOI: 10.1007/978-0-387-09599-8_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 31 kDa XPA protein is part of the core incision complex of the mammalian nucleotide excision repair (NER) system and interacts with DNA as well as with many other NER subunits. In the absence of XPA, no incision complex can form and no excision of damaged DNA damage occurs. A comparative analysis of the DNA-binding properties in the presence of different substrate conformations indicated that XPA protein interacts preferentially with kinked DNA backbones. The DNA-binding domain of XPA protein displays a positively charged deft that is involved in an indirect readout mechanism, presumably by detecting the increased negative potential encountered at sharp DNA bends. We propose that this indirect recognition function contributes to damage verification by probing the susceptibility of the DNA substrate to be kinked during the assembly of NER complexes.
Collapse
Affiliation(s)
- Ulrike Camenisch
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland.
| | | |
Collapse
|
31
|
Guthrie OW. Preincision complex-I from the excision nuclease reaction among cochlear spiral limbus and outer hair cells. J Mol Histol 2008; 39:617-25. [DOI: 10.1007/s10735-008-9202-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 10/14/2008] [Indexed: 12/01/2022]
|
32
|
Wachsmuth M, Caudron-Herger M, Rippe K. Genome organization: Balancing stability and plasticity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2061-79. [DOI: 10.1016/j.bbamcr.2008.07.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/21/2008] [Accepted: 07/24/2008] [Indexed: 12/18/2022]
|
33
|
Feuerhahn S, Egly JM. Tools to study DNA repair: what's in the box? Trends Genet 2008; 24:467-74. [DOI: 10.1016/j.tig.2008.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Revised: 07/15/2008] [Accepted: 07/15/2008] [Indexed: 01/06/2023]
|
34
|
Hoogstraten D, Bergink S, Ng JMY, Verbiest VHM, Luijsterburg MS, Geverts B, Raams A, Dinant C, Hoeijmakers JHJ, Vermeulen W, Houtsmuller AB. Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC. J Cell Sci 2008; 121:2850-9. [PMID: 18682493 DOI: 10.1242/jcs.031708] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate how the nucleotide excision repair initiator XPC locates DNA damage in mammalian cell nuclei we analyzed the dynamics of GFP-tagged XPC. Photobleaching experiments showed that XPC constantly associates with and dissociates from chromatin in the absence of DNA damage. DNA-damaging agents retard the mobility of XPC, and UV damage has the most pronounced effect on the mobility of XPC-GFP. XPC exhibited a surprising distinct dynamic behavior and subnuclear distribution compared with other NER factors. Moreover, we uncovered a novel regulatory mechanism for XPC. Under unchallenged conditions, XPC is continuously exported from and imported into the nucleus, which is impeded when NER lesions are present. XPC is omnipresent in the nucleus, allowing a quick response to genotoxic stress. To avoid excessive DNA probing by the low specificity of the protein, the steady-state level in the nucleus is controlled by nucleus-cytoplasm shuttling, allowing temporally higher concentrations of XPC in the nucleus under genotoxic stress conditions.
Collapse
Affiliation(s)
- Deborah Hoogstraten
- Department of Cell Biology and Genetics, Erasmus MC Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mortusewicz O, Leonhardt H, Cardoso MC. Spatiotemporal dynamics of regulatory protein recruitment at DNA damage sites. J Cell Biochem 2008; 104:1562-9. [DOI: 10.1002/jcb.21751] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Guthrie OW, Li-Korotky HS, Durrant JD, Balaban C. Cisplatin induces cytoplasmic to nuclear translocation of nucleotide excision repair factors among spiral ganglion neurons. Hear Res 2008; 239:79-91. [PMID: 18329831 DOI: 10.1016/j.heares.2008.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 01/07/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
Abstract
Genomic DNA is a high-affinity target for the antineoplastic molecule cisplatin. Cell survival from cisplatin DNA damage is dependent on removal of cisplatin-DNA adducts by nucleotide excision repair (NER) pathways. The rate-limiting steps in the NER pathways are DNA damage identification and verification. These steps are accomplished by xeroderma pigmentosum complementation group C and A (XPC and XPA) and RNA polymerase II. Unlike RNA polymerase II, XPC and XPA have no known cellular function beyond DNA repair. Cisplatin is known to damage spiral ganglion neurons at the basal coil of the cochlea therefore it was posited that cisplatin may target their DNA and mobilize XPC and XPA. Female Fisher344 rats were given two, four day cycles of cisplatin (2mg/kg) or saline, separated by a 10day rest period. A 2 x 3 x 2 factorial design, consisting of two treatment conditions (cisplatin and saline treatment), three survival times (5, 19 and 22 days) and two analysis methods (quantitative RT-PCR and immunohistochemistry) was employed to evaluate the expression and distribution of XPC and XPA. Quantitative RT-PCR revealed statistically significant differences in cochlear XPC and XPA mRNA levels after cisplatin treatment at all times except day 22 for XPA. Immunohistochemistry revealed that a proportion ( approximately 50%) of spiral ganglion neurons in control rats showed cytoplasmic expression of XPC and XPA. After cisplatin treatment, a similar proportion ( approximately 50%) of spiral ganglion neurons showed increased nuclear expression of XPC and XPA, which appears to represent translocation from the cytoplasm. Basal coil spiral ganglion neurons translocated XPC and XPA at later treatment cycles and with less magnitude than apical coil neurons after cisplatin treatment. Therefore, it is suggested that cisplatin treatment induces nuclear translocation of NER proteins among spiral ganglion neurons and that this nuclear translocation is less efficient at the base relative to the apex.
Collapse
Affiliation(s)
- O'neil W Guthrie
- Department of Communication Science and Disorders, University of Pittsburgh, Forbes Tower 4033, Pittsburgh, PA 15260, USA.
| | | | | | | |
Collapse
|
37
|
Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res 2008; 18:64-72. [PMID: 18166981 DOI: 10.1038/cr.2008.2] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Repair of bulky DNA adducts by the nucleotide excision repair (NER) pathway is one of the more versatile DNA repair pathways for the removal of DNA lesions. There are two subsets of the NER pathway, global genomic-NER (GG-NER) and transcription-coupled NER (TC-NER), which differ only in the step involving recognition of the DNA lesion. Following recognition of the damage, the sub-pathways then converge for the incision/excision steps and subsequent gap filling and ligation steps. This review will focus on the GGR sub-pathway of NER, while the TCR sub-pathway will be covered in another article in this issue. The ability of the NER pathway to repair a wide array of adducts stems, in part, from the mechanisms involved in the initial recognition step of the damaged DNA and results in NER impacting an equally wide array of human physiological responses and events. In this review, the impact of NER on carcinogenesis, neurological function, sensitivity to environmental factors and sensitivity to cancer therapeutics will be discussed. The knowledge generated in our understanding of the NER pathway over the past 40 years has resulted from advances in the fields of animal model systems, mammalian genetics and in vitro biochemistry, as well as from reconstitution studies and structural analyses of the proteins and enzymes that participate in this pathway. Each of these avenues of research has contributed significantly to our understanding of how the NER pathway works and how alterations in NER activity, both positive and negative, influence human biology.
Collapse
|
38
|
Maillard O, Camenisch U, Blagoev KB, Naegeli H. Versatile protection from mutagenic DNA lesions conferred by bipartite recognition in nucleotide excision repair. Mutat Res 2008; 658:271-86. [PMID: 18321768 DOI: 10.1016/j.mrrev.2008.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 01/11/2008] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
Nucleotide excision repair is a cut-and-patch pathway that eliminates potentially mutagenic DNA lesions caused by ultraviolet light, electrophilic chemicals, oxygen radicals and many other genetic insults. Unlike antigen recognition by the immune system, which employs billions of immunoglobulins and T-cell receptors, the nucleotide excision repair complex relies on just a few generic factors to detect an extremely wide range of DNA adducts. This molecular versatility is achieved by a bipartite strategy initiated by the detection of abnormal strand fluctuations, followed by the localization of injured residues through an enzymatic scanning process coupled to DNA unwinding. The early recognition subunits are able to probe the thermodynamic properties of nucleic acid substrates but avoid direct contacts with chemically altered bases. Only downstream subunits of the bipartite recognition process interact more closely with damaged bases to delineate the sites of DNA incision. Thus, consecutive factors expand the spectrum of deleterious genetic lesions conveyed to DNA repair by detecting distinct molecular features of target substrates.
Collapse
Affiliation(s)
- Olivier Maillard
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
39
|
Dinant C, de Jager M, Essers J, van Cappellen WA, Kanaar R, Houtsmuller AB, Vermeulen W. Activation of multiple DNA repair pathways by sub-nuclear damage induction methods. J Cell Sci 2007; 120:2731-40. [PMID: 17646676 DOI: 10.1242/jcs.004523] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Live cell studies of DNA repair mechanisms are greatly enhanced by new developments in real-time visualization of repair factors in living cells. Combined with recent advances in local sub-nuclear DNA damage induction procedures these methods have yielded detailed information on the dynamics of damage recognition and repair. Here we analyze and discuss the various types of DNA damage induced in cells by three different local damage induction methods: pulsed 800 nm laser irradiation, Hoechst 33342 treatment combined with 405 nm laser irradiation and UV-C (266 nm) laser irradiation. A wide variety of damage was detected with the first two methods, including pyrimidine dimers and single- and double-strand breaks. However, many aspects of the cellular response to presensitization by Hoechst 33342 and subsequent 405 nm irradiation were aberrant from those to every other DNA damaging method described here or in the literature. Whereas, application of low-dose 266 nm laser irradiation induced only UV-specific DNA photo-lesions allowing the study of the UV-C-induced DNA damage response in a user-defined area in cultured cells.
Collapse
Affiliation(s)
- Christoffel Dinant
- Department of Pathology, Josephine Nefkens Institute, ErasmusMC, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
40
|
Maillard O, Camenisch U, Clement FC, Blagoev KB, Naegeli H. DNA repair triggered by sensors of helical dynamics. Trends Biochem Sci 2007; 32:494-9. [PMID: 17962020 DOI: 10.1016/j.tibs.2007.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 08/29/2007] [Accepted: 08/31/2007] [Indexed: 10/22/2022]
Abstract
Nucleotide excision repair is a constitutive stress response that eliminates DNA lesions induced by multiple genotoxic agents. Unlike the immune system, which generates billions of immunoglobulins and T cell receptors for antigen recognition, the nucleotide excision repair complex uses only a few generic factors to detect an astounding diversity of DNA modifications. New data favor an unexpected strategy whereby damage recognition is initiated by the detection of abnormal oscillations in the undamaged strand opposite to DNA lesions. Another core subunit recognizes the increased susceptibility of DNA to be kinked at injured sites. We suggest that early nucleotide excision repair factors gain substrate versatility by avoiding direct contacts with modified residues and exploiting instead the altered dynamics of damaged DNA duplexes.
Collapse
Affiliation(s)
- Olivier Maillard
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
41
|
Kesseler KJ, Kaufmann WK, Reardon JT, Elston T, Sancar A. A mathematical model for human nucleotide excision repair: damage recognition by random order assembly and kinetic proofreading. J Theor Biol 2007; 249:361-75. [PMID: 17869273 PMCID: PMC2702209 DOI: 10.1016/j.jtbi.2007.07.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 07/08/2007] [Accepted: 07/23/2007] [Indexed: 10/23/2022]
Abstract
A mathematical model of human nucleotide excision repair was constructed and validated. The model incorporates cooperative damage recognition by RPA, XPA, and XPC followed by three kinetic proofreading steps by the TFIIH transcription/repair factor. The model yields results consistent with experimental data regarding excision rates of UV photoproducts by the reconstituted human excision nuclease system as well as the excision of oligonucleotides from undamaged DNA. The model predicts the effect that changes in the initial concentrations of repair factors have on the excision rate of damaged DNA and provides a testable hypothesis on the biochemical mechanism of cooperativity in protein assembly, suggesting experiments to determine if cooperativity in protein assembly results from an increased association rate or a decreased dissociation rate. Finally, a comparison between the random order assembly with kinetic proofreading model and a sequential assembly model is made. This investigation reveals the advantages of the random order assembly/kinetic proofreading model.
Collapse
Affiliation(s)
- Kevin J. Kesseler
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7255, U.S.A.,
| | - William K. Kaufmann
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7255, U.S.A.,
| | - Joyce T. Reardon
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, U.S.A., joyce
| | - Timothy Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, U.S.A.,
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, U.S.A., aziz
| |
Collapse
|
42
|
Kuo WHW, Wang Y, Wong RPC, Campos EI, Li G. The ING1b tumor suppressor facilitates nucleotide excision repair by promoting chromatin accessibility to XPA. Exp Cell Res 2007; 313:1628-38. [PMID: 17379210 DOI: 10.1016/j.yexcr.2007.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 02/03/2007] [Accepted: 02/12/2007] [Indexed: 11/15/2022]
Abstract
ING1b is the most studied ING family protein and perhaps the most ubiquitously and abundantly expressed. This protein is involved in the regulation of various biological functions ranging from senescence, cell cycle arrest, apoptosis, to DNA repair. ING1b is upregulated by UV irradiation and enhances the removal of bulky nucleic acid photoproducts. In this study, we provide evidence that ING1b mediates nucleotide excision repair by facilitating the access to damaged nucleosomal DNA. We demonstrate that ING1b is not recruited to UV-induced DNA lesions but enhances nucleotide excision repair only in XPC-proficient cells, implying an essential role in early steps of the 'access, repair, restore' model. We also find that ING1b alters histone acetylation dynamics upon exposure to UV radiation and induces chromatin relaxation in microccocal nuclease digestion assay, revealing that ING1b may allow better access to nucleotide excision repair machinery. More importantly, ING1b associates with chromatin in a UV-inducible manner and facilitates DNA access to nucleotide excision repair factor XPA. Furthermore, depletion of the endogenous ING1b results to the sensitization of cells at S-phase to UV irradiation. Taken together, these observations establish a role of ING1b acting as a chromatin accessibility factor for DNA damage recognition proteins upon genotoxic injury.
Collapse
Affiliation(s)
- Wei-Hung W Kuo
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, Canada BC V6H 3Z6
| | | | | | | | | |
Collapse
|
43
|
Abstract
Genomes are more than linear sequences. In vivo they exist as elaborate physical structures, and their functional properties are strongly determined by their cellular organization. I discuss here the functional relevance of spatial and temporal genome organization at three hierarchical levels: the organization of nuclear processes, the higher-order organization of the chromatin fiber, and the spatial arrangement of genomes within the cell nucleus. Recent insights into the cell biology of genomes have overturned long-held dogmas and have led to new models for many essential cellular processes, including gene expression and genome stability.
Collapse
Affiliation(s)
- Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Zotter A, Luijsterburg MS, Warmerdam DO, Ibrahim S, Nigg A, van Cappellen WA, Hoeijmakers JHJ, van Driel R, Vermeulen W, Houtsmuller AB. Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced dna damage depends on functional TFIIH. Mol Cell Biol 2006; 26:8868-79. [PMID: 17000769 PMCID: PMC1636808 DOI: 10.1128/mcb.00695-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 09/01/2006] [Accepted: 09/14/2006] [Indexed: 11/20/2022] Open
Abstract
The structure-specific endonuclease XPG is an indispensable core protein of the nucleotide excision repair (NER) machinery. XPG cleaves the DNA strand at the 3' side of the DNA damage. XPG binding stabilizes the NER preincision complex and is essential for the 5' incision by the ERCC1/XPF endonuclease. We have studied the dynamic role of XPG in its different cellular functions in living cells. We have created mammalian cell lines that lack functional endogenous XPG and stably express enhanced green fluorescent protein (eGFP)-tagged XPG. Life cell imaging shows that in undamaged cells XPG-eGFP is uniformly distributed throughout the cell nucleus, diffuses freely, and is not stably associated with other nuclear proteins. XPG is recruited to UV-damaged DNA with a half-life of 200 s and is bound for 4 min in NER complexes. Recruitment requires functional TFIIH, although some TFIIH mutants allow slow XPG recruitment. Remarkably, binding of XPG to damaged DNA does not require the DDB2 protein, which is thought to enhance damage recognition by NER factor XPC. Together, our data present a comprehensive view of the in vivo behavior of a protein that is involved in a complex chromatin-associated process.
Collapse
Affiliation(s)
- Angelika Zotter
- Department of Cell Biology and Genetics, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hofmann KP, Spahn CMT, Heinrich R, Heinemann U. Building functional modules from molecular interactions. Trends Biochem Sci 2006; 31:497-508. [PMID: 16890441 DOI: 10.1016/j.tibs.2006.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/01/2006] [Accepted: 07/20/2006] [Indexed: 10/24/2022]
Abstract
The main reaction pathways in the living cell are carried out by functional modules--namely, macromolecular machines with compact structure or ensembles that change their composition and/or organization during function. Modules define themselves by spatial sequestration, chemical specificity and a characteristic time domain within which their function proceeds. On receiving a specific input, modules go through functional cycles, with phases of increasing and decreasing complexity of molecular interactions. Here, we discuss how such modules are formed and the experimental and theoretical approaches that can be used to investigate them, using examples from polynucleotide-protein interactions, vesicle transport and signal transduction to illustrate the underlying principles. Further progress in this field, where systems biology and biochemistry meet, will depend on iterative validation of the experimental and theoretical approaches.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik, Charité Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10098 Berlin, Germany.
| | | | | | | |
Collapse
|
46
|
Scott BOS, Lavesa-Curto M, Bullard DR, Butt JN, Bowater RP. Immobilized DNA hairpins for assay of sequential breaking and joining of DNA backbones. Anal Biochem 2006; 358:90-8. [PMID: 16996469 DOI: 10.1016/j.ab.2006.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 07/21/2006] [Accepted: 08/05/2006] [Indexed: 10/24/2022]
Abstract
Immobilized DNA hairpins are exploited in a novel approach to assay DNA ligases and nucleases. A fundamental characteristic of the assay is that a fluorophore at the remote terminus of the hairpin reports on the integrity of the DNA backbone. The functionality of the protocol is confirmed using ATP- and NAD+-dependent DNA ligases and the nicking enzyme N.BbvCIA. The assay format is amenable to high-throughput analysis and quantitation of enzyme activity, and it is shown to be in excellent agreement with the more laborious electrophoretic approaches that are widely used for such analyses. Significantly, the assay is used to demonstrate sequential breaking and rejoining of a specific nucleic acid. Thus, a simple platform for biochemically innovative studies of pathways in cellular nucleic acid metabolism is demonstrated.
Collapse
Affiliation(s)
- Benjamin O S Scott
- School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | | |
Collapse
|
47
|
Essers J, Vermeulen W, Houtsmuller AB. DNA damage repair: anytime, anywhere? Curr Opin Cell Biol 2006; 18:240-6. [PMID: 16631362 DOI: 10.1016/j.ceb.2006.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 03/29/2006] [Indexed: 10/24/2022]
Abstract
Regulation of the DNA damage response is tightly connected to transcription and replication. These DNA transacting processes share common factors and use similar strategies to exert their function. However, unlike replication and transcription, DNA repair systems may be required anywhere, and at any time, whenever DNA damage occurs in the cell nucleus. This raises questions concerning the spatiotemporal organization of genome caretaking. Currently, quantitative live cell imaging techniques combined with methods to induce local DNA damage in a small region of the nucleus are contributing substantially to unravelling the molecular mechanisms underlying the cellular response to DNA damage.
Collapse
Affiliation(s)
- Jeroen Essers
- Department of Cell Biology and Genetics, Erasmus MC, University Medical Centre Rotterdam, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | |
Collapse
|