1
|
Yuan J, Jin H, Tian M, Li D, Meng Y, Zhou H, Liu M, Meng D, Wei Y, Feng L, Sang S, Chen C, Ji S, Li J. RNA HELICASE 32 is essential for female gametophyte development in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112183. [PMID: 38972549 DOI: 10.1016/j.plantsci.2024.112183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The normal progression of mitotic cycles and synchronized development within female reproductive organs are pivotal for sexual reproduction in plants. Nevertheless, our understanding of the genetic regulation governing mitotic cycles during the haploid phase of higher plants remains limited. In this study, we characterized RNA HELICASE 32 (RH32), which plays an essential role in female gametogenesis in Arabidopsis. The rh32 heterozygous mutant was semi-sterile, whereas the homozygous mutant was nonviable. The rh32 mutant allele could be transmitted through the male gametophyte, but not the female gametophyte. Phenotypic analysis revealed impaired mitotic progression, synchronization, and cell specification in rh32 female gametophytes, causing the arrest of embryo sacs. In the delayed pollination test, none of the retarded embryo sacs developed into functional female gametophytes, and the vast majority of rh32 female gametophytes were defective in the formation of the large central vacuole. RH32 is strongly expressed in the embryo sac. Knock-down of RH32 resulted in the accumulation of unprocessed 18 S pre-rRNA, implying that RH32 is involved in ribosome synthesis. Based on these findings, we propose that RH32 plays a role in ribosome synthesis, which is critical for multiple processes in female gametophyte development.
Collapse
Affiliation(s)
- Jinhong Yuan
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huijie Jin
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Munan Tian
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Daiyu Li
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yao Meng
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huihui Zhou
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Meng Liu
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Deqing Meng
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yunliang Wei
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, Henan 453007, China
| | - Liuchun Feng
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shifei Sang
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Changbin Chen
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Shengdong Ji
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Junhua Li
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
2
|
Beine-Golovchuk O, Kallas M, Kunze R, Griesel S, Baßler J. The Efg1-Bud22 dimer associates with the U14 snoRNP contacting the 5' rRNA domain of an early 90S pre-ribosomal particle. Nucleic Acids Res 2024; 52:431-447. [PMID: 38000371 PMCID: PMC10783500 DOI: 10.1093/nar/gkad1109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
The DEAD-box helicase Dbp4 plays an essential role during the early assembly of the 40S ribosome, which is only poorly understood to date. By applying the yeast two-hybrid method and biochemical approaches, we discovered that Dbp4 interacts with the Efg1-Bud22 dimer. Both factors associate with early pre-90S particles and smaller complexes, each characterized by a high presence of the U14 snoRNA. A crosslink analysis of Bud22 revealed its contact to the U14 snoRNA and the 5' domain of the nascent 18S rRNA, close to its U14 snoRNA hybridization site. Moreover, depletion of Bud22 or Efg1 specifically affects U14 snoRNA association with pre-ribosomal complexes. Accordingly, we concluded that the role of the Efg1-Bud22 dimer is linked to the U14 snoRNA function on early 90S ribosome intermediates chaperoning the 5' domain of the nascent 18S rRNA. The successful rRNA folding of the 5' domain and the release of Efg1, Bud22, Dpb4, U14 snoRNA and associated snoRNP factors allows the subsequent recruitment of the Kre33-Bfr2-Enp2-Lcp5 module towards the 90S pre-ribosome.
Collapse
Affiliation(s)
- Olga Beine-Golovchuk
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Martina Kallas
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Ruth Kunze
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Sabine Griesel
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Jochen Baßler
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Khreiss A, Bohnsack KE, Bohnsack MT. Molecular functions of RNA helicases during ribosomal subunit assembly. Biol Chem 2023; 404:781-789. [PMID: 37233600 DOI: 10.1515/hsz-2023-0135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
During their biogenesis, the ribosomal subunits undergo numerous structural and compositional changes to achieve their final architecture. RNA helicases are a key driving force of such remodelling events but deciphering their particular functions has long been challenging due to lack of knowledge of their molecular functions and RNA substrates. Advances in the biochemical characterisation of RNA helicase activities together with new insights into RNA helicase binding sites on pre-ribosomes and structural snapshots of pre-ribosomal complexes containing RNA helicases now open the door to a deeper understanding of precisely how different RNA helicases contribute to ribosomal subunit maturation.
Collapse
Affiliation(s)
- Ali Khreiss
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
- Göttingen Centre for Molecular Biosciences, Georg-August University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
4
|
Zhao Y, Rai J, Xu C, He H, Li H. Artificial intelligence-assisted cryoEM structure of Bfr2-Lcp5 complex observed in the yeast small subunit processome. Commun Biol 2022; 5:523. [PMID: 35650250 PMCID: PMC9160021 DOI: 10.1038/s42003-022-03500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic ribosome is maturated through an elaborate process that includes modification, processing and folding of pre-ribosomal RNA (pre-rRNAs) by a series of ribosome assembly intermediates. More than 70 factors participate in the dynamic assembly and disassembly of the small subunit processome (90S) inside nucleolus, leading to the early maturation of small subunit. The 5' domain of the 18S rRNA is the last to be incorporated into the stable 90S prior to the cleavage of pre-rRNA at the A1 site. This step is facilitated by the Kre33-Enp2-Bfr2-Lcp5 protein module with the participation of the DEAD-box protein Dbp4. Though structures of Kre33 and Enp2 have been modeled in previously observed 90S structures, that of Bfr2-Lcp5 complex remains unavailable. Here, we report an AlphaFold-assisted structure determination of the Bfr2-Lcp5 complex captured in a 3.99 Å - 7.24 Å cryoEM structure of 90S isolated from yeast cells depleted of Pih1, a chaperone protein of the 90S core assembly. The structure model is consistent with the protein-protein interaction results and the secondary structures of recombinant Bfr2 and Bfr2-Lcp5 complex obtained by Circular Dichroism. The Bfr2-Lcp5 complex interaction mimics that of exosome factors Rrp6-Rrp47 and acts to regulate 90S transitions.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
| | - Jay Rai
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
| | - Chong Xu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Huan He
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA.
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
5
|
Mitterer V, Pertschy B. RNA folding and functions of RNA helicases in ribosome biogenesis. RNA Biol 2022; 19:781-810. [PMID: 35678541 PMCID: PMC9196750 DOI: 10.1080/15476286.2022.2079890] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic ribosome biogenesis involves the synthesis of ribosomal RNA (rRNA) and its stepwise folding into the unique structure present in mature ribosomes. rRNA folding starts already co-transcriptionally in the nucleolus and continues when pre-ribosomal particles further maturate in the nucleolus and upon their transit to the nucleoplasm and cytoplasm. While the approximate order of folding of rRNA subdomains is known, especially from cryo-EM structures of pre-ribosomal particles, the actual mechanisms of rRNA folding are less well understood. Both small nucleolar RNAs (snoRNAs) and proteins have been implicated in rRNA folding. snoRNAs hybridize to precursor rRNAs (pre-rRNAs) and thereby prevent premature folding of the respective rRNA elements. Ribosomal proteins (r-proteins) and ribosome assembly factors might have a similar function by binding to rRNA elements and preventing their premature folding. Besides that, a small group of ribosome assembly factors are thought to play a more active role in rRNA folding. In particular, multiple RNA helicases participate in individual ribosome assembly steps, where they are believed to coordinate RNA folding/unfolding events or the release of proteins from the rRNA. In this review, we summarize the current knowledge on mechanisms of RNA folding and on the specific function of the individual RNA helicases involved. As the yeast Saccharomyces cerevisiae is the organism in which ribosome biogenesis and the role of RNA helicases in this process is best studied, we focused our review on insights from this model organism, but also make comparisons to other organisms where applicable.
Collapse
Affiliation(s)
- Valentin Mitterer
- Biochemistry Center, Heidelberg University, Im Neuenheimer Feld 328, Heidelberg, Germany
- BioTechMed-Graz, Graz, Austria
| | - Brigitte Pertschy
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, Graz, Austria
| |
Collapse
|
6
|
Jaafar M, Contreras J, Dominique C, Martín-Villanueva S, Capeyrou R, Vitali P, Rodríguez-Galán O, Velasco C, Humbert O, Watkins NJ, Villalobo E, Bohnsack KE, Bohnsack MT, Henry Y, Merhi RA, de la Cruz J, Henras AK. Association of snR190 snoRNA chaperone with early pre-60S particles is regulated by the RNA helicase Dbp7 in yeast. Nat Commun 2021; 12:6153. [PMID: 34686656 PMCID: PMC8536666 DOI: 10.1038/s41467-021-26207-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Synthesis of eukaryotic ribosomes involves the assembly and maturation of precursor particles (pre-ribosomal particles) containing ribosomal RNA (rRNA) precursors, ribosomal proteins (RPs) and a plethora of assembly factors (AFs). Formation of the earliest precursors of the 60S ribosomal subunit (pre-60S r-particle) is among the least understood stages of ribosome biogenesis. It involves the Npa1 complex, a protein module suggested to play a key role in the early structuring of the pre-rRNA. Npa1 displays genetic interactions with the DExD-box protein Dbp7 and interacts physically with the snR190 box C/D snoRNA. We show here that snR190 functions as a snoRNA chaperone, which likely cooperates with the Npa1 complex to initiate compaction of the pre-rRNA in early pre-60S r-particles. We further show that Dbp7 regulates the dynamic base-pairing between snR190 and the pre-rRNA within the earliest pre-60S r-particles, thereby participating in structuring the peptidyl transferase center (PTC) of the large ribosomal subunit. The molecular events underlying the assembly and maturation of the early pre-60S particles during eukaryotic ribosome synthesis are not well understood. Here, the authors combine yeast genetics and biochemical experiments to characterise the functions of two important players of eukaryotic ribosome biogenesis, the box C/D snoRNP snR190 and the helicase Dbp7, which both interact. They show that the snR190 snoRNA acts as a RNA chaperone that assists the structuring of the 25S rRNA during the maturation of early pre-60S particles and that Dbp7 is important for facilitating remodeling events in the peptidyl transferase center region of the 25S rRNAs during the maturation of early pre-60S particles.
Collapse
Affiliation(s)
- Mariam Jaafar
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France.,Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon.,Cancer Research Center of Lyon (CRCL), 69 008, Lyon, France
| | - Julia Contreras
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Carine Dominique
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Régine Capeyrou
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Patrice Vitali
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Carmen Velasco
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Odile Humbert
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Nicholas J Watkins
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Eduardo Villalobo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, 37073, Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, 37073, Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, 37077, Göttingen, Germany
| | - Yves Henry
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Raghida Abou Merhi
- Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France.
| |
Collapse
|
7
|
Popova B, Wang D, Pätz C, Akkermann D, Lázaro DF, Galka D, Kolog Gulko M, Bohnsack MT, Möbius W, Bohnsack KE, Outeiro TF, Braus GH. DEAD-box RNA helicase Dbp4/DDX10 is an enhancer of α-synuclein toxicity and oligomerization. PLoS Genet 2021; 17:e1009407. [PMID: 33657088 PMCID: PMC7928443 DOI: 10.1371/journal.pgen.1009407] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/09/2021] [Indexed: 01/01/2023] Open
Abstract
Parkinson’s disease is a neurodegenerative disorder associated with misfolding and aggregation of α-synuclein as a hallmark protein. Two yeast strain collections comprising conditional alleles of essential genes were screened for the ability of each allele to reduce or improve yeast growth upon α-synuclein expression. The resulting 98 novel modulators of α-synuclein toxicity clustered in several major categories including transcription, rRNA processing and ribosome biogenesis, RNA metabolism and protein degradation. Furthermore, expression of α-synuclein caused alterations in pre-rRNA transcript levels in yeast and in human cells. We identified the nucleolar DEAD-box helicase Dbp4 as a prominent modulator of α-synuclein toxicity. Downregulation of DBP4 rescued cells from α-synuclein toxicity, whereas overexpression led to a synthetic lethal phenotype. We discovered that α-synuclein interacts with Dbp4 or its human ortholog DDX10, sequesters the protein outside the nucleolus in yeast and in human cells, and stabilizes a fraction of α-synuclein oligomeric species. These findings provide a novel link between nucleolar processes and α-synuclein mediated toxicity with DDX10 emerging as a promising drug target. Neurodegenerative Parkinson’s disease affects about 2% of the over 65 years old human population. It is characterized by loss of dopaminergic neurons in midbrain and the presence of Lewy inclusion bodies that are predominantly composed of the α-synuclein protein. Expression of human α-synuclein in yeast cells results in dosage-dependent toxicity monitored as growth reduction and the formation of inclusions similar to mammalian neurons. Systematic analysis of yeast genes, which are essential for growth, revealed that reduced expression of central cellular proteostasis pathways, such as protein synthesis and ubiquitin-dependent protein degradation can enhance or reduce toxic effects of α-synuclein on yeast growth. Expression of α-synuclein affects not only early steps of ribosome biogenesis in yeast but also in human cells. We discovered the nucleolar DEAD-box RNA helicase Dbp4 as a novel strong enhancer of α-synuclein toxicity. The interaction of α-synuclein in yeast with Dbp4 as well as in human cells with its ortholog DDX10 results in sub-cellular exclusion from the nucleolus and promotes the accumulation of toxic oligomeric α-synuclein species. This molecular interaction of α-synuclein with DDX10 and its consequences for human cells provide a novel view in understanding the complexity of Parkinson’s disease.
Collapse
Affiliation(s)
- Blagovesta Popova
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Dan Wang
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Christina Pätz
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Dagmar Akkermann
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Diana F. Lázaro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Göttingen, Germany
| | - Dajana Galka
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Miriam Kolog Gulko
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Markus T. Bohnsack
- Department of Molecular Biology, University Medical Center Goettingen, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Electron Microscopy Core Unit, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Katherine E. Bohnsack
- Department of Molecular Biology, University Medical Center Goettingen, Göttingen, Germany
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Göttingen, Germany
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
8
|
Cheng J, Lau B, La Venuta G, Ameismeier M, Berninghausen O, Hurt E, Beckmann R. 90 S pre-ribosome transformation into the primordial 40 S subunit. Science 2020; 369:1470-1476. [PMID: 32943521 DOI: 10.1126/science.abb4119] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022]
Abstract
Production of small ribosomal subunits initially requires the formation of a 90S precursor followed by an enigmatic process of restructuring into the primordial pre-40S subunit. We elucidate this process by biochemical and cryo-electron microscopy analysis of intermediates along this pathway in yeast. First, the remodeling RNA helicase Dhr1 engages the 90S pre-ribosome, followed by Utp24 endonuclease-driven RNA cleavage at site A1, thereby separating the 5'-external transcribed spacer (ETS) from 18S ribosomal RNA. Next, the 5'-ETS and 90S assembly factors become dislodged, but this occurs sequentially, not en bloc. Eventually, the primordial pre-40S emerges, still retaining some 90S factors including Dhr1, now ready to unwind the final small nucleolar U3-18S RNA hybrid. Our data shed light on the elusive 90S to pre-40S transition and clarify the principles of assembly and remodeling of large ribonucleoproteins.
Collapse
Affiliation(s)
- Jingdong Cheng
- Gene Center, Department of Biochemistry, University of Munich, 81377 Munich, Germany
| | - Benjamin Lau
- Biochemistry Center (BZH), University of Heidelberg, 69120 Heidelberg, Germany
| | - Giuseppe La Venuta
- Biochemistry Center (BZH), University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael Ameismeier
- Gene Center, Department of Biochemistry, University of Munich, 81377 Munich, Germany
| | - Otto Berninghausen
- Gene Center, Department of Biochemistry, University of Munich, 81377 Munich, Germany
| | - Ed Hurt
- Biochemistry Center (BZH), University of Heidelberg, 69120 Heidelberg, Germany.
| | - Roland Beckmann
- Gene Center, Department of Biochemistry, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
9
|
Davila Gallesio J, Hackert P, Bohnsack KE, Bohnsack MT. Sgd1 is an MIF4G domain-containing cofactor of the RNA helicase Fal1 and associates with the 5' domain of the 18S rRNA sequence. RNA Biol 2020; 17:539-553. [PMID: 31994962 PMCID: PMC7237134 DOI: 10.1080/15476286.2020.1716540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Assembly of eukaryotic ribosomal subunits is a complex and dynamic process involving the action of more than 200 trans-acting assembly factors. Although recent cryo-electron microscopy structures have provided information on architecture of several pre-ribosomal particles and the binding sites of many AFs, the RNA and protein interactions of many other AFs not captured in these snapshots still remain elusive. RNA helicases are key regulators of structural rearrangements within pre-ribosomal complexes and here we have analysed the eIF4A-like RNA helicase Fal1 and its putative cofactor Sgd1. Our data show that these proteins interact directly via the MIF4G domain of Sgd1 and that the MIF4G domain of Sgd1 stimulates the catalytic activity of Fal1 in vitro. The catalytic activity of Fal1, and the interaction between Fal1 and Sgd1, are required for efficient pre-rRNA processing at the A0, A1 and A2 sites. Furthermore, Sgd1 co-purifies the early small subunit biogenesis factors Lcp5 and Rok1, suggesting that the Fal1-Sgd1 complex likely functions within the SSU processome. In vivo crosslinking data reveal that Sgd1 binds to helix H12 of the 18S rRNA sequence and we further demonstrate that this interaction is formed by the C-terminal region of the protein, which is essential for its function in ribosome biogenesis.
Collapse
Affiliation(s)
- Jimena Davila Gallesio
- Department of Molecular Biology, University Medical Centre Göttingen, Göttingen, Germany
| | - Philipp Hackert
- Department of Molecular Biology, University Medical Centre Göttingen, Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University, Göttingen, Germany
| |
Collapse
|
10
|
Abstract
In the past 25 years, genetic and biochemical analyses of ribosome assembly in yeast have identified most of the factors that participate in this complex pathway and have generated models for the mechanisms driving the assembly. More recently, the publication of numerous cryo-electron microscopy structures of yeast ribosome assembly intermediates has provided near-atomic resolution snapshots of ribosome precursor particles. Satisfyingly, these structural data support the genetic and biochemical models and provide additional mechanistic insight into ribosome assembly. In this Review, we discuss the mechanisms of assembly of the yeast small ribosomal subunit and large ribosomal subunit in the nucleolus, nucleus and cytoplasm. Particular emphasis is placed on concepts such as the mechanisms of RNA compaction, the functions of molecular switches and molecular mimicry, the irreversibility of assembly checkpoints and the roles of structural and functional proofreading of pre-ribosomal particles.
Collapse
|
11
|
Iost I, Jain C. A DEAD-box protein regulates ribosome assembly through control of ribosomal protein synthesis. Nucleic Acids Res 2019; 47:8193-8206. [PMID: 31188443 PMCID: PMC6736130 DOI: 10.1093/nar/gkz502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023] Open
Abstract
DEAD-box proteins (DBPs) comprise a large family of proteins that most commonly have been identified as regulators of ribosome assembly. The Escherichia coli DBP, SrmB, represents a model bacterial DBP whose absence impairs formation of the large ribosomal subunit (LSU). To define the basis for SrmB function, suppressors of the ribosomal defect of ΔsrmB strains were isolated. The major class of suppressors was found to map to the 5′ untranslated region (UTR) of the rplM-rpsI operon, which encodes the ribosomal proteins (r-proteins) L13 and S9. An analysis of protein abundance indicated that both r-proteins are under-produced in the ΔsrmB strain, but are increased in these suppressors, implicating r-protein underproduction as the molecular basis for the observed ribosomal defects. Reduced r-protein synthesis was determined to be caused by intrinsic transcription termination within the rplM 5′ UTR that is abrogated by SrmB. These results reveal a specific mechanism for DBP regulation of ribosomal assembly, indirectly mediated through its effects on r-protein expression.
Collapse
Affiliation(s)
- Isabelle Iost
- ARNA Laboratory, INSERM U1212, CNRS UMR 5320, Université de Bordeaux, France
| | - Chaitanya Jain
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
12
|
Sleiman S, Dragon F. Recent Advances on the Structure and Function of RNA Acetyltransferase Kre33/NAT10. Cells 2019; 8:cells8091035. [PMID: 31491951 PMCID: PMC6770127 DOI: 10.3390/cells8091035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis is one of the most energy demanding processes in the cell. In eukaryotes, the main steps of this process occur in the nucleolus and include pre-ribosomal RNA (pre-rRNA) processing, post-transcriptional modifications, and assembly of many non-ribosomal factors and ribosomal proteins in order to form mature and functional ribosomes. In yeast and humans, the nucleolar RNA acetyltransferase Kre33/NAT10 participates in different maturation events, such as acetylation and processing of 18S rRNA, and assembly of the 40S ribosomal subunit. Here, we review the structural and functional features of Kre33/NAT10 RNA acetyltransferase, and we underscore the importance of this enzyme in ribosome biogenesis, as well as in acetylation of non-ribosomal targets. We also report on the role of human NAT10 in Hutchinson-Gilford progeria syndrome.
Collapse
Affiliation(s)
- Sophie Sleiman
- Département des Sciences Biologiques and Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada.
| | - Francois Dragon
- Département des Sciences Biologiques and Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada.
| |
Collapse
|
13
|
Thermophile 90S Pre-ribosome Structures Reveal the Reverse Order of Co-transcriptional 18S rRNA Subdomain Integration. Mol Cell 2019; 75:1256-1269.e7. [DOI: 10.1016/j.molcel.2019.06.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 11/23/2022]
|
14
|
Shu S, Ye K. Structural and functional analysis of ribosome assembly factor Efg1. Nucleic Acids Res 2019; 46:2096-2106. [PMID: 29361028 PMCID: PMC5829643 DOI: 10.1093/nar/gky011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/06/2018] [Indexed: 11/23/2022] Open
Abstract
Ribosome biogenesis in eukaryotes is a complicated process that involves association and dissociation of numerous assembly factors and snoRNAs. The yeast small ribosomal subunit is first assembled into 90S pre-ribosomes in an ordered and dynamic manner. Efg1 is a protein with no recognizable domain that is associated with early 90S particles. Here, we determine the crystal structure of Efg1 from Chaetomium thermophilum at 3.3 Å resolution, revealing a novel elongated all-helical structure. Efg1 is not located in recently determined cryo-EM densities of 90S likely due to its low abundance in mature 90S. Genetic analysis in Saccharomyces cerevisiae shows that the functional core of Efg1 contains two helical hairpins composed of highly conserved residues. Depletion of Efg1 blocks 18S rRNA processing at sites A1 and A2, but not at site A0, and production of small ribosomal subunits. Efg1 is initially recruited by the 5′ domain of 18S rRNA. Its absence disturbs the assembly of the 5′ domain and inhibits release of U14 snoRNA from 90S. Our study shows that Efg1 is required for early assembly and reorganization of the 5′ domain of 18S rRNA.
Collapse
Affiliation(s)
- Sheng Shu
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,National Institute of Biological Sciences, Beijing 102206, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Keqiong Ye
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
RNA helicases mediate structural transitions and compositional changes in pre-ribosomal complexes. Nat Commun 2018; 9:5383. [PMID: 30568249 PMCID: PMC6300602 DOI: 10.1038/s41467-018-07783-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 11/28/2018] [Indexed: 01/31/2023] Open
Abstract
Production of eukaryotic ribosomal subunits is a highly dynamic process; pre-ribosomes undergo numerous structural rearrangements that establish the architecture present in mature complexes and serve as key checkpoints, ensuring the fidelity of ribosome assembly. Using in vivo crosslinking, we here identify the pre-ribosomal binding sites of three RNA helicases. Our data support roles for Has1 in triggering release of the U14 snoRNP, a critical event during early 40S maturation, and in driving assembly of domain I of pre-60S complexes. Binding of Mak5 to domain II of pre-60S complexes promotes recruitment of the ribosomal protein Rpl10, which is necessary for subunit joining and ribosome function. Spb4 binds to a molecular hinge at the base of ES27 facilitating binding of the export factor Arx1, thereby promoting pre-60S export competence. Our data provide important insights into the driving forces behind key structural remodelling events during ribosomal subunit assembly.
Collapse
|
16
|
Chaker-Margot M. Assembly of the small ribosomal subunit in yeast: mechanism and regulation. RNA (NEW YORK, N.Y.) 2018; 24:881-891. [PMID: 29712726 PMCID: PMC6004059 DOI: 10.1261/rna.066985.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The eukaryotic ribosome is made of four intricately folded ribosomal RNAs and 79 proteins. During rapid growth, yeast cells produce an incredible 2000 ribosomes every minute. Ribosome assembly involves more than 200 trans-acting factors, intervening from the transcription of the preribosomal RNA in the nucleolus to late maturation events in the cytoplasm. The biogenesis of the small ribosomal subunit, or 40S, is especially intricate, requiring more than four times the mass of the small subunit in assembly factors for its full maturation. Recent studies have provided new insights into the complex assembly of the 40S subunit. These data from cryo-electron microscopy, X-ray crystallography, and other biochemical and molecular biology methods, have elucidated the role of many factors required in small subunit maturation. Mechanisms of the regulation of ribosome assembly have also emerged from this body of work. This review aims to integrate these new results into an updated view of small subunit biogenesis and its regulation, in yeast, from transcription to the formation of the mature small subunit.
Collapse
Affiliation(s)
- Malik Chaker-Margot
- The Rockefeller University, New York, New York 10065, USA
- Tri-Institutional Program in Chemical Biology, New York, New York 10065, USA
| |
Collapse
|
17
|
Memet I, Doebele C, Sloan KE, Bohnsack MT. The G-patch protein NF-κB-repressing factor mediates the recruitment of the exonuclease XRN2 and activation of the RNA helicase DHX15 in human ribosome biogenesis. Nucleic Acids Res 2017; 45:5359-5374. [PMID: 28115624 PMCID: PMC5435916 DOI: 10.1093/nar/gkx013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023] Open
Abstract
In eukaryotes, the synthesis of ribosomal subunits, which involves the maturation of the ribosomal (r)RNAs and assembly of ribosomal proteins, requires the co-ordinated action of a plethora of ribosome biogenesis factors. Many of these cofactors remain to be characterized in human cells. Here, we demonstrate that the human G-patch protein NF-κB-repressing factor (NKRF) forms a pre-ribosomal subcomplex with the DEAH-box RNA helicase DHX15 and the 5΄-3΄ exonuclease XRN2. Using UV crosslinking and analysis of cDNA (CRAC), we reveal that NKRF binds to the transcribed spacer regions of the pre-rRNA transcript. Consistent with this, we find that depletion of NKRF, XRN2 or DHX15 impairs an early pre-rRNA cleavage step (A’). The catalytic activity of DHX15, which we demonstrate is stimulated by NKRF functioning as a cofactor, is required for efficient A’ cleavage, suggesting that a structural remodelling event may facilitate processing at this site. In addition, we show that depletion of NKRF or XRN2 also leads to the accumulation of excised pre-rRNA spacer fragments and that NKRF is essential for recruitment of the exonuclease to nucleolar pre-ribosomal complexes. Our findings therefore reveal a novel pre-ribosomal subcomplex that plays distinct roles in the processing of pre-rRNAs and the turnover of excised spacer fragments.
Collapse
Affiliation(s)
- Indira Memet
- Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany
| | - Carmen Doebele
- Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany
| | - Katherine E Sloan
- Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany.,Göttingen Centre for Molecular Biosciences, Georg-August-University, 37073 Göttingen, Germany
| |
Collapse
|
18
|
Architecture of the 90S Pre-ribosome: A Structural View on the Birth of the Eukaryotic Ribosome. Cell 2017; 166:380-393. [PMID: 27419870 DOI: 10.1016/j.cell.2016.06.014] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/05/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
Abstract
The 90S pre-ribosome is an early biogenesis intermediate formed during co-transcriptional ribosome formation, composed of ∼70 assembly factors and several small nucleolar RNAs (snoRNAs) that associate with nascent pre-rRNA. We report the cryo-EM structure of the Chaetomium thermophilum 90S pre-ribosome, revealing how a network of biogenesis factors including 19 β-propellers and large α-solenoid proteins engulfs the pre-rRNA. Within the 90S pre-ribosome, we identify the UTP-A, UTP-B, Mpp10-Imp3-Imp4, Bms1-Rcl1, and U3 snoRNP modules, which are organized around 5'-ETS and partially folded 18S rRNA. The U3 snoRNP is strategically positioned at the center of the 90S particle to perform its multiple tasks during pre-rRNA folding and processing. The architecture of the elusive 90S pre-ribosome gives unprecedented structural insight into the early steps of pre-rRNA maturation. Nascent rRNA that is co-transcriptionally folded and given a particular shape by encapsulation within a dedicated mold-like structure is reminiscent of how polypeptides use chaperone chambers for their protein folding.
Collapse
|
19
|
Bammert L, Jonas S, Ungricht R, Kutay U. Human AATF/Che-1 forms a nucleolar protein complex with NGDN and NOL10 required for 40S ribosomal subunit synthesis. Nucleic Acids Res 2016; 44:9803-9820. [PMID: 27599843 PMCID: PMC5175352 DOI: 10.1093/nar/gkw790] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 01/05/2023] Open
Abstract
Mammalian AATF/Che-1 is essential for embryonic development, however, the underlying molecular mechanism is unclear. By immunoprecipitation of human AATF we discovered that AATF forms a salt-stable protein complex together with neuroguidin (NGDN) and NOL10, and demonstrate that the AATF-NGDN-NOL10 (ANN) complex functions in ribosome biogenesis. All three ANN complex members localize to nucleoli and display a mutual dependence with respect to protein stability. Mapping of protein-protein interaction domains revealed the importance of both the evolutionary conserved WD40 repeats in NOL10 and the UTP3/SAS10 domain in NGDN for complex formation. Functional analysis showed that the ANN complex supports nucleolar steps of 40S ribosomal subunit biosynthesis. All complex members were required for 18S rRNA maturation and their individual depletion affected the same nucleolar cleavage steps in the 5′ETS and ITS1 regions of the ribosomal RNA precursor. Collectively, we identified the ANN complex as a novel functional module supporting the nucleolar maturation of 40S ribosomal subunits. Our data help to explain the described role of AATF in cell proliferation during mouse development as well as its requirement for malignant tumor growth.
Collapse
Affiliation(s)
- Lukas Bammert
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, 8057 Zurich, Switzerland
| | - Stefanie Jonas
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Ulrike Kutay
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
20
|
Zhang L, Wu C, Cai G, Chen S, Ye K. Stepwise and dynamic assembly of the earliest precursors of small ribosomal subunits in yeast. Genes Dev 2016; 30:718-32. [PMID: 26980190 PMCID: PMC4803056 DOI: 10.1101/gad.274688.115] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, Zhang et al. researched how the 90S preribosomal particle is cotranscriptionally assembled in yeast using a novel approach. They determined the assembly point of 65 proteins and the U3, U14, and snR30 snoRNAs, revealing a stepwise and dynamic assembly map, thereby advancing our understanding of small subunit biogenesis. The eukaryotic ribosomal RNA (rRNA) is associated cotranscriptionally with numerous factors into an enormous 90S preribosomal particle that conducts early processing of small ribosomal subunits. The assembly pathway and structure of the 90S particle is poorly understood. Here, we affinity-purified and analyzed the constituents of yeast 90S particles that were assembled on a series of plasmid-encoded 3′-truncated pre-18S RNAs. We determined the assembly point of 65 proteins and the U3, U14, and snR30 small nucleolar RNAs (snoRNAs), revealing a stepwise and dynamic assembly map. The 5′ external transcribed spacer (ETS) alone can nucleate a large complex. When the 18S rRNA is nearly complete, the 90S structure undergoes a dramatic reorganization, releasing U14, snR30, and 14 protein factors that bind earlier. We also identified a reference state of 90S that is fully assembled yet has not undergone 5′ETS processing. The assembly map present here provides a new framework to understand small subunit biogenesis.
Collapse
Affiliation(s)
- Liman Zhang
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Chen Wu
- National Institute of Biological Sciences, Beijing, Beijing 102206, China; College of Biological Sciences, China Agricultural University, Beijing 100193, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Gaihong Cai
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
21
|
Aw J, Shen Y, Wilm A, Sun M, Lim X, Boon KL, Tapsin S, Chan YS, Tan CP, Sim A, Zhang T, Susanto T, Fu Z, Nagarajan N, Wan Y. In Vivo Mapping of Eukaryotic RNA Interactomes Reveals Principles of Higher-Order Organization and Regulation. Mol Cell 2016; 62:603-17. [DOI: 10.1016/j.molcel.2016.04.028] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/07/2016] [Accepted: 04/22/2016] [Indexed: 01/01/2023]
|
22
|
Boon KL, Pearson MD, Koš M. Self-association of Trimethylguanosine Synthase Tgs1 is required for efficient snRNA/snoRNA trimethylation and pre-rRNA processing. Sci Rep 2015; 5:11282. [PMID: 26074133 PMCID: PMC4466884 DOI: 10.1038/srep11282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/21/2015] [Indexed: 12/23/2022] Open
Abstract
Trimethylguanosine Synthase catalyses transfer of two methyl groups to the m7G cap of RNA polymerase II transcribed snRNAs, snoRNAs, and telomerase RNA TLC1 to form a 2,2,7-trimethylguanosine cap. While in vitro studies indicate that Tgs1 functions as a monomer and the dimethylation of m7G caps is not a processive reaction, partially methylated sn(o)RNAs are typically not detected in living cells. Here we show that both yeast and human Tgs1p possess a conserved self-association property located at the N-terminus. A disruption of Tgs1 self-association led to a strong reduction of sn(o)RNA trimethylation as well as reduced nucleolar enrichment of Tgs1. Self-association of Tgs1p and its catalytic activity were also prerequisite to bypass the requirement for its accessory factor Swm2p for efficient pre-rRNA processing and snRNA trimethylation. The ability to self-associate might enable Tgs1 to efficiently dimethylate the caps of the targeted RNAs in vivo.
Collapse
Affiliation(s)
- Kum-Loong Boon
- 1] Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany [2] Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Michael David Pearson
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Martin Koš
- Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| |
Collapse
|
23
|
Limited portability of G-patch domains in regulators of the Prp43 RNA helicase required for pre-mRNA splicing and ribosomal RNA maturation in Saccharomyces cerevisiae. Genetics 2015; 200:135-47. [PMID: 25808954 DOI: 10.1534/genetics.115.176461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/22/2015] [Indexed: 12/16/2022] Open
Abstract
The Prp43 DExD/H-box protein is required for progression of the biochemically distinct pre-messenger RNA and ribosomal RNA (rRNA) maturation pathways. In Saccharomyces cerevisiae, the Spp382/Ntr1, Sqs1/Pfa1, and Pxr1/Gno1 proteins are implicated as cofactors necessary for Prp43 helicase activation during spliceosome dissociation (Spp382) and rRNA processing (Sqs1 and Pxr1). While otherwise dissimilar in primary sequence, these Prp43-binding proteins each contain a short glycine-rich G-patch motif required for function and thought to act in protein or nucleic acid recognition. Here yeast two-hybrid, domain-swap, and site-directed mutagenesis approaches are used to investigate G-patch domain activity and portability. Our results reveal that the Spp382, Sqs1, and Pxr1 G-patches differ in Prp43 two-hybrid response and in the ability to reconstitute the Spp382 and Pxr1 RNA processing factors. G-patch protein reconstitution did not correlate with the apparent strength of the Prp43 two-hybrid response, suggesting that this domain has function beyond that of a Prp43 tether. Indeed, while critical for Pxr1 activity, the Pxr1 G-patch appears to contribute little to the yeast two-hybrid interaction. Conversely, deletion of the primary Prp43 binding site within Pxr1 (amino acids 102-149) does not impede rRNA processing but affects small nucleolar RNA (snoRNA) biogenesis, resulting in the accumulation of slightly extended forms of select snoRNAs, a phenotype unexpectedly shared by the prp43 loss-of-function mutant. These and related observations reveal differences in how the Spp382, Sqs1, and Pxr1 proteins interact with Prp43 and provide evidence linking G-patch identity with pathway-specific DExD/H-box helicase activity.
Collapse
|
24
|
DEAD-box RNA helicase Dbp4 is required for small-subunit processome formation and function. Mol Cell Biol 2014; 35:816-30. [PMID: 25535329 DOI: 10.1128/mcb.01348-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DEAD-box RNA helicase Dbp4 is required for 18S rRNA synthesis: cellular depletion of Dbp4 impairs the early cleavage reactions of the pre-rRNA and causes U14 small nucleolar RNA (snoRNA) to remain associated with pre-rRNA. Immunoprecipitation experiments (IPs) carried out with whole-cell extracts (WCEs) revealed that hemagglutinin (HA)-tagged Dbp4 is associated with U3 snoRNA but not with U14 snoRNA. IPs with WCEs also showed association with the U3-specific protein Mpp10, which suggests that Dbp4 interacts with the functionally active U3 RNP; this particle, called the small-subunit (SSU) processome, can be observed at the 5' end of nascent pre-rRNA. Electron microscopy analyses indicated that depletion of Dbp4 compromised SSU processome formation and cotranscriptional cleavage of the pre-rRNA. Sucrose density gradient analyses revealed that depletion of U3 snoRNA or the Mpp10 protein inhibited the release of U14 snoRNA from pre-rRNA, just as was seen with Dbp4-depleted cells, indicating that alteration of SSU processome components has significant consequences for U14 snoRNA dynamics. We also found that the C-terminal extension flanking the catalytic core of Dbp4 plays an important role in the release of U14 snoRNA from pre-rRNA.
Collapse
|
25
|
Sloan KE, Leisegang MS, Doebele C, Ramírez AS, Simm S, Safferthal C, Kretschmer J, Schorge T, Markoutsa S, Haag S, Karas M, Ebersberger I, Schleiff E, Watkins NJ, Bohnsack MT. The association of late-acting snoRNPs with human pre-ribosomal complexes requires the RNA helicase DDX21. Nucleic Acids Res 2014; 43:553-64. [PMID: 25477391 PMCID: PMC4288182 DOI: 10.1093/nar/gku1291] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Translation fidelity and efficiency require multiple ribosomal (r)RNA modifications that are mostly mediated by small nucleolar (sno)RNPs during ribosome production. Overlapping basepairing of snoRNAs with pre-rRNAs often necessitates sequential and efficient association and dissociation of the snoRNPs, however, how such hierarchy is established has remained unknown so far. Here, we identify several late-acting snoRNAs that bind pre-40S particles in human cells and show that their association and function in pre-40S complexes is regulated by the RNA helicase DDX21. We map DDX21 crosslinking sites on pre-rRNAs and show their overlap with the basepairing sites of the affected snoRNAs. While DDX21 activity is required for recruitment of the late-acting snoRNAs SNORD56 and SNORD68, earlier snoRNAs are not affected by DDX21 depletion. Together, these observations provide an understanding of the timing and ordered hierarchy of snoRNP action in pre-40S maturation and reveal a novel mode of regulation of snoRNP function by an RNA helicase in human cells.
Collapse
Affiliation(s)
- Katherine E Sloan
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany
| | - Matthias S Leisegang
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany
| | - Carmen Doebele
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany
| | - Ana S Ramírez
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany
| | - Stefan Simm
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany
| | - Charlotta Safferthal
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany
| | - Jens Kretschmer
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany
| | - Tobias Schorge
- Institute of Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Stavroula Markoutsa
- Institute of Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Sara Haag
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany
| | - Michael Karas
- Institute of Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Ingo Ebersberger
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany Cluster of Excellence Macromolecular Complexes, Goethe University, 60438 Frankfurt, Germany
| | - Nicholas J Watkins
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Markus T Bohnsack
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany Cluster of Excellence Macromolecular Complexes, Goethe University, 60438 Frankfurt, Germany Göttingen Centre for Molecular Biosciences, Georg-August-University, 37073 Göttingen, Germany
| |
Collapse
|
26
|
Xu J, Liu C, Li M, Hu J, Zhu L, Zeng D, Yang Y, Peng Y, Ruan B, Guo L, Li H. A rice DEAD-box RNA helicase protein, OsRH17, suppresses 16S ribosomal RNA maturation in Escherichia coli. Gene 2014; 555:318-28. [PMID: 25447922 DOI: 10.1016/j.gene.2014.11.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 10/31/2014] [Accepted: 11/11/2014] [Indexed: 02/05/2023]
Abstract
DEAD-box proteins comprise a large protein family. These proteins function in all types of processes in RNA metabolism and are highly conserved among eukaryotes. However, the precise functions of DEAD-box proteins in rice physiology and development remain unclear. In this study, we identified a rice DEAD-box protein, OsRH17, that contains a DEAD domain and all of the common conserved motifs of DEAD-box RNA helicases. OsRH17 was specifically expressed in pollen and differentiated callus and upregulated by application of the plant hormones naphthyl acetic acid (NAA) and abscisic acid (ABA). The OsRH17:GFP fusion protein was localized to the nucleus. Tiny amounts of OsRH17 and partial fragments (N-427 and C-167) were detected when they were expressed in Escherichia coli, a prokaryote. Growth of the host cells was suppressed in E. coli by OsRH17, N-427 or C-167, and this suppression was independent of the concentration of the NaCl in the medium. Expression analysis of rRNAs in E. coli revealed that the 16S rRNA precursor accumulated in transgenic E. coli cells, and the relative growth rate was inversely proportional to the levels of pre-16S rRNA accumulation. Results suggested that OsRH17 may play a role in ribosomal biogenesis and suppress 16S rRNA maturation in E. coli. No visible phenotype was observed in transgenic yeast and rice (overexpressing OsRH17, N-427, and C-167, as well as OsRH17 knockdown), and even in some abiotic and biotic stresses, which could be due to the redundancy in rice under normal conditions.
Collapse
Affiliation(s)
- Jie Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chaolei Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Meiru Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Yaolong Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Youlin Peng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Banpu Ruan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China.
| | - Hongqing Li
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
27
|
Henras AK, Plisson-Chastang C, O'Donohue MF, Chakraborty A, Gleizes PE. An overview of pre-ribosomal RNA processing in eukaryotes. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:225-42. [PMID: 25346433 PMCID: PMC4361047 DOI: 10.1002/wrna.1269] [Citation(s) in RCA: 401] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/04/2014] [Accepted: 08/29/2014] [Indexed: 12/23/2022]
Abstract
Ribosomal RNAs are the most abundant and universal noncoding RNAs in living organisms. In eukaryotes, three of the four ribosomal RNAs forming the 40S and 60S subunits are borne by a long polycistronic pre-ribosomal RNA. A complex sequence of processing steps is required to gradually release the mature RNAs from this precursor, concomitant with the assembly of the 79 ribosomal proteins. A large set of trans-acting factors chaperone this process, including small nucleolar ribonucleoparticles. While yeast has been the gold standard for studying the molecular basis of this process, recent technical advances have allowed to further define the mechanisms of ribosome biogenesis in animals and plants. This renewed interest for a long-lasting question has been fueled by the association of several genetic diseases with mutations in genes encoding both ribosomal proteins and ribosome biogenesis factors, and by the perspective of new anticancer treatments targeting the mechanisms of ribosome synthesis. A consensus scheme of pre-ribosomal RNA maturation is emerging from studies in various kinds of eukaryotic organisms. However, major differences between mammalian and yeast pre-ribosomal RNA processing have recently come to light. WIREs RNA 2015, 6:225–242. doi: 10.1002/wrna.1269
Collapse
Affiliation(s)
- Anthony K Henras
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse-Paul Sabatier CNRS, UMR 5099, Toulouse, France
| | | | | | | | | |
Collapse
|
28
|
Martin R, Hackert P, Ruprecht M, Simm S, Brüning L, Mirus O, Sloan KE, Kudla G, Schleiff E, Bohnsack MT. A pre-ribosomal RNA interaction network involving snoRNAs and the Rok1 helicase. RNA (NEW YORK, N.Y.) 2014; 20:1173-82. [PMID: 24947498 PMCID: PMC4105744 DOI: 10.1261/rna.044669.114] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/20/2014] [Indexed: 05/23/2023]
Abstract
Ribosome biogenesis in yeast requires 75 small nucleolar RNAs (snoRNAs) and a myriad of cofactors for processing, modification, and folding of the ribosomal RNAs (rRNAs). For the 19 RNA helicases implicated in ribosome synthesis, their sites of action and molecular functions have largely remained unknown. Here, we have used UV cross-linking and analysis of cDNA (CRAC) to reveal the pre-rRNA binding sites of the RNA helicase Rok1, which is involved in early small subunit biogenesis. Several contact sites were identified in the 18S rRNA sequence, which interestingly all cluster in the "foot" region of the small ribosomal subunit. These include a major binding site in the eukaryotic expansion segment ES6, where Rok1 is required for release of the snR30 snoRNA. Rok1 directly contacts snR30 and other snoRNAs required for pre-rRNA processing. Using cross-linking, ligation and sequencing of hybrids (CLASH) we identified several novel pre-rRNA base-pairing sites for the snoRNAs snR30, snR10, U3, and U14, which cluster in the expansion segments of the 18S rRNA. Our data suggest that these snoRNAs bridge interactions between the expansion segments, thereby forming an extensive interaction network that likely promotes pre-rRNA maturation and folding in early pre-ribosomal complexes and establishes long-range rRNA interactions during ribosome synthesis.
Collapse
MESH Headings
- Base Pairing
- DEAD-box RNA Helicases/metabolism
- Nucleic Acid Conformation
- Protein Binding
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Roman Martin
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Philipp Hackert
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Maike Ruprecht
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany
| | - Stefan Simm
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany
| | - Lukas Brüning
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Oliver Mirus
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany
| | - Katherine E Sloan
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Grzegorz Kudla
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany Cluster of Excellence Frankfurt, Goethe University, 60438 Frankfurt, Germany
| | - Markus T Bohnsack
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany Cluster of Excellence Frankfurt, Goethe University, 60438 Frankfurt, Germany Göttingen Center for Molecular Biosciences, Georg-August-University, 37073 Göttingen, Germany
| |
Collapse
|
29
|
Chen YL, Capeyrou R, Humbert O, Mouffok S, Kadri YA, Lebaron S, Henras AK, Henry Y. The telomerase inhibitor Gno1p/PINX1 activates the helicase Prp43p during ribosome biogenesis. Nucleic Acids Res 2014; 42:7330-45. [PMID: 24823796 PMCID: PMC4066782 DOI: 10.1093/nar/gku357] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We provide evidence that a central player in ribosome synthesis, the ribonucleic acid helicase Prp43p, can be activated by yeast Gno1p and its human ortholog, the telomerase inhibitor PINX1. Gno1p and PINX1 expressed in yeast interact with Prp43p and the integrity of their G-patch domain is required for this interaction. Moreover, PINX1 interacts with human PRP43 (DHX15) in HeLa cells. PINX1 directly binds to yeast Prp43p and stimulates its adenosine triphosphatase activity, while alterations of the G patch abolish formation of the PINX1/Prp43p complex and the stimulation of Prp43p. In yeast, lack of Gno1p leads to a decrease in the levels of pre-40S and intermediate pre-60S pre-ribosomal particles, defects that can be corrected by PINX1 expression. We show that Gno1p associates with 90S and early pre-60S pre-ribosomal particles and is released from intermediate pre-60S particles. G-patch alterations in Gno1p or PINX1 that inhibit their interactions with Prp43p completely abolish their function in yeast ribosome biogenesis. Altogether, our results suggest that activation of Prp43p by Gno1p/PINX1 within early pre-ribosomal particles is crucial for their subsequent maturation.
Collapse
Affiliation(s)
- Yan-Ling Chen
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| | - Régine Capeyrou
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| | - Odile Humbert
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| | - Saïda Mouffok
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| | - Yasmine Al Kadri
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| | - Simon Lebaron
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| | - Anthony K Henras
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| | - Yves Henry
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| |
Collapse
|
30
|
Physical and functional interaction between the methyltransferase Bud23 and the essential DEAH-box RNA helicase Ecm16. Mol Cell Biol 2014; 34:2208-20. [PMID: 24710271 DOI: 10.1128/mcb.01656-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The small ribosomal subunit assembles cotranscriptionally on the nascent primary transcript. Cleavage at site A2 liberates the pre-40S subunit. We previously identified Bud23 as a conserved eukaryotic methyltransferase that is required for efficient cleavage at A2. Here, we report that Bud23 physically and functionally interacts with the DEAH-box RNA helicase Ecm16 (also known as Dhr1). Ecm16 is also required for cleavage at A2. We identified mutations in ECM16 that suppressed the growth and A2 cleavage defects of a bud23Δ mutant. RNA helicases often require protein cofactors to provide substrate specificity. We used yeast (Saccharomyces cerevisiae) two-hybrid analysis to map the binding site of Bud23 on Ecm16. Despite the physical and functional interaction between these factors, mutations that disrupted the interaction, as assayed by two-hybrid analysis, did not display a growth defect. We previously identified mutations in UTP2 and UTP14 that suppressed bud23Δ. We suggest that a network of protein interactions may mask the loss of interaction that we have defined by two-hybrid analysis. A mutation in motif I of Ecm16 that is predicted to impair its ability to hydrolyze ATP led to accumulation of Bud23 in an ∼45S particle containing Ecm16. Thus, Bud23 enters the pre-40S pathway at the time of Ecm16 function.
Collapse
|
31
|
Abstract
Superfamily 2 helicase proteins are ubiquitous in RNA biology and have an extraordinarily broad set of functional roles. Central among these roles are the promotion of rearrangements of structured RNAs and the remodeling of ribonucleoprotein complexes (RNPs), allowing formation of native RNA structure or progression through a functional cycle of structures. Although all superfamily 2 helicases share a conserved helicase core, they are divided evolutionarily into several families, and it is principally proteins from three families, the DEAD-box, DEAH/RHA, and Ski2-like families, that function to manipulate structured RNAs and RNPs. Strikingly, there are emerging differences in the mechanisms of these proteins, both between families and within the largest family (DEAD-box), and these differences appear to be tuned to their RNA or RNP substrates and their specific roles. This review outlines basic mechanistic features of the three families and surveys individual proteins and the current understanding of their biological substrates and mechanisms.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712; ,
| | | |
Collapse
|
32
|
Soltanieh S, Lapensée M, Dragon F. Nucleolar proteins Bfr2 and Enp2 interact with DEAD-box RNA helicase Dbp4 in two different complexes. Nucleic Acids Res 2013; 42:3194-206. [PMID: 24357410 PMCID: PMC3950691 DOI: 10.1093/nar/gkt1293] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Different pre-ribosomal complexes are formed during ribosome biogenesis, and the composition of these complexes is highly dynamic. Dbp4, a conserved DEAD-box RNA helicase implicated in ribosome biogenesis, interacts with nucleolar proteins Bfr2 and Enp2. We show that, like Dbp4, Bfr2 and Enp2 are required for the early processing steps leading to the production of 18S ribosomal RNA. We also found that Bfr2 and Enp2 associate with the U3 small nucleolar RNA (snoRNA), the U3-specific protein Mpp10 and various pre-18S ribosomal RNA species. Thus, we propose that Bfr2, Dbp4 and Enp2 are components of the small subunit (SSU) processome, a large complex of ∼80S. Sucrose gradient sedimentation analyses indicated that Dbp4, Bfr2 and Enp2 sediment in a peak of ∼50S and in a peak of ∼80S. Bfr2, Dbp4 and Enp2 associate together in the 50S complex, which does not include the U3 snoRNA; however, they associate with U3 snoRNA in the 80S complex (SSU processome). Immunoprecipitation experiments revealed that U14 snoRNA associates with Dbp4 in the 50S complex, but not with Bfr2 or Enp2. The assembly factor Tsr1 is not part of the '50S' complex, indicating this complex is not a pre-40S ribosome. A combination of experiments leads us to propose that Bfr2, Enp2 and Dbp4 are recruited at late steps during assembly of the SSU processome.
Collapse
Affiliation(s)
- Sahar Soltanieh
- Département des sciences biologiques and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
33
|
Woolford JL, Baserga SJ. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 2013; 195:643-81. [PMID: 24190922 PMCID: PMC3813855 DOI: 10.1534/genetics.113.153197] [Citation(s) in RCA: 564] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/26/2013] [Indexed: 01/09/2023] Open
Abstract
Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes.
Collapse
Affiliation(s)
- John L. Woolford
- Department of Biological Sciences, Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Susan J. Baserga
- Molecular Biophysics and Biochemistry, Genetics and Therapeutic Radiology, Yale University, New Haven, Connecticut 06520-8024
| |
Collapse
|
34
|
Putnam AA, Jankowsky E. DEAD-box helicases as integrators of RNA, nucleotide and protein binding. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:884-93. [PMID: 23416748 DOI: 10.1016/j.bbagrm.2013.02.002] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 01/10/2023]
Abstract
DEAD-box helicases perform diverse cellular functions in virtually all steps of RNA metabolism from Bacteria to Humans. Although DEAD-box helicases share a highly conserved core domain, the enzymes catalyze a wide range of biochemical reactions. In addition to the well established RNA unwinding and corresponding ATPase activities, DEAD-box helicases promote duplex formation and displace proteins from RNA. They can also function as assembly platforms for larger ribonucleoprotein complexes, and as metabolite sensors. This review aims to provide a perspective on the diverse biochemical features of DEAD-box helicases and connections to structural information. We discuss these data in the context of a model that views the enzymes as integrators of RNA, nucleotide, and protein binding. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Andrea A Putnam
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
35
|
Rodríguez-Galán O, García-Gómez JJ, de la Cruz J. Yeast and human RNA helicases involved in ribosome biogenesis: current status and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:775-90. [PMID: 23357782 DOI: 10.1016/j.bbagrm.2013.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 11/17/2022]
Abstract
Ribosome biogenesis is a fundamental process that is conserved in eukaryotes. Although spectacular progress has been made in understanding mammalian ribosome synthesis in recent years, by far, this process has still been best characterised in the yeast Saccharomyces cerevisiae. In yeast, besides the rRNAs, the ribosomal proteins and the 75 small nucleolar RNAs, more than 250 non-ribosomal proteins, generally referred to as trans-acting factors, are involved in ribosome biogenesis. These factors include nucleases, RNA modifying enzymes, ATPases, GTPases, kinases and RNA helicases. Altogether, they likely confer speed, accuracy and directionality to the ribosome synthesis process, however, the precise functions for most of them are still largely unknown. This review summarises our current knowledge on eukaryotic RNA helicases involved in ribosome biogenesis, particularly focusing on the most recent advances with respect to the molecular roles of these enzymes and their co-factors in yeast and human cells. This article is part of a Special Issue entitled: The Biology of RNA helicases-Modulation for life.
Collapse
|
36
|
Garcia I, Albring MJ, Uhlenbeck OC. Duplex destabilization by four ribosomal DEAD-box proteins. Biochemistry 2012; 51:10109-18. [PMID: 23153376 DOI: 10.1021/bi301172s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DEAD-box proteins are believed to participate in the folding of RNA by destabilizing RNA secondary or tertiary structures. Although these proteins bind and hydrolyze ATP, the mechanism by which nucleotide hydrolysis is coupled to helix destabilization may vary among different DEAD-box proteins. To investigate their abilities to disrupt helices and couple ATP hydrolysis to unwinding, we assayed the Saccharomyces cerevisiae ribosomal DEAD-box proteins, Dbp3p, Dbp4p, Rok1p, and Rrp3p utilizing a series of RNA substrates containing a short duplex and either a 5' or 3' single-stranded region. All four proteins unwound a 10 bp helix in vitro in the presence of ATP; however, significant dissociation of longer helices was not observed. While Dbp3p did not require a single-stranded extension to disrupt a helix, the unwinding activities of Dbp4p, Rok1p, and Rrp3p were substantially stimulated by either a 5' or 3' single-stranded extension. Interestingly, these proteins showed a clear length dependency with 3' extensions that was not observed with 5' extensions, suggesting that they bind substrates with a preferred orientation. In the presence of AMPPNP or ADP, all four proteins displayed displacement activity suggesting that nucleotide binding is sufficient to facilitate duplex disruption. Further enhancement of the strand displacement rate in the presence of ATP was observed for only Dbp3p and Rrp3p.
Collapse
Affiliation(s)
- Ivelitza Garcia
- Department of Chemistry, Allegheny College, Meadville, PA 16335, USA
| | | | | |
Collapse
|
37
|
Abstract
RNA folding is an essential aspect underlying RNA-mediated cellular processes. Many RNAs, including large, multi-domain ribozymes, are capable of folding to the native, functional state without assistance of a protein cofactor in vitro. In the cell, trans-acting factors, such as proteins, are however known to modulate the structure and thus the fate of an RNA. DEAD-box proteins, including Mss116p, were recently found to assist folding of group I and group II introns in vitro and in vivo. The underlying mechanism(s) have been studied extensively to explore the contribution of ATP hydrolysis and duplex unwinding in helicase-stimulated intron splicing. Here we summarize the ongoing efforts to understand the novel role of DEAD-box proteins in RNA folding.
Collapse
Affiliation(s)
- Nora Sachsenmaier
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | |
Collapse
|
38
|
Martin R, Straub AU, Doebele C, Bohnsack MT. DExD/H-box RNA helicases in ribosome biogenesis. RNA Biol 2012; 10:4-18. [PMID: 22922795 DOI: 10.4161/rna.21879] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ribosome synthesis requires a multitude of cofactors, among them DExD/H-box RNA helicases. Bacterial RNA helicases involved in ribosome assembly are not essential, while eukaryotes strictly require multiple DExD/H-box proteins that are involved in the much more complex ribosome biogenesis pathway. Here, RNA helicases are thought to act in structural remodeling of the RNPs including the modulation of protein binding, and they are required for allowing access or the release of specific snoRNPs from pre-ribosomes. Interestingly, helicase action is modulated by specific cofactors that can regulate recruitment and enzymatic activity. This review summarizes the current knowledge and focuses on recent findings and open questions on RNA helicase function and regulation in ribosome synthesis.
Collapse
Affiliation(s)
- Roman Martin
- Centre for Biochemistry and Molecular Cell Biology, Göttingen University, Göttingen, Germany
| | | | | | | |
Collapse
|
39
|
Phipps KR, Charette JM, Baserga SJ. The small subunit processome in ribosome biogenesis—progress and prospects. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:1-21. [PMID: 21318072 DOI: 10.1002/wrna.57] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The small subunit (SSU) processome is a 2.2-MDa ribonucleoprotein complex involved in the processing, assembly, and maturation of the SSU of eukaryotic ribosomes. The identities of many of the factors involved in SSU biogenesis have been elucidated over the past 40 years. However, as our understanding increases, so do the number of questions about the nature of this complicated process. Cataloging the components is the first step toward understanding the molecular workings of a system. This review will focus on how identifying components of ribosome biogenesis has led to the knowledge of how these factors, protein and RNA alike, associate with one another into subcomplexes, with a concentration on the small ribosomal subunit. We will also explore how this knowledge of subcomplex assembly has informed our understanding of the workings of the ribosome synthesis system as a whole.
Collapse
Affiliation(s)
- Kathleen R Phipps
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
40
|
Rawling DC, Baserga SJ. In vivo approaches to dissecting the function of RNA helicases in eukaryotic ribosome assembly. Methods Enzymol 2012; 511:289-321. [PMID: 22713326 DOI: 10.1016/b978-0-12-396546-2.00014-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In eukaryotes, ribosome biogenesis involves the nucleolar transcription and processing of pre-ribosomal RNA molecules (pre-rRNA) in a complex pathway requiring the participation of myriad protein and ribonucleoprotein factors. Through efforts aimed at categorizing and characterizing these factors, at least 20 RNA helicases have been shown to interact with or participate in the activities of the major ribosome biogenesis complexes. Unfortunately, little is known about the enzymatic properties of most of these helicases, and less is known about their roles in ribosome biogenesis and pre-rRNA maturation. This chapter presents approaches for characterizing RNA helicases involved in ribosome biogenesis. Included are methods for depletion of specific protein targets, with standard protocols for assaying the typical ribosome biogenesis defects that may result. Procedures and rationales for mutagenic studies of target proteins are discussed, as well as several approaches for identifying protein-protein interactions in order to determine functional context and potential cofactors of RNA helicases.
Collapse
Affiliation(s)
- David C Rawling
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
41
|
Hoareau-Aveilla C, Fayet-Lebaron E, Jády BE, Henras AK, Kiss T. Utp23p is required for dissociation of snR30 small nucleolar RNP from preribosomal particles. Nucleic Acids Res 2011; 40:3641-52. [PMID: 22180534 PMCID: PMC3333846 DOI: 10.1093/nar/gkr1213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Yeast snR30 is an essential box H/ACA small nucleolar RNA (snoRNA) that promotes 18S rRNA processing through forming transient base-pairing interactions with the newly synthesized 35S pre-rRNA. By using a novel tandem RNA affinity selection approach, followed by coimmunoprecipitation and in vivo cross-linking experiments, we demonstrate that in addition to the four H/ACA core proteins, Cbf5p, Nhp2p, Nop10p and Gar1p, a fraction of snR30 specifically associates with the Utp23p and Kri1p nucleolar proteins. Depletion of Utp23p and Kri1p has no effect on the accumulation and recruitment of snR30 to the nascent pre-ribosomes. However, in the absence of Utp23p, the majority of snR30 accumulates in large pre-ribosomal particles. The retained snR30 is not base-paired with the 35S pre-rRNA, indicating that its aberrant tethering to nascent preribosomes is likely mediated by pre-ribosomal protein(s). Thus, Utp23p may promote conformational changes of the pre-ribosome, essential for snR30 release. Neither Utp23p nor Kri1p is required for recruitment of snR30 to the nascent pre-ribosome. On the contrary, depletion of snR30 prevents proper incorporation of both Utp23p and Kri1p into the 90S pre-ribosome containing the 35S pre-rRNA, indicating that snR30 plays a central role in the assembly of functionally active small subunit processome.
Collapse
Affiliation(s)
- Coralie Hoareau-Aveilla
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse-UPS and Centre National de La Recherche Scientifique, F-31000 Toulouse, France
| | | | | | | | | |
Collapse
|
42
|
Watkins NJ, Bohnsack MT. The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:397-414. [DOI: 10.1002/wrna.117] [Citation(s) in RCA: 347] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Linder P, Jankowsky E. From unwinding to clamping - the DEAD box RNA helicase family. Nat Rev Mol Cell Biol 2011; 12:505-16. [PMID: 21779027 DOI: 10.1038/nrm3154] [Citation(s) in RCA: 816] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA helicases of the DEAD box family are present in all eukaryotic cells and in many bacteria and Archaea. These highly conserved enzymes are required for RNA metabolism from transcription to degradation and are therefore important players in gene expression. DEAD box proteins use ATP to unwind short duplex RNA in an unusual fashion and remodel RNA-protein complexes, but they can also function as ATP-dependent RNA clamps to provide nucleation centres that establish larger RNA-protein complexes. Structural, mechanistic and molecular biological studies have started to reveal how these conserved proteins can perform such diverse functions and how accessory proteins have a central role in their regulation.
Collapse
Affiliation(s)
- Patrick Linder
- Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, 1211 Genève 4, Switzerland.
| | | |
Collapse
|
44
|
Li F, Herrera J, Zhou S, Maslov DA, Simpson L. Trypanosome REH1 is an RNA helicase involved with the 3'-5' polarity of multiple gRNA-guided uridine insertion/deletion RNA editing. Proc Natl Acad Sci U S A 2011; 108:3542-7. [PMID: 21321231 PMCID: PMC3048136 DOI: 10.1073/pnas.1014152108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Uridine insertion/deletion RNA editing in kinetoplastid mitochondria corrects encoded frameshifts in mRNAs. The genetic information for editing resides in small guide RNAs (gRNAs), which form anchor duplexes just downstream of an editing site and mediate editing within a single editing "block." Many mRNAs require multiple gRNAs; the observed overall 3' to 5' polarity of editing is determined by the formation of upstream mRNA anchors by downstream editing. Hel61, a mitochondrial DEAD-box protein, was previously shown to be involved in RNA editing, but the functional role was not clear. Here we report that down-regulation of Hel61 [renamed REH1 (RNA editing helicase 1)] expression in Trypanosoma brucei selectively affects editing mediated by two or more overlapping gRNAs but has no effect on editing within a single block. Down-regulation produces an increased abundance of the gRNA/edited mRNA duplex for the first editing block of the A6 mRNA. Recombinant REH1 has an ATP-dependent double strand RNA unwinding activity in vitro with a model gRNA-mRNA duplex. These data indicate that REH1 is involved in gRNA displacement either directly by unwinding the gRNA/edited mRNA duplex or indirectly, to allow the 5' adjacent upstream gRNA to form an anchor duplex with the edited mRNA to initiate another block of editing. Purified tagged REH1 is associated with the RNA editing core complex by RNA linkers and a colocalization of REH1, REL1, and two kinetoplast ribosomal proteins with the kinetoplast DNA was observed by immunofluorescence, suggesting that editing, transcription, and translation may be functionally linked.
Collapse
Affiliation(s)
- Feng Li
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Jeremy Herrera
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Sharleen Zhou
- Howard Hughes Medical Institute Mass Spectrometry Laboratory, University of California, Berkeley, CA 94720; and
| | - Dmitri A. Maslov
- Department of Biology, University of California, Riverside, CA 92521
| | - Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| |
Collapse
|
45
|
Jankowsky E. RNA helicases at work: binding and rearranging. Trends Biochem Sci 2011; 36:19-29. [PMID: 20813532 DOI: 10.1016/j.tibs.2010.07.008] [Citation(s) in RCA: 391] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/20/2010] [Accepted: 07/23/2010] [Indexed: 12/22/2022]
Abstract
RNA helicases are ubiquitous, highly conserved enzymes that participate in nearly all aspects of RNA metabolism. These proteins bind or remodel RNA or RNA-protein complexes in an ATP-dependent fashion. How RNA helicases physically perform their cellular tasks has been a longstanding question, but in recent years, intriguing models have started to link structure, mechanism and biological function for some RNA helicases. This review outlines our current view on major structural and mechanistic themes of RNA helicase function, and on emerging physical models for cellular roles of these enzymes.
Collapse
Affiliation(s)
- Eckhard Jankowsky
- Center for RNA Molecular Biology & Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| |
Collapse
|
46
|
Jankowsky E, Fairman-Williams ME. An Introduction to RNA Helicases: Superfamilies, Families, and Major Themes. RNA HELICASES 2010. [DOI: 10.1039/9781849732215-00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Eckhard Jankowsky
- Department of Biochemistry & Center for RNA Molecular Biology School of Medicine Case Western Reserve University 10900 Euclid Ave Cleveland OH 44106 USA
| | - Margaret E. Fairman-Williams
- Department of Biochemistry & Center for RNA Molecular Biology School of Medicine Case Western Reserve University 10900 Euclid Ave Cleveland OH 44106 USA
- current address: Department of Biochemistry Brandeis University Waltham MA 44106 USA
| |
Collapse
|
47
|
Driving ribosome assembly. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:673-83. [DOI: 10.1016/j.bbamcr.2009.10.009] [Citation(s) in RCA: 372] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/13/2009] [Accepted: 10/26/2009] [Indexed: 11/19/2022]
|
48
|
Cartier G, Lorieux F, Allemand F, Dreyfus M, Bizebard T. Cold adaptation in DEAD-box proteins. Biochemistry 2010; 49:2636-46. [PMID: 20166751 DOI: 10.1021/bi902082d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spontaneous rearrangements of RNA structures are usually characterized by large activation energies and thus become very slow at low temperatures, yet RNA structure must remain dynamic even in cold-adapted (psychrophilic) organisms. DEAD-box proteins constitute a ubiquitous family of RNA-dependent ATPases that can often unwind short RNA duplexes in vitro (helicase activity), hence the belief that one of their major (though not exclusive) roles in vivo is to assist in RNA rearrangements. Here, we compare two Escherichia coli DEAD-box proteins and their orthologs from the psychrophilic bacteria Pseudoalteromonas haloplanktis and Colwellia psychrerythraea from the point of view of enzymatic properties. One of these proteins (SrmB) is involved in ribosome assembly, whereas the other (RhlE) presumably participates in both mRNA degradation and ribosome assembly; in vitro, RhlE is far more active as a helicase than SrmB. The activation energy associated with the ATPase activity of the psychrophilic SrmB is lower than for its mesophilic counterpart, making it more active at low temperatures. In contrast, in the case of psychrophilic RhlE, it is the RNA unwinding activity, not the ATPase activity, that has a reduced activation energy and is therefore cold-adapted. We argue that these different modes of cold adaptation reflect the likely function of these proteins in vivo: RNA helicase for RhlE and ATP-dependent RNA binding for SrmB. The cold adaptation of helicases like RhlE presumably facilitates RNA metabolism in psychrophilic bacteria.
Collapse
Affiliation(s)
- Gwendoline Cartier
- CNRS UPR9073, University Paris VII, Institut de Biologie Physico-chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | | | |
Collapse
|
49
|
Mammalian DEAD box protein Ddx51 acts in 3' end maturation of 28S rRNA by promoting the release of U8 snoRNA. Mol Cell Biol 2010; 30:2947-56. [PMID: 20404093 DOI: 10.1128/mcb.00226-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biogenesis of eukaryotic ribosomes requires a number of RNA helicases that drive molecular rearrangements at various points of the assembly pathway. While many ribosome synthesis factors are conserved among all eukaryotes, certain features of ribosome maturation, such as U8 snoRNA-assisted processing of the 5.8S and 28S rRNA precursors, are observed only in metazoan cells. Here, we identify the mammalian DEAD box helicase family member Ddx51 as a novel ribosome synthesis factor and an interacting partner of the nucleolar GTP-binding protein Nog1. Unlike any previously studied yeast helicases, Ddx51 is required for the formation of the 3' end of 28S rRNA. Ddx51 binds to pre-60S subunit complexes and promotes displacement of U8 snoRNA from pre-rRNA, which is necessary for the removal of the 3' external transcribed spacer from 28S rRNA and productive downstream processing. These data demonstrate the emergence of a novel factor that facilitates a pre-rRNA processing event specific for higher eukaryotes.
Collapse
|
50
|
Yassin ER, Abdul-Nabi AM, Takeda A, Yaseen NR. Effects of the NUP98-DDX10 oncogene on primary human CD34+ cells: role of a conserved helicase motif. Leukemia 2010; 24:1001-11. [PMID: 20339440 PMCID: PMC2868946 DOI: 10.1038/leu.2010.42] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
NUP98 gene rearrangements occur in acute myeloid leukemia and result in the expression of fusion proteins. One of the most frequent is NUP98-DDX10 that fuses a portion of NUP98 to a portion of DDX10, a putative DEAD-box RNA helicase. Here we show that NUP98-DDX10 dramatically increases proliferation and self-renewal of primary human CD34+ cells, and disrupts their erythroid and myeloid differentiation. It localizes to their nuclei and extensively deregulates gene expression. Comparison to another leukemogenic NUP98 fusion, NUP98-HOXA9, reveals a number of genes deregulated by both oncoproteins, including HOX genes, COX-2, MYCN, ANGPT1, REN, HEY1, SOX4, and others. These genes may account for the similar leukemogenic properties of NUP98 fusion oncogenes. The YIHRAGRTAR sequence in the DDX10 portion of NUP98-DDX10 represents a major motif shared by DEAD-box RNA helicases that is required for ATP binding, RNA-binding, and helicase functions. Mutating this motif diminished the in vitro transforming ability of NUP98-DDX10, indicating that it plays a role in leukemogenesis. These data demonstrate for the first time the in vitro transforming ability of NUP98-DDX10 and show that it is partially dependent on one of the consensus helicase motifs of DDX10. They also point to common pathways that may underlie leukemogenesis by different NUP98 fusions.
Collapse
Affiliation(s)
- E R Yassin
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|