1
|
Zhang Q, Kim W, Panina SB, Mayfield JE, Portz B, Zhang YJ. Variation of C-terminal domain governs RNA polymerase II genomic locations and alternative splicing in eukaryotic transcription. Nat Commun 2024; 15:7985. [PMID: 39266551 PMCID: PMC11393077 DOI: 10.1038/s41467-024-52391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
The C-terminal domain of RPB1 (CTD) orchestrates transcription by recruiting regulators to RNA Pol II upon phosphorylation. With CTD driving condensate formation on gene loci, the molecular mechanism behind how CTD-mediated recruitment of transcriptional regulators influences condensates formation remains unclear. Our study unveils that phosphorylation reversibly dissolves phase separation induced by the unphosphorylated CTD. Phosphorylated CTD, upon specific association with transcription regulators, forms distinct condensates from unphosphorylated CTD. Functional studies demonstrate CTD variants with diverse condensation properties exhibit differences in promoter binding and mRNA co-processing in cells. Notably, varying CTD lengths influence the assembly of RNA processing machinery and alternative splicing outcomes, which in turn affects cellular growth, linking the evolution of CTD variation/length with the complexity of splicing from yeast to human. These findings provide compelling evidence for a model wherein post-translational modification enables the transition of functionally specialized condensates, highlighting a co-evolution link between CTD condensation and splicing.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Wantae Kim
- McKetta Department of Chemical Engineering, University of Texas, Austin, TX, USA
| | - Svetlana B Panina
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Joshua E Mayfield
- Department of Pharmacology, Pathology, Chemistry, and Biochemistry, and Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Y Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA.
| |
Collapse
|
2
|
Escobar EE, Yang W, Lanzillotti MB, Juetten KJ, Shields S, Siegel D, Zhang YJ, Brodbelt JS. Tracking Inhibition of Human Small C-Terminal Domain Phosphatase 1 Using 193 nm Ultraviolet Photodissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1330-1341. [PMID: 38662915 PMCID: PMC11384422 DOI: 10.1021/jasms.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Working in tandem with kinases via a dynamic interplay of phosphorylation and dephosphorylation of proteins, phosphatases regulate many cellular processes and thus represent compelling therapeutic targets. Here we leverage ultraviolet photodissociation to shed light on the binding characteristics of two covalent phosphatase inhibitors, T65 and rabeprazole, and their respective interactions with the human small C-terminal domain phosphatase 1 (SCP1) and its single-point mutant C181A, in which a nonreactive alanine replaces one key reactive cysteine. Top-down MS/MS analysis is used to localize the binding of T65 and rabeprazole on the two proteins and estimate the relative reactivities of each cysteine residue.
Collapse
Affiliation(s)
| | | | | | | | | | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, California 92093, United States
| | | | | |
Collapse
|
3
|
Gao S, Carrasquillo Rodríguez JW, Bahmanyar S, Airola MV. Structure and mechanism of the human CTDNEP1-NEP1R1 membrane protein phosphatase complex necessary to maintain ER membrane morphology. Proc Natl Acad Sci U S A 2024; 121:e2321167121. [PMID: 38776370 PMCID: PMC11145253 DOI: 10.1073/pnas.2321167121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
C-terminal Domain Nuclear Envelope Phosphatase 1 (CTDNEP1) is a noncanonical protein serine/threonine phosphatase that has a conserved role in regulating ER membrane biogenesis. Inactivating mutations in CTDNEP1 correlate with the development of medulloblastoma, an aggressive childhood cancer. The transmembrane protein Nuclear Envelope Phosphatase 1 Regulatory Subunit 1 (NEP1R1) binds CTDNEP1, but the molecular details by which NEP1R1 regulates CTDNEP1 function are unclear. Here, we find that knockdown of NEP1R1 generates identical phenotypes to reported loss of CTDNEP1 in mammalian cells, establishing CTDNEP1-NEP1R1 as an evolutionarily conserved membrane protein phosphatase complex that restricts ER expansion. Mechanistically, NEP1R1 acts as an activating regulatory subunit that directly binds and increases the phosphatase activity of CTDNEP1. By defining a minimal NEP1R1 domain sufficient to activate CTDNEP1, we determine high-resolution crystal structures of the CTDNEP1-NEP1R1 complex bound to a peptide sequence acting as a pseudosubstrate. Structurally, NEP1R1 engages CTDNEP1 at a site distant from the active site to stabilize and allosterically activate CTDNEP1. Substrate recognition is facilitated by a conserved Arg residue in CTDNEP1 that binds and orients the substrate peptide in the active site. Together, this reveals mechanisms for how NEP1R1 regulates CTDNEP1 and explains how cancer-associated mutations inactivate CTDNEP1.
Collapse
Affiliation(s)
- Shujuan Gao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY11794
| | | | - Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT06511
| | - Michael V. Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY11794
| |
Collapse
|
4
|
Panina SB, Schweer JV, Zhang Q, Raina G, Hardtke HA, Kim S, Yang W, Siegel D, Zhang YJ. Targeting of REST with rationally-designed small molecule compounds exhibits synergetic therapeutic potential in human glioblastoma cells. BMC Biol 2024; 22:83. [PMID: 38609948 PMCID: PMC11015551 DOI: 10.1186/s12915-024-01879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive brain cancer associated with poor prognosis, intrinsic heterogeneity, plasticity, and therapy resistance. In some GBMs, cell proliferation is fueled by a transcriptional regulator, repressor element-1 silencing transcription factor (REST). RESULTS Using CRISPR/Cas9, we identified GBM cell lines dependent on REST activity. We developed new small molecule inhibitory compounds targeting small C-terminal domain phosphatase 1 (SCP1) to reduce REST protein level and transcriptional activity in glioblastoma cells. Top leads of the series like GR-28 exhibit potent cytotoxicity, reduce REST protein level, and suppress its transcriptional activity. Upon the loss of REST protein, GBM cells can potentially compensate by rewiring fatty acid metabolism, enabling continued proliferation. Combining REST inhibition with the blockade of this compensatory adaptation using long-chain acyl-CoA synthetase inhibitor Triacsin C demonstrated substantial synergetic potential without inducing hepatotoxicity. CONCLUSIONS Our results highlight the efficacy and selectivity of targeting REST alone or in combination as a therapeutic strategy to combat high-REST GBM.
Collapse
Affiliation(s)
- Svetlana B Panina
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX, USA
| | - Joshua V Schweer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, 9500 Gilman Drive 0741, La Jolla, CA, USA
| | - Qian Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX, USA
| | - Gaurav Raina
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, 9500 Gilman Drive 0741, La Jolla, CA, USA
| | - Haley A Hardtke
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX, USA
| | - Seungjin Kim
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX, USA
| | - Wanjie Yang
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX, USA
| | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, 9500 Gilman Drive 0741, La Jolla, CA, USA
| | - Y Jessie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX, USA.
| |
Collapse
|
5
|
Kobayashi T, Yamazaki K, Shinada J, Mizunuma M, Furukawa K, Chuman Y. Identification of Inhibitors of the Disease-Associated Protein Phosphatase Scp1 Using Antibody Mimetic Molecules. Int J Mol Sci 2024; 25:3737. [PMID: 38612548 PMCID: PMC11011526 DOI: 10.3390/ijms25073737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Protein phosphorylation is a prevalent translational modification, and its dysregulation has been implicated in various diseases, including cancer. Despite its significance, there is a lack of specific inhibitors of the FCP/SCP-type Ser/Thr protein phosphatase Scp1, characterized by high specificity and affinity. In this study, we focused on adnectin, an antibody-mimetic protein, aiming to identify Scp1-specific binding molecules with a broad binding surface that target the substrate-recognition site of Scp1. Biopanning of Scp1 was performed using an adnectin-presenting phage library with a randomized FG loop. We succeeded in identifying FG-1Adn, which showed high affinity and specificity for Scp1. Ala scanning analysis of the Scp1-binding sequence in relation to the FG-1 peptide revealed that hydrophobic residues, including aromatic amino acids, play important roles in Scp1 recognition. Furthermore, FG-1Adn was found to co-localize with Scp1 in cells, especially on the plasma membrane. In addition, Western blotting analysis showed that FG-1Adn increased the phosphorylation level of the target protein of Scp1 in cells, indicating that FG-1Adn can inhibit the function of Scp1. These results suggest that FG-1Adn can be used as a specific inhibitor of Scp1.
Collapse
Affiliation(s)
| | | | | | | | | | - Yoshiro Chuman
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan; (T.K.); (K.Y.); (J.S.); (M.M.); (K.F.)
| |
Collapse
|
6
|
Zhang Q, Kim W, Panina S, Mayfield JE, Portz B, Zhang YJ. Variation of C-terminal domain governs RNA polymerase II genomic locations and alternative splicing in eukaryotic transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.01.573828. [PMID: 38260389 PMCID: PMC10802280 DOI: 10.1101/2024.01.01.573828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The C-terminal domain of RPB1 (CTD) orchestrates transcription by recruiting regulators to RNA Pol II upon phosphorylation. Recent insights highlight the pivotal role of CTD in driving condensate formation on gene loci. Yet, the molecular mechanism behind how CTD-mediated recruitment of transcriptional regulators influences condensates formation remains unclear. Our study unveils that phosphorylation reversibly dissolves phase separation induced by the unphosphorylated CTD. Phosphorylated CTD, upon specific association with transcription regulatory proteins, forms distinct condensates from unphosphorylated CTD. Function studies demonstrate CTD variants with diverse condensation properties in vitro exhibit difference in promoter binding and mRNA co-processing in cells. Notably, varying CTD lengths lead to alternative splicing outcomes impacting cellular growth, linking the evolution of CTD variation/length with the complexity of splicing from yeast to human. These findings provide compelling evidence for a model wherein post-translational modification enables the transition of functionally specialized condensates, highlighting a co-evolution link between CTD condensation and splicing.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Molecular Biosciences, University of Texas, Austin, Texas, 78712
| | - Wantae Kim
- McKetta Department of Chemical Engineering, University of Texas, Austin, Texas, 78712
| | - Svetlana Panina
- Department of Molecular Biosciences, University of Texas, Austin, Texas, 78712
| | - Joshua E. Mayfield
- Department of Pharmacology, Chemistry, and Biochemistry, and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093
| | - Bede Portz
- Dewpoint Therapeutics, 451 D Street, Boston, Massachusetts 02210
| | - Y. Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin, Texas, 78712
| |
Collapse
|
7
|
Gao S, Carrasquillo Rodríguez JW, Bahmanyar S, Airola MV. Structure and mechanism of the human CTDNEP1-NEP1R1 membrane protein phosphatase complex necessary to maintain ER membrane morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567952. [PMID: 38045299 PMCID: PMC10690229 DOI: 10.1101/2023.11.20.567952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
C-terminal Domain Nuclear Envelope Phosphatase 1 (CTDNEP1) is a non-canonical protein serine/threonine phosphatase that regulates ER membrane biogenesis. Inactivating mutations in CTDNEP1 correlate with development of medulloblastoma, an aggressive childhood cancer. The transmembrane protein Nuclear Envelope Phosphatase 1 Regulatory Subunit 1 (NEP1R1) binds CTDNEP1, but the molecular details by which NEP1R1 regulates CTDNEP1 function are unclear. Here, we find that knockdown of CTDNEP1 or NEP1R1 in human cells generate identical phenotypes, establishing CTDNEP1-NEP1R1 as an evolutionarily conserved membrane protein phosphatase complex that restricts ER expansion. Mechanistically, NEP1R1 acts as an activating regulatory subunit that directly binds and increases the phosphatase activity of CTDNEP1. By defining a minimal NEP1R1 domain sufficient to activate CTDNEP1, we determine high resolution crystal structures of the CTDNEP1-NEP1R1 complex bound to a pseudo-substrate. Structurally, NEP1R1 engages CTDNEP1 at a site distant from the active site to stabilize and allosterically activate CTDNEP1. Substrate recognition is facilitated by a conserved Arg residue that binds and orients the substrate peptide in the active site. Together, this reveals mechanisms for how NEP1R1 regulates CTDNEP1 and explains how cancer-associated mutations inactivate CTDNEP1.
Collapse
Affiliation(s)
- Shujuan Gao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook NY 11794, USA
| | | | - Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Michael V. Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook NY 11794, USA
| |
Collapse
|
8
|
Pathira Kankanamge LS, Ruffner LA, Touch MM, Pina M, Beuning PJ, Ondrechen MJ. Functional annotation of haloacid dehalogenase superfamily structural genomics proteins. Biochem J 2023; 480:1553-1569. [PMID: 37747786 DOI: 10.1042/bcj20230057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
Haloacid dehalogenases (HAD) are members of a large superfamily that includes many Structural Genomics proteins with poorly characterized functionality. This superfamily consists of multiple types of enzymes that can act as sugar phosphatases, haloacid dehalogenases, phosphonoacetaldehyde hydrolases, ATPases, or phosphate monoesterases. Here, we report on predicted functional annotations and experimental testing by direct biochemical assay for Structural Genomics proteins from the HAD superfamily. To characterize the functions of HAD superfamily members, nine representative HAD proteins and 21 structural genomics proteins are analyzed. Using techniques based on computed chemical and electrostatic properties of individual amino acids, the functions of five structural genomics proteins from the HAD superfamily are predicted and validated by biochemical assays. A dehalogenase-like hydrolase, RSc1362 (Uniprot Q8XZN3, PDB 3UMB) is predicted to be a dehalogenase and dehalogenase activity is confirmed experimentally. Four proteins predicted to be sugar phosphatases are characterized as follows: a sugar phosphatase from Thermophilus volcanium (Uniprot Q978Y6) with trehalose-6-phosphate phosphatase and fructose-6-phosphate phosphatase activity; haloacid dehalogenase-like hydrolase from Bacteroides thetaiotaomicron (Uniprot Q8A2F3; PDB 3NIW) with fructose-6-phosphate phosphatase and sucrose-6-phosphate phosphatase activity; putative phosphatase from Eubacterium rectale (Uniprot D0VWU2; PDB 3DAO) as a sucrose-6-phosphate phosphatase; and hypothetical protein from Geobacillus kaustophilus (Uniprot Q5L139; PDB 2PQ0) as a fructose-6-phosphate phosphatase. Most of these sugar phosphatases showed some substrate promiscuity.
Collapse
Affiliation(s)
| | - Lydia A Ruffner
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, U.S.A
| | - Mong Mary Touch
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, U.S.A
| | - Manuel Pina
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, U.S.A
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, U.S.A
| | - Mary Jo Ondrechen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, U.S.A
| |
Collapse
|
9
|
Appel LM, Benedum J, Engl M, Platzer S, Schleiffer A, Strobl X, Slade D. SPOC domain proteins in health and disease. Genes Dev 2023; 37:140-170. [PMID: 36927757 PMCID: PMC10111866 DOI: 10.1101/gad.350314.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Since it was first described >20 yr ago, the SPOC domain (Spen paralog and ortholog C-terminal domain) has been identified in many proteins all across eukaryotic species. SPOC-containing proteins regulate gene expression on various levels ranging from transcription to RNA processing, modification, export, and stability, as well as X-chromosome inactivation. Their manifold roles in controlling transcriptional output implicate them in a plethora of developmental processes, and their misregulation is often associated with cancer. Here, we provide an overview of the biophysical properties of the SPOC domain and its interaction with phosphorylated binding partners, the phylogenetic origin of SPOC domain proteins, the diverse functions of mammalian SPOC proteins and their homologs, the mechanisms by which they regulate differentiation and development, and their roles in cancer.
Collapse
Affiliation(s)
- Lisa-Marie Appel
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| | - Johannes Benedum
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Sebastian Platzer
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Xué Strobl
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria;
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
10
|
Simpson LM, Fulcher LJ, Sathe G, Brewer A, Zhao JF, Squair DR, Crooks J, Wightman M, Wood NT, Gourlay R, Varghese J, Soares RF, Sapkota GP. An affinity-directed phosphatase, AdPhosphatase, system for targeted protein dephosphorylation. Cell Chem Biol 2023; 30:188-202.e6. [PMID: 36720221 DOI: 10.1016/j.chembiol.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 11/07/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023]
Abstract
Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is a fundamental process that controls protein function and intracellular signaling. Failure of phospho-control accounts for many human diseases. While a kinase phosphorylates multiple substrates, a substrate is often phosphorylated by multiple kinases. This renders phospho-control at the substrate level challenging, as it requires inhibition of multiple kinases, which would thus affect other kinase substrates. Here, we describe the development and application of the affinity-directed phosphatase (AdPhosphatase) system for targeted dephosphorylation of specific phospho-substrates. By deploying the Protein Phosphatase 1 or 2A catalytic subunits conjugated to an antigen-stabilized anti-GFP nanobody, we can promote the dephosphorylation of two independent phospho-proteins, FAM83D or ULK1, knocked in with GFP-tags using CRISPR-Cas9, with exquisite specificity. By redirecting protein phosphatases to neo-substrates through nanobody-mediated proximity, AdPhosphatase can alter the phospho-status and function of target proteins and thus, offers a new modality for potential drug discovery approaches.
Collapse
Affiliation(s)
- Luke M Simpson
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Luke J Fulcher
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gajanan Sathe
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Abigail Brewer
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jin-Feng Zhao
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Daniel R Squair
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jennifer Crooks
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Melanie Wightman
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicola T Wood
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Robert Gourlay
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Joby Varghese
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Renata F Soares
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gopal P Sapkota
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
11
|
RPAP2 regulates a transcription initiation checkpoint by inhibiting assembly of pre-initiation complex. Cell Rep 2022; 39:110732. [PMID: 35476980 DOI: 10.1016/j.celrep.2022.110732] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/31/2021] [Accepted: 04/02/2022] [Indexed: 11/21/2022] Open
Abstract
RNA polymerase II (Pol II)-mediated transcription in metazoans requires precise regulation. RNA Pol II-associated protein 2 (RPAP2) was previously identified to transport Pol II from cytoplasm to nucleus and dephosphorylates Pol II C-terminal domain (CTD). Here, we show that RPAP2 binds hypo-/hyper-phosphorylated Pol II with undetectable phosphatase activity. The structure of RPAP2-Pol II shows mutually exclusive assembly of RPAP2-Pol II and pre-initiation complex (PIC) due to three steric clashes. RPAP2 prevents and disrupts Pol II-TFIIF interaction and impairs in vitro transcription initiation, suggesting a function in inhibiting PIC assembly. Loss of RPAP2 in cells leads to global accumulation of TFIIF and Pol II at promoters, indicating a critical role of RPAP2 in inhibiting PIC assembly independent of its putative phosphatase activity. Our study indicates that RPAP2 functions as a gatekeeper to inhibit PIC assembly and transcription initiation and suggests a transcription checkpoint.
Collapse
|
12
|
Medellin B, Yang W, Konduri S, Dong J, Irani S, Wu H, Matthews WL, Zhang ZY, Siegel D, Zhang Y. Targeted Covalent Inhibition of Small CTD Phosphatase 1 to Promote the Degradation of the REST Transcription Factor in Human Cells. J Med Chem 2022; 65:507-519. [PMID: 34931516 PMCID: PMC8826594 DOI: 10.1021/acs.jmedchem.1c01655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The repressor element-1 silencing transcription factor (REST) represses neuronal gene expression, whose dysregulation is implicated in brain tumors and neurological diseases. A high level of REST protein drives the tumor growth in some glioblastoma cells. While transcription factors like REST are challenging targets for small-molecule inhibitors, the inactivation of a regulatory protein, small CTD phosphatase 1 (SCP1), promotes REST degradation and reduces transcriptional activity. This study rationally designed a series of α,β-unsaturated sulfones to serve as potent and selective covalent inhibitors against SCP1. The compounds inactivate SCP1 via covalent modification of Cys181 located at the active site entrance. Cellular studies showed that the inhibitors inactivate SCP1 in a time- and dose-dependent manner with an EC50 ∼1.5 μM, reducing REST protein levels and activating specific REST-suppressed genes. These compounds represent a promising line of small-molecule inhibitors as a novel lead for glioblastoma whose growth is driven by REST transcription activity.
Collapse
Affiliation(s)
| | | | - Srihari Konduri
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Jiajun Dong
- Department of Medicinal Chemistry and Molecular Pharmacology and Department of Chemistry, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Seema Irani
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Haoyi Wu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Wendy L. Matthews
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology and Department of Chemistry, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dionico Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Yan Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Puzanov GA, Senchenko VN. SCP Phosphatases and Oncogenesis. Mol Biol 2021. [DOI: 10.1134/s0026893321030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Liu X, Liu X, Du Y, Hu M, Tian Y, Li Z, Lv L, Zhang X, Liu Y, Zhou Y, Zhang P. DUSP5 promotes osteogenic differentiation through SCP1/2-dependent phosphorylation of SMAD1. STEM CELLS (DAYTON, OHIO) 2021; 39:1395-1409. [PMID: 34169608 PMCID: PMC8518947 DOI: 10.1002/stem.3428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 11/23/2022]
Abstract
Dual‐specificity phosphatases (DUSPs) are defined by their capability to dephosphorylate both phosphoserine/phosphothreonine (pSer/pThr) and phosphotyrosine (pTyr). DUSP5, a member of DUSPs superfamily, is located in the nucleus and plays crucially regulatory roles in the signaling pathway transduction. In our present study, we discover that DUSP5 significantly promotes osteogenic differentiation of mesenchymal stromal cells (MSCs) by activating SMAD1 signaling pathway. Mechanistically, DUSP5 physically interacts with the phosphatase domain of small C‐terminal phosphatase 1/2 (SCP1/2, SMAD1 phosphatases) by the linker region. In addition, we further confirm that DUSP5 activates SMAD1 signaling through a SCP1/2‐dependent manner. Specifically, DUSP5 attenuates the SCP1/2‐SMAD1 interaction by competitively binding to SCP1/2, which is responsible for the SMAD1 dephosphorylation, and thus results in the activation of SMAD1 signaling. Importantly, DUSP5 expression in mouse bone marrow MSCs is significantly reduced in ovariectomized (OVX) mice in which osteogenesis is highly passive, and overexpression of Dusp5 via tail vein injection reverses the bone loss of OVX mice efficiently. Collectively, this work demonstrates that the linker region of DUSP5 maybe a novel chemically modifiable target for controlling MSCs fate choices and for osteoporosis treatment.
Collapse
Affiliation(s)
- Xuejiao Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Xuenan Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Yangge Du
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Menglong Hu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Yueming Tian
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Zheng Li
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Longwei Lv
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Xiao Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Yunsong Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Yongsheng Zhou
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Ping Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| |
Collapse
|
15
|
Karkache IY, Damodaran JR, Molstad DHH, Bradley EW. Serine/threonine phosphatases in osteoclastogenesis and bone resorption. Gene 2020; 771:145362. [PMID: 33338510 DOI: 10.1016/j.gene.2020.145362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
Maintenance of optimal bone mass is controlled through the concerted functions of several cell types, including bone resorbing osteoclasts. Osteoclasts function to remove calcified tissue during developmental bone modeling, and degrade bone at sites of damage during bone remodeling. Changes to bone homeostasis can arise with alterations in osteoclastogenesis and/or catabolic activity that are not offset by anabolic activity; thus, factors that regulate osteoclastogenesis and bone resorption are of interest to further our understanding of basic bone biology, and as potential targets for therapeutic intervention. Several key cytokines, including RANKL and M-CSF, as well as co-stimulatory factors elicit kinase signaling cascades that promote osteoclastogenesis. These kinase cascades are offset by the action of protein phosphatases, including members of the serine/threonine phosphatase family. Here we review the functions of serine/threonine phosphatases and their control of osteoclast differentiation and function, while highlighting deficiencies in our understanding of this understudied class of proteins within the field.
Collapse
Affiliation(s)
- Ismael Y Karkache
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jeyaram R Damodaran
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - David H H Molstad
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
16
|
Methods for Identification of Substrates/Inhibitors of FCP/SCP Type Protein Ser/Thr Phosphatases. Processes (Basel) 2020. [DOI: 10.3390/pr8121598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Protein phosphorylation is the most widespread type of post-translational modification and is properly controlled by protein kinases and phosphatases. Regarding the phosphorylation of serine (Ser) and threonine (Thr) residues, relatively few protein Ser/Thr phosphatases control the specific dephosphorylation of numerous substrates, in contrast with Ser/Thr kinases. Recently, protein Ser/Thr phosphatases were reported to have rigid substrate recognition and exert various biological functions. Therefore, identification of targeted proteins by individual protein Ser/Thr phosphatases is crucial to clarify their own biological functions. However, to date, information on the development of methods for identification of the substrates of protein Ser/Thr phosphatases remains scarce. In turn, substrate-trapping mutants are powerful tools to search the individual substrates of protein tyrosine (Tyr) phosphatases. This review focuses on the development of novel methods for the identification of Ser/Thr phosphatases, especially small C-terminal domain phosphatase 1 (Scp1), using peptide-displayed phage library with AlF4−/BeF3−, and discusses the identification of putative inhibitors.
Collapse
|
17
|
Rallabandi HR, Lee D, Sung J, Kim YJ. Peripheral Inhibition of Small C‐Terminal Domain Phosphatase 1 With Napthoquinone Analogs. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Harikrishna Reddy Rallabandi
- Department of Medicinal Biosciences and Nanotechnology Research CenterKonkuk University Chungju 27478 Republic of Korea
| | - Dongsun Lee
- Department of Medicinal Biosciences and Nanotechnology Research CenterKonkuk University Chungju 27478 Republic of Korea
| | - Jinmo Sung
- Department of Medicinal Biosciences and Nanotechnology Research CenterKonkuk University Chungju 27478 Republic of Korea
| | - Young Jun Kim
- Department of Medicinal Biosciences and Nanotechnology Research CenterKonkuk University Chungju 27478 Republic of Korea
| |
Collapse
|
18
|
Lyons DE, McMahon S, Ott M. A combinatorial view of old and new RNA polymerase II modifications. Transcription 2020; 11:66-82. [PMID: 32401151 DOI: 10.1080/21541264.2020.1762468] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The production of mRNA is a dynamic process that is highly regulated by reversible post-translational modifications of the C-terminal domain (CTD) of RNA polymerase II. The CTD is a highly repetitive domain consisting mostly of the consensus heptad sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Phosphorylation of serine residues within this repeat sequence is well studied, but modifications of all residues have been described. Here, we focus on integrating newly identified and lesser-studied CTD post-translational modifications into the existing framework. We also review the growing body of work demonstrating crosstalk between different CTD modifications and the functional consequences of such crosstalk on the dynamics of transcriptional regulation.
Collapse
Affiliation(s)
- Danielle E Lyons
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
| | - Sarah McMahon
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco , San Francisco, CA, USA
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco , San Francisco, CA, USA
| |
Collapse
|
19
|
Rallabandi HR, Ganesan P, Kim YJ. Targeting the C-Terminal Domain Small Phosphatase 1. Life (Basel) 2020; 10:life10050057. [PMID: 32397221 PMCID: PMC7281111 DOI: 10.3390/life10050057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
The human C-terminal domain small phosphatase 1 (CTDSP1/SCP1) is a protein phosphatase with a conserved catalytic site of DXDXT/V. CTDSP1’s major activity has been identified as dephosphorylation of the 5th Ser residue of the tandem heptad repeat of the RNA polymerase II C-terminal domain (RNAP II CTD). It is also implicated in various pivotal biological activities, such as acting as a driving factor in repressor element 1 (RE-1)-silencing transcription factor (REST) complex, which silences the neuronal genes in non-neuronal cells, G1/S phase transition, and osteoblast differentiation. Recent findings have denoted that negative regulation of CTDSP1 results in suppression of cancer invasion in neuroglioma cells. Several researchers have focused on the development of regulating materials of CTDSP1, due to the significant roles it has in various biological activities. In this review, we focused on this emerging target and explored the biological significance, challenges, and opportunities in targeting CTDSP1 from a drug designing perspective.
Collapse
|
20
|
Hu X, Chen LF. Pinning Down the Transcription: A Role for Peptidyl-Prolyl cis-trans Isomerase Pin1 in Gene Expression. Front Cell Dev Biol 2020; 8:179. [PMID: 32266261 PMCID: PMC7100383 DOI: 10.3389/fcell.2020.00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Pin1 is a peptidyl-prolyl cis-trans isomerase that specifically binds to a phosphorylated serine or threonine residue preceding a proline (pSer/Thr-Pro) motif and catalyzes the cis-trans isomerization of proline imidic peptide bond, resulting in conformational change of its substrates. Pin1 regulates many biological processes and is also involved in the development of human diseases, like cancer and neurological diseases. Many Pin1 substrates are transcription factors and transcription regulators, including RNA polymerase II (RNAPII) and factors associated with transcription initiation, elongation, termination and post-transcription mRNA decay. By changing the stability, subcellular localization, protein-protein or protein-DNA/RNA interactions of these transcription related proteins, Pin1 modulates the transcription of many genes related to cell proliferation, differentiation, apoptosis and immune response. Here, we will discuss how Pin regulates the properties of these transcription relevant factors for effective gene expression and how Pin1-mediated transcription contributes to the diverse pathophysiological functions of Pin1.
Collapse
Affiliation(s)
- Xiangming Hu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lin-Feng Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
21
|
Wang B, Pan LY, Kang N, Shen XY. PP4R1 interacts with HMGA2 to promote non-small-cell lung cancer migration and metastasis via activating MAPK/ERK-induced epithelial-mesenchymal transition. Mol Carcinog 2020; 59:467-477. [PMID: 32077156 DOI: 10.1002/mc.23168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/26/2020] [Accepted: 02/06/2020] [Indexed: 12/21/2022]
Abstract
Protein phosphatase 4 regulatory subunit 1 (PP4R1) has been shown to play a role in the regulation of centrosome maturation, apoptosis, DNA repair, and tumor necrosis factor signaling. However, the function of PP4R1 in non-small-cell lung cancer remains unclear. In this study, we identify PP4R1 as an oncogene through Oncomine database mining and immunohistochemical staining, and we showed that PP4R1 is upregulated in lung cancer tissues as compared with that in normal lung tissues and correlated with a poor prognosis in lung cancer patients. Furthermore, in vitro study by wound-healing and Transwell assay showed that PP4R1 could promote migration and invasion of lung cancer cells. Mechanistic investigations revealed that PP4R1 could cooperate with high mobility group AT-hook 2 and thereby promotes epithelial-mesenchymal transition via MAPK/extracellular receptor kinase activation. Taken together, our study provides a rich resource for understanding PP4R1 in lung cancer and indicates that PP4R1 may serve as a potential biomarker in lung cancer therapies.
Collapse
Affiliation(s)
- Bin Wang
- Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Lin-Yue Pan
- Department of Respiration, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Ning Kang
- Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Xiao-Yong Shen
- Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| |
Collapse
|
22
|
Identification of a Specific Inhibitor of Human Scp1 Phosphatase Using the Phosphorylation Mimic Phage Display Method. Catalysts 2019. [DOI: 10.3390/catal9100842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Protein phosphatases are divided into tyrosine (Tyr) phosphatases and serine/threonine (Ser/Thr) phosphatases. While substrate trapping mutants are frequently used to identify substrates of Tyr phosphatases, a rapid and simple method to identify Ser/Thr phosphatase substrates is yet to be developed. The TFIIF-associating component of RNA polymerase II C-terminal domain (CTD) phosphatase/small CTD phosphatase (FCP/SCP) phosphatase family is one of the three types of Ser/Thr protein phosphatases. Defects in these phosphatases are correlated with the occurrence of various diseases such as cancer and neuropathy. Recently, we developed phosphorylation mimic phage display (PMPD) method with AlF4−, a methodology to identify substrates for FCP/SCP type Ser/Thr phosphatase Scp1. Here, we report a PMPD method using BeF3− to identify novel substrate peptides bound to Scp1. After screening peptide phages, we identified peptides that bound to Scp1 in a BeF3−-dependent manner. Synthetic phosphopeptide BeM12-1, the sequence of which was isolated at the highest frequency, directly bound to Scp1. The binding was inhibited by adding BeF3−, indicating that the peptide binds to the active center of catalytic site in Scp1. The phosphorylated BeM12-1 worked as a competitive inhibitor of Scp1. Thus, PMPD method may be applicable for the identification of novel substrates and inhibitors of the FCP/SCP phosphatase family.
Collapse
|
23
|
Zhang X, Shen Q, Lei Z, Wang Q, Zheng J, Jia Z. Characterization of metal binding of bifunctional kinase/phosphatase AceK and implication in activity modulation. Sci Rep 2019; 9:9198. [PMID: 31235769 PMCID: PMC6591243 DOI: 10.1038/s41598-019-45704-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
A unique bifunctional enzyme, isocitrate dehydrogenase kinase/phosphatase (AceK) regulates isocitrate dehydrogenase (IDH) by phosphorylation and dephosphorylation in response to nutrient availability. Herein we report the crystal structure of AceK in complex with ADP and Mn2+ ions. Although the overall structure is similar to the previously reported structures which contain only one Mg2+ ion, surprisingly, two Mn2+ ions are found in the catalytic center of the AceK-Mn2+ structure. Our enzymatic assays demonstrate that AceK-Mn2+ showed higher phosphatase activity than AceK-Mg2+, whereas the kinase activity was relatively unaffected. We created mutants of AceK for all metal-coordinating residues. The phosphatase activities of these mutants were significantly impaired, suggesting the pivotal role of the binuclear (M1-M2) core in AceK phosphatase catalysis. Moreover, we have studied the interactions of Mn2+ and Mg2+ with wild-type and mutant AceK and found that the number of metal ions bound to AceK is in full agreement with the crystal structures. Combined with the enzymatic results, we demonstrate that AceK exhibits phosphatase activity in the presence of two, but not one, Mn2+ ions, similar to PPM phosphatases. Taken together, we suggest that metal ions help AceK to balance and fine tune its kinase and phosphatase activities.
Collapse
Affiliation(s)
- Xiaoying Zhang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Qingya Shen
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zhen Lei
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Qianyi Wang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L3N6, Canada.
| |
Collapse
|
24
|
Efficient and robust preparation of tyrosine phosphorylated intrinsically disordered proteins. Biotechniques 2019; 67:16-22. [PMID: 31092000 DOI: 10.2144/btn-2019-0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are subject to post-translational modifications. This allows the same polypeptide to be involved in different interaction networks with different consequences, ranging from regulatory signalling networks to the formation of membrane-less organelles. We report a robust method for co-expression of modification enzyme and SUMO-tagged IDPs with a subsequent purification procedure that allows for the production of modified IDP. The robustness of our protocol is demonstrated using a challenging system: RNA polymerase II C-terminal domain (CTD); that is, a low-complexity repetitive region with multiple phosphorylation sites. In vitro phosphorylation approaches fail to yield multiple-site phosphorylated CTD, whereas our in vivo protocol allows the rapid production of near homogeneous phosphorylated CTD at a low cost. These samples can be used in functional and structural studies.
Collapse
|
25
|
Burkholder NT, Mayfield JE, Yu X, Irani S, Arce DK, Jiang F, Matthews WL, Xue Y, Zhang YJ. Phosphatase activity of small C-terminal domain phosphatase 1 (SCP1) controls the stability of the key neuronal regulator RE1-silencing transcription factor (REST). J Biol Chem 2018; 293:16851-16861. [PMID: 30217818 DOI: 10.1074/jbc.ra118.004722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/20/2018] [Indexed: 02/03/2023] Open
Abstract
The RE1-silencing transcription factor (REST) is the major scaffold protein for assembly of neuronal gene silencing complexes that suppress gene transcription through regulating the surrounding chromatin structure. REST represses neuronal gene expression in stem cells and non-neuronal cells, but it is minimally expressed in neuronal cells to ensure proper neuronal development. Dysregulation of REST function has been implicated in several cancers and neurological diseases. Modulating REST gene silencing is challenging because cellular and developmental differences can affect its activity. We therefore considered the possibility of modulating REST activity through its regulatory proteins. The human small C-terminal domain phosphatase 1 (SCP1) regulates the phosphorylation state of REST at sites that function as REST degradation checkpoints. Using kinetic analysis and direct visualization with X-ray crystallography, we show that SCP1 dephosphorylates two degron phosphosites of REST with a clear preference for phosphoserine 861 (pSer-861). Furthermore, we show that SCP1 stabilizes REST protein levels, which sustains REST's gene silencing function in HEK293 cells. In summary, our findings strongly suggest that REST is a bona fide substrate for SCP1 in vivo and that SCP1 phosphatase activity protects REST against degradation. These observations indicate that targeting REST via its regulatory protein SCP1 can modulate its activity and alter signaling in this essential developmental pathway.
Collapse
Affiliation(s)
| | | | - Xiaohua Yu
- the Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | | | | | - Faqin Jiang
- the School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Yuanchao Xue
- the Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Yan Jessie Zhang
- From the Departments of Molecular Biosciences and .,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
26
|
Burkholder NT, Medellin B, Irani S, Matthews W, Showalter SA, Zhang YJ. Chemical Tools for Studying the Impact of cis/trans Prolyl Isomerization on Signaling: A Case Study on RNA Polymerase II Phosphatase Activity and Specificity. Methods Enzymol 2018; 607:269-297. [PMID: 30149861 PMCID: PMC6701646 DOI: 10.1016/bs.mie.2018.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Proline isomerization is ubiquitous in proteins and is important for regulating important processes such as folding, recognition, and enzymatic activity. In humans, peptidyl-prolyl isomerase cis-trans isomerase NIMA interacting 1 (Pin1) is responsible for mediating fast conversion between cis- and trans-conformations of serine/threonine-proline (S/T-P) motifs in a large number of cellular pathways, many of which are involved in normal development as well as progression of several cancers and diseases. One of the major processes that Pin1 regulates is phosphatase activity against the RNA polymerase II C-terminal domain (RNAPII CTD). However, molecular tools capable of distinguishing the effects of proline conformation on phosphatase function have been lacking. A key tool that allows us to understand isomeric specificity of proteins toward their substrates is the usage of proline mimicking isosteres that are locked to prevent cis/trans-proline conversion. These locked isosteres can be incorporated into standard peptide synthesis and then used in replacement of native substrates in various experimental techniques such as kinetic and thermodynamic assays as well as X-ray crystallography. We will describe the application of these chemical tools in detail using CTD phosphatases as an example. We will also discuss alternative methods for analyzing the effect of proline conformation such as 13C NMR and the biological implications of proline isomeric specificity of proteins. The chemical and analytical tools presented in this chapter are widely applicable and should help elucidate many questions on the role of proline isomerization in biology.
Collapse
Affiliation(s)
| | - Brenda Medellin
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Seema Irani
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Wendy Matthews
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Scott A Showalter
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Yan Jessie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
27
|
Fukasawa Y, Oda T, Tomii K, Imai K. Origin and Evolutionary Alteration of the Mitochondrial Import System in Eukaryotic Lineages. Mol Biol Evol 2017; 34:1574-1586. [PMID: 28369657 PMCID: PMC5455965 DOI: 10.1093/molbev/msx096] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein transport systems are fundamentally important for maintaining mitochondrial function. Nevertheless, mitochondrial protein translocases such as the kinetoplastid ATOM complex have recently been shown to vary in eukaryotic lineages. Various evolutionary hypotheses have been formulated to explain this diversity. To resolve any contradiction, estimating the primitive state and clarifying changes from that state are necessary. Here, we present more likely primitive models of mitochondrial translocases, specifically the translocase of the outer membrane (TOM) and translocase of the inner membrane (TIM) complexes, using scrutinized phylogenetic profiles. We then analyzed the translocases’ evolution in eukaryotic lineages. Based on those results, we propose a novel evolutionary scenario for diversification of the mitochondrial transport system. Our results indicate that presequence transport machinery was mostly established in the last eukaryotic common ancestor, and that primitive translocases already had a pathway for transporting presequence-containing proteins. Moreover, secondary changes including convergent and migrational gains of a presequence receptor in TOM and TIM complexes, respectively, likely resulted from constrained evolution. The nature of a targeting signal can constrain alteration to the protein transport complex.
Collapse
Affiliation(s)
- Yoshinori Fukasawa
- Artificial Intelligence Research Center, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan
| | - Toshiyuki Oda
- Artificial Intelligence Research Center, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan
| | - Kenichiro Imai
- Artificial Intelligence Research Center, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan
| |
Collapse
|
28
|
Park H, Lee HS, Ku B, Lee SR, Kim SJ. Two-track virtual screening approach to identify both competitive and allosteric inhibitors of human small C-terminal domain phosphatase 1. J Comput Aided Mol Des 2017; 31:743-753. [PMID: 28653253 DOI: 10.1007/s10822-017-0037-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/20/2017] [Indexed: 11/29/2022]
Abstract
Despite a wealth of persuasive evidence for the involvement of human small C-terminal domain phosphatase 1 (Scp1) in the impairment of neuronal differentiation and in Huntington's disease, small-molecule inhibitors of Scp1 have been rarely reported so far. This study aims to the discovery of both competitive and allosteric Scp1 inhibitors through the two-track virtual screening procedure. By virtue of the improvement of the scoring function by implementing a new molecular solvation energy term and by reoptimizing the atomic charges for the active-site Mg2+ ion cluster, we have been able to identify three allosteric and five competitive Scp1 inhibitors with low-micromolar inhibitory activity. Consistent with the results of kinetic studies on the inhibitory mechanisms, the allosteric inhibitors appear to be accommodated in the peripheral binding pocket through the hydrophobic interactions with the nonpolar residues whereas the competitive ones bind tightly in the active site with a direct coordination to the central Mg2+ ion. Some structural modifications to improve the biochemical potency of the newly identified inhibitors are proposed based on the binding modes estimated with docking simulations.
Collapse
Affiliation(s)
- Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul, 05006, South Korea.
| | - Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju, 28116, South Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea.
| |
Collapse
|
29
|
The nuclear phosphatase SCP4 regulates FoxO transcription factors during muscle wasting in chronic kidney disease. Kidney Int 2017; 92:336-348. [PMID: 28506762 DOI: 10.1016/j.kint.2017.02.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/16/2017] [Accepted: 02/23/2017] [Indexed: 12/21/2022]
Abstract
Chronic kidney disease (CKD) and related inflammatory responses stimulate protein-energy wasting, a complication causing loss of muscle mass. Primarily, muscle wasting results from accelerated protein degradation via autophagic/lysosomal and proteasomal pathways, but mechanisms regulating these proteolysis pathways remain unclear. Since dephosphorylation of FoxOs regulates ubiquitin/proteasome protein metabolism, we tested whether a novel nuclear phosphatase, the small C-terminal domain phosphatase (SCP) 4, regulates FoxOs signaling and, in turn, muscle wasting. In cultured mouse myoblast cells, SCP4 overexpression stimulated proteolysis, while knockdown of SCP4 prevented the proteolysis stimulated by inflammatory cytokines. SCP4 overexpression led to nuclear accumulation of FoxO1/3a followed by increased expression of catabolic factors including myostatin, Atrogin-1, and MuRF-1, and induction of lysosomal-mediated proteolysis. Treatment of C2C12 myotubes with proinflammatory cytokines stimulated SCP4 expression in an NF-κB-dependent manner. In skeletal muscle of mice with CKD, SCP4 expression was up-regulated. Similarly, in skeletal muscle of patients with CKD, SCP4 expression was significantly increased. Knockdown of SCP4 significantly suppressed FoxO1/3a-mediated expression of Atrogin-1 and MuRF-1 and prevented muscle wasting in mice with CKD. Thus, SCP4 is a novel regulator of FoxO transcription factors and promotes cellular proteolysis. Hence, targeting SCP4 may prevent muscle wasting in CKD and possibly other catabolic conditions.
Collapse
|
30
|
Developmental Control of NRAMP1 (SLC11A1) Expression in Professional Phagocytes. BIOLOGY 2017; 6:biology6020028. [PMID: 28467369 PMCID: PMC5485475 DOI: 10.3390/biology6020028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022]
Abstract
NRAMP1 (SLC11A1) is a professional phagocyte membrane importer of divalent metals that contributes to iron recycling at homeostasis and to nutritional immunity against infection. Analyses of data generated by several consortia and additional studies were integrated to hypothesize mechanisms restricting NRAMP1 expression to mature phagocytes. Results from various epigenetic and transcriptomic approaches were collected for mesodermal and hematopoietic cell types and compiled for combined analysis with results of genetic studies associating single nucleotide polymorphisms (SNPs) with variations in NRAMP1 expression (eQTLs). Analyses establish that NRAMP1 is part of an autonomous topologically associated domain delimited by ubiquitous CCCTC-binding factor (CTCF) sites. NRAMP1 locus contains five regulatory regions: a predicted super-enhancer (S-E) key to phagocyte-specific expression; the proximal promoter; two intronic areas, including 3' inhibitory elements that restrict expression during development; and a block of upstream sites possibly extending the S-E domain. Also the downstream region adjacent to the 3' CTCF locus boundary may regulate expression during hematopoiesis. Mobilization of the locus 14 predicted transcriptional regulatory elements occurs in three steps, beginning with hematopoiesis; at the onset of myelopoiesis and through myelo-monocytic differentiation. Basal expression level in mature phagocytes is further influenced by genetic variation, tissue environment, and in response to infections that induce various epigenetic memories depending on microorganism nature. Constitutively associated transcription factors (TFs) include CCAAT enhancer binding protein beta (C/EBPb), purine rich DNA binding protein (PU.1), early growth response 2 (EGR2) and signal transducer and activator of transcription 1 (STAT1) while hypoxia-inducible factors (HIFs) and interferon regulatory factor 1 (IRF1) may stimulate iron acquisition in pro-inflammatory conditions. Mouse orthologous locus is generally conserved; chromatin patterns typify a de novo myelo-monocytic gene whose expression is tightly controlled by TFs Pu.1, C/ebps and Irf8; Irf3 and nuclear factor NF-kappa-B p 65 subunit (RelA) regulate expression in inflammatory conditions. Functional differences in the determinants identified at these orthologous loci imply that species-specific mechanisms control gene expression.
Collapse
|
31
|
Liao P, Wang W, Li Y, Wang R, Jin J, Pang W, Chen Y, Shen M, Wang X, Jiang D, Pang J, Liu M, Lin X, Feng XH, Wang P, Ge X. Palmitoylated SCP1 is targeted to the plasma membrane and negatively regulates angiogenesis. eLife 2017; 6:e22058. [PMID: 28440748 PMCID: PMC5404917 DOI: 10.7554/elife.22058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 03/25/2017] [Indexed: 12/12/2022] Open
Abstract
SCP1 as a nuclear transcriptional regulator acts globally to silence neuronal genes and to affect the dephosphorylation of RNA Pol ll. However, we report the first finding and description of SCP1 as a plasma membrane-localized protein in various cancer cells using EGFP- or other epitope-fused SCP1. Membrane-located SCP1 dephosphorylates AKT at serine 473, leading to the abolishment of serine 473 phosphorylation that results in suppressed angiogenesis and a decreased risk of tumorigenesis. Consistently, we observed increased AKT phosphorylation and angiogenesis followed by enhanced tumorigenesis in Ctdsp1 (which encodes SCP1) gene - knockout mice. Importantly, we discovered that the membrane localization of SCP1 is crucial for impeding angiogenesis and tumor growth, and this localization depends on palmitoylation of a conserved cysteine motif within its NH2 terminus. Thus, our study discovers a novel mechanism underlying SCP1 shuttling between the plasma membrane and nucleus, which constitutes a unique pathway in transducing AKT signaling that is closely linked to angiogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Peng Liao
- Department of Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Weichao Wang
- Department of Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Li
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Rui Wang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiali Jin
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Weijuan Pang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yunfei Chen
- Department of Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mingyue Shen
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinbo Wang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongyang Jiang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinjiang Pang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mingyao Liu
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xia Lin
- Department of Surgery, Baylor College of Medicine, Houston, United States
| | - Xin-Hua Feng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Zhejiang, China
| | - Ping Wang
- Department of Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xin Ge
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Allen KN, Dunaway-Mariano D. Catalytic scaffolds for phosphoryl group transfer. Curr Opin Struct Biol 2016; 41:172-179. [PMID: 27526404 DOI: 10.1016/j.sbi.2016.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 12/21/2022]
Abstract
A single genome encodes a large number of phosphoryl hydrolases for the purposes of phosphate recycling, primary and secondary metabolism, signal transduction and regulation, and protection from xenobiotics. Phosphate monoester hydrolysis faces a high kinetic barrier, yet there are multiple solutions to the problem both in terms of catalytic mechanisms and three-dimensional structure of the hydrolases. Recent structural and mechanistic findings highlight the trigonal-bipyramidal nature of the transition state for enzyme promoted phosphate monoester hydrolysis and the evolution and role of inserted loops/domains in governing substrate specificity and promiscuity. Important questions remain as to how electrostatics modulate water networks and critical proton-transfer events. How substrate targeting and catalysis is achieved by the independently evolved catalytic platforms is compared and contrasted in this article.
Collapse
Affiliation(s)
- Karen N Allen
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215-2521, USA.
| | - Debra Dunaway-Mariano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
33
|
Sun T, Fu J, Shen T, Lin X, Liao L, Feng XH, Xu J. The Small C-terminal Domain Phosphatase 1 Inhibits Cancer Cell Migration and Invasion by Dephosphorylating Ser(P)68-Twist1 to Accelerate Twist1 Protein Degradation. J Biol Chem 2016; 291:11518-28. [PMID: 26975371 DOI: 10.1074/jbc.m116.721795] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 11/06/2022] Open
Abstract
Twist1 is a basic helix-loop-helix transcription factor that strongly promotes epithelial-to-mesenchymal transition, migration, invasion, and metastasis of cancer cells. The MAPK-phosphorylated Twist1 on its serine 68 (Ser(P)(68)-Twist1) has a significantly enhanced stability and function to drive cancer cell invasion and metastasis. However, the phosphatase that dephosphorylates Ser(P)(68)-Twist1 and destabilizes Twist1 has not been identified and characterized. In this study, we screened a serine/threonine phosphatase cDNA expression library in HEK293T cells with ectopically coexpressed Twist1. We found that the small C-terminal domain phosphatase 1 (SCP1) specifically dephosphorylates Ser(P)(68)-Twist1 in both cell-free reactions and living cells. SCP1 uses its amino acid residues 43-63 to interact with the N terminus of Twist1. Increased SCP1 expression in cells decreased Ser(P)(68)-Twist1 and total Twist1 proteins, whereas knockdown of SCP1 increased Ser(P)(68)-Twist1 and total Twist1 proteins. Furthermore, the levels of SCP1 are negatively correlated with Twist1 protein levels in several cancer cell lines. SCP1-dephosphorylated Twist1 undergoes fast degradation via the ubiquitin-proteasome pathway. Importantly, an increase in SCP1 expression in breast cancer cells with either endogenous or ectopically expressed Twist1 largely inhibits the Twist1-induced epithelial-to-mesenchymal transition phenotype and the migration and invasion capabilities of these cells. These results indicate that SCP1 is the phosphatase that counterregulates the MAPK-mediated phosphorylation of Ser(68)-Twist1. Thus, an increase in SCP1 expression and activity may be a useful strategy for eliminating the detrimental roles of Twist1 in cancer cells.
Collapse
Affiliation(s)
- Tong Sun
- From the Department of Molecular and Cellular Biology
| | - Junjiang Fu
- From the Department of Molecular and Cellular Biology, the Institute for Cancer Medicine, Research Center for Preclinical Medicine and College of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China, and
| | - Tao Shen
- From the Department of Molecular and Cellular Biology
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Lan Liao
- From the Department of Molecular and Cellular Biology
| | - Xin-Hua Feng
- From the Department of Molecular and Cellular Biology, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, the Life Sciences Institute and Innovation Center for Cell Signaling Networks, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianming Xu
- From the Department of Molecular and Cellular Biology, the Institute for Cancer Medicine, Research Center for Preclinical Medicine and College of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China, and
| |
Collapse
|
34
|
Wani S, Sugita A, Ohkuma Y, Hirose Y. Human SCP4 is a chromatin-associated CTD phosphatase and exhibits the dynamic translocation during erythroid differentiation. J Biochem 2016; 160:111-20. [DOI: 10.1093/jb/mvw018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/01/2016] [Indexed: 12/24/2022] Open
|
35
|
Mayfield JE, Burkholder NT, Zhang YJ. Dephosphorylating eukaryotic RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:372-87. [PMID: 26779935 DOI: 10.1016/j.bbapap.2016.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
The phosphorylation state of the C-terminal domain of RNA polymerase II is required for the temporal and spatial recruitment of various factors that mediate transcription and RNA processing throughout the transcriptional cycle. Therefore, changes in CTD phosphorylation by site-specific kinases/phosphatases are critical for the accurate transmission of information during transcription. Unlike kinases, CTD phosphatases have been traditionally neglected as they are thought to act as passive negative regulators that remove all phosphate marks at the conclusion of transcription. This over-simplified view has been disputed in recent years and new data assert the active and regulatory role phosphatases play in transcription. We now know that CTD phosphatases ensure the proper transition between different stages of transcription, balance the distribution of phosphorylation for accurate termination and re-initiation, and prevent inappropriate expression of certain genes. In this review, we focus on the specific roles of CTD phosphatases in regulating transcription. In particular, we emphasize how specificity and timing of dephosphorylation are achieved for these phosphatases and consider the various regulatory factors that affect these dynamics.
Collapse
Affiliation(s)
- Joshua E Mayfield
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Nathaniel T Burkholder
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Yan Jessie Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
36
|
Mayfield JE, Fan S, Wei S, Zhang M, Li B, Ellington AD, Etzkorn FA, Zhang YJ. Chemical Tools To Decipher Regulation of Phosphatases by Proline Isomerization on Eukaryotic RNA Polymerase II. ACS Chem Biol 2015; 10:2405-14. [PMID: 26332362 DOI: 10.1021/acschembio.5b00296] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proline isomerization greatly impacts biological signaling but is subtle and difficult to detect in proteins. We characterize this poorly understood regulatory mechanism for RNA polymerase II carboxyl terminal domain (CTD) phosphorylation state using novel, direct, and quantitative chemical tools. We determine the proline isomeric preference of three CTD phosphatases: Ssu72 as cis-proline specific, Scp1 and Fcp1 as strongly trans-preferred. Due to this inherent characteristic, these phosphatases respond differently to enzymes that catalyze the isomerization of proline, like Ess1/Pin1. We demonstrate that this selective regulation of RNA polymerase II phosphorylation state exists within human cells, consistent with in vitro assays. These results support a model in which, instead of a global enhancement of downstream enzymatic activities, proline isomerases selectively boost the activity of a subset of CTD regulatory factors specific for cis-proline. This leads to diversified phosphorylation states of CTD in vitro and in cells. We provide the chemical tools to investigate proline isomerization and its ability to selectively enhance signaling in transcription and other biological contexts.
Collapse
Affiliation(s)
- Joshua E. Mayfield
- Department
of Molecular Biosciences and Institute for Cellular and Molecular
Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Shuang Fan
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Shuo Wei
- 1 Cancer
Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department
of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Mengmeng Zhang
- Department
of Molecular Biosciences and Institute for Cellular and Molecular
Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Bing Li
- Department
of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines
Boulevard, Dallas, Texas 75390, United States
| | - Andrew D. Ellington
- Department
of Molecular Biosciences and Institute for Cellular and Molecular
Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Felicia A. Etzkorn
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yan Jessie Zhang
- Department
of Molecular Biosciences and Institute for Cellular and Molecular
Biology, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
37
|
Srivastava R, Ahn SH. Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function. Biotechnol Adv 2015; 33:856-72. [PMID: 26241863 DOI: 10.1016/j.biotechadv.2015.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/08/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
At the onset of transcription, many protein machineries interpret the cellular signals that regulate gene expression. These complex signals are mostly transmitted to the indispensable primary proteins involved in transcription, RNA polymerase II (RNAPII) and histones. RNAPII and histones are so well coordinated in this cellular function that each cellular signal is precisely allocated to specific machinery depending on the stage of transcription. The carboxy-terminal domain (CTD) of RNAPII in eukaryotes undergoes extensive posttranslational modification, called the 'CTD code', that is indispensable for coupling transcription with many cellular processes, including mRNA processing. The posttranslational modification of histones, known as the 'histone code', is also critical for gene transcription through the reversible and dynamic remodeling of chromatin structure. Notably, the histone code is closely linked with the CTD code, and their combinatorial effects enable the delicate regulation of gene transcription. This review elucidates recent findings regarding the CTD modifications of RNAPII and their coordination with the histone code, providing integrative pathways for the fine-tuned regulation of gene expression and cellular function.
Collapse
Affiliation(s)
- Rakesh Srivastava
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Seong Hoon Ahn
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
38
|
Koo J, Bahk YY. In vivo putative O-GlcNAcylation of human SCP1 and evidence for possible role of its N-terminal disordered structure. BMB Rep 2015; 47:593-8. [PMID: 25081999 PMCID: PMC4261519 DOI: 10.5483/bmbrep.2014.47.10.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase II carboxyl-terminal domain (RNAPII CTD) phosphatases are responsible for the dephosphorylation of the C-terminal domain of the small subunit of RNAPII in eukaryotes. Recently, we demonstrated the identification of several interacting partners with human small CTD phosphatase1 (hSCP1) and the substrate specificity to delineate an appearance of the dephosphorylation catalyzed by SCP1. In this study, using the established cells for inducibly expressing hSCP1 proteins, we monitored the modification of β-O-linked N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation is one of the most common post-translational modifications (PTMs). To gain insight into the PTM of hSCP1, we used the Western blot, immunoprecipitation, succinylayed wheat germ agglutininprecipitation, liquid chromatography-mass spectrometry analyses, and site-directed mutagenesis and identified the Ser41 residue of hSCP1 as the O-GlcNAc modification site. These results suggest that hSCP1 may be an O-GlcNAcylated protein in vivo, and its N-terminus may function a possible role in the PTM, providing a scaffold for binding the protein(s). [BMB Reports 2014; 47(10): 593-598]
Collapse
Affiliation(s)
- JaeHyung Koo
- Department of Brain Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Korea
| | - Young Yil Bahk
- Department of Biotechnology, Konkuk University, Chungju 380-701, Korea
| |
Collapse
|
39
|
Wang W, Liao P, Shen M, Chen T, Chen Y, Li Y, Lin X, Ge X, Wang P. SCP1 regulates c-Myc stability and functions through dephosphorylating c-Myc Ser62. Oncogene 2015; 35:491-500. [PMID: 25893300 DOI: 10.1038/onc.2015.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/28/2015] [Accepted: 02/27/2015] [Indexed: 02/06/2023]
Abstract
Serine 62 (Ser62) phosphorylation affects the c-Myc protein stability in cancer cells. However, the mechanism for dephosphorylating c-Myc is not well understood. In this study, we identified carboxyl-terminal domain RNA polymerase II polypeptide A small phosphatase 1 (SCP1) as a novel phosphatase specifically dephosphorylating c-Myc Ser62. Ectopically expressed SCP1 strongly dephosphorylated c-Myc Ser62, destabilized c-Myc protein and suppressed c-Myc transcriptional activity. Knockdown of SCP1 increased the c-Myc protein levels in liver cancer cells. SCP1 interacted with c-Myc both in vivo and in vitro. In addition, Ser245 at the C-terminus of SCP1 was essential for its phosphatase activity towards c-Myc. Functionally, SCP1 negatively regulated the cancer cell proliferation. Collectively, our findings indicate that SCP1 is a potential tumor suppressor for liver cancers through dephosphorylating c-Myc Ser62.
Collapse
Affiliation(s)
- W Wang
- Department of Central Laboratory, Shanghai 10th People's Hospital, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - P Liao
- Department of Central Laboratory, Shanghai 10th People's Hospital, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - M Shen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - T Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Y Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Y Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - X Lin
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - X Ge
- Department of Central Laboratory, Shanghai 10th People's Hospital, Tongji University, Shanghai, China
| | - P Wang
- Department of Central Laboratory, Shanghai 10th People's Hospital, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,School of Life Science and Technology, Tongji University, Shanghai, China
| |
Collapse
|
40
|
Hong J, Kim H, Park C, Son M, Lee KW, Kim YJ. Identification of Undifferentiated Embryonic Cell Transcription Factor 1 as a Potential Substrate of Carboxyl-Terminal Domain Small Phosphatases. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2015. [DOI: 10.5012/jkcs.2015.59.2.188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Panoramic view of a superfamily of phosphatases through substrate profiling. Proc Natl Acad Sci U S A 2015; 112:E1974-83. [PMID: 25848029 DOI: 10.1073/pnas.1423570112] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Large-scale activity profiling of enzyme superfamilies provides information about cellular functions as well as the intrinsic binding capabilities of conserved folds. Herein, the functional space of the ubiquitous haloalkanoate dehalogenase superfamily (HADSF) was revealed by screening a customized substrate library against >200 enzymes from representative prokaryotic species, enabling inferred annotation of ∼35% of the HADSF. An extremely high level of substrate ambiguity was revealed, with the majority of HADSF enzymes using more than five substrates. Substrate profiling allowed assignment of function to previously unannotated enzymes with known structure, uncovered potential new pathways, and identified iso-functional orthologs from evolutionarily distant taxonomic groups. Intriguingly, the HADSF subfamily having the least structural elaboration of the Rossmann fold catalytic domain was the most specific, consistent with the concept that domain insertions drive the evolution of new functions and that the broad specificity observed in HADSF may be a relic of this process.
Collapse
|
42
|
He Y, Guo X, Yu ZH, Wu L, Gunawan AM, Zhang Y, Dixon JE, Zhang ZY. A potent and selective inhibitor for the UBLCP1 proteasome phosphatase. Bioorg Med Chem 2015; 23:2798-809. [PMID: 25907364 DOI: 10.1016/j.bmc.2015.03.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 11/17/2022]
Abstract
The ubiquitin-like domain-containing C-terminal domain phosphatase 1 (UBLCP1) has been implicated as a negative regulator of the proteasome, a key mediator in the ubiquitin-dependent protein degradation. Small molecule inhibitors that block UBLCP1 activity would be valuable as research tools and potential therapeutics for human diseases caused by the cellular accumulation of misfold/damaged proteins. We report a salicylic acid fragment-based library approach aimed at targeting both the phosphatase active site and its adjacent binding pocket for enhanced affinity and selectivity. Screening of the focused libraries led to the identification of the first potent and selective UBLCP1 inhibitor 13. Compound 13 exhibits an IC50 of 1.0μM for UBLCP1 and greater than 5-fold selectivity against a large panel of protein phosphatases from several distinct families. Importantly, the inhibitor possesses efficacious cellular activity and is capable of inhibiting UBLCP1 function in cells, which in turn up-regulates nuclear proteasome activity. These studies set the groundwork for further developing compound 13 into chemical probes or potential therapeutic agents targeting the UBLCP1 phosphatase.
Collapse
Affiliation(s)
- Yantao He
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Xing Guo
- Department of Pharmacology, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Zhi-Hong Yu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Li Wu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Andrea M Gunawan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Yan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA
| | - Jack E Dixon
- Department of Pharmacology, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| |
Collapse
|
43
|
R HR, Kim H, Noh K, Kim YJ. The diverse roles of RNA polymerase II C-terminal domain phosphatase SCP1. BMB Rep 2015; 47:192-6. [PMID: 24755554 PMCID: PMC4163886 DOI: 10.5483/bmbrep.2014.47.4.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase II carboxyl-terminal domain (pol II CTD) phosphatases are a newly emerging family of phosphatases that are members of DXDX (T/V). The subfamily includes Small CTD phosphatases, like SCP1, SCP2, SCP3, TIMM50, HSPC129 and UBLCP. Extensive study of SCP1 has elicited the diversified roles of the small C terminal domain phosphatase. The SCP1 plays a vital role in various biological activities, like neuronal gene silencing and preferential Ser5 dephosphorylation, acts as a cardiac hypertrophy inducer with the help of its intronic miRNAs, and has shown a key role in cell cycle regulation. This short review offers an explanation of the mechanism of action of small CTD phosphatases, in different biological activities and metabolic processes. [BMB Reports 2014; 47(4): 192-196]
Collapse
Affiliation(s)
- Harikrishna Reddy R
- Departments of Applied Biochemistry Research Center, Konkuk University, Chungju 380-701, Korea
| | - Hackyoung Kim
- Departments of Applied Biochemistry Research Center, Konkuk University, Chungju 380-701, Korea
| | - Kwangmo Noh
- Departments of Nanotechnology Research Center, Konkuk University, Chungju 380-701, Korea
| | - Young Jun Kim
- Departments of Applied Biochemistry and Nanotechnology Research Center, Konkuk University, Chungju 380-701, Korea
| |
Collapse
|
44
|
Hong J, Sung J, Lee D, Reddy R H, Kim YJ. Selective Dephosphorylation by SCP1 and PP2A in Phosphorylated Residues of SMAD2. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.11.3385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Zhao Y, Xiao M, Sun B, Zhang Z, Shen T, Duan X, Yu PB, Feng XH, Lin X. C-terminal domain (CTD) small phosphatase-like 2 modulates the canonical bone morphogenetic protein (BMP) signaling and mesenchymal differentiation via Smad dephosphorylation. J Biol Chem 2014; 289:26441-26450. [PMID: 25100727 PMCID: PMC4176200 DOI: 10.1074/jbc.m114.568964] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/05/2014] [Indexed: 01/10/2023] Open
Abstract
The bone morphogenetic protein (BMP) signaling pathway regulates a wide range of cellular responses in metazoans. A key step in the canonical BMP signaling is the phosphorylation and activation of transcription factors Smad1, Smad5, and Smad8 (collectively Smad1/5/8) by the type I BMP receptors. We previously identified PPM1A as a phosphatase toward dephosphorylation of all receptor-regulated Smads (R-Smads), including Smad1/5/8. Here we report another nuclear phosphatase named SCP4/CTDSPL2, belonging to the FCP/SCP family, as a novel Smad phosphatase in the nucleus. SCP4 physically interacts with and specifically dephosphorylates Smad1/5/8, and as a result attenuates BMP-induced transcriptional responses. Knockdown of SCP4 in multipotent mesenchymal C2C12 cells leads to increased expression of BMP target genes and consequently promotes BMP-induced osteogenic differentiation. Collectively, our results demonstrate that SCP4, as a Smad phosphatase, plays a critical role in BMP-induced signaling and cellular functions.
Collapse
Affiliation(s)
- Yulan Zhao
- Life Sciences Institute, and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mu Xiao
- Life Sciences Institute, and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Baoguo Sun
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030; Department of Molecular Physiology and Biophysics, and Baylor College of Medicine, Houston, Texas 77030
| | - Zhengmao Zhang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Tao Shen
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030; Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, and
| | - Xueyan Duan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Paul Borchyung Yu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Xin-Hua Feng
- Life Sciences Institute, and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China,; Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030; Department of Molecular Physiology and Biophysics, and Baylor College of Medicine, Houston, Texas 77030; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030,.
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030.
| |
Collapse
|
46
|
C-terminal domain small phosphatase 1 and MAP kinase reciprocally control REST stability and neuronal differentiation. Proc Natl Acad Sci U S A 2014; 111:E3929-36. [PMID: 25197063 DOI: 10.1073/pnas.1414770111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The repressor element 1 (RE1) silencing transcription factor (REST) in stem cells represses hundreds of genes essential to neuronal function. During neurogenesis, REST is degraded in neural progenitors to promote subsequent elaboration of a mature neuronal phenotype. Prior studies indicate that part of the degradation mechanism involves phosphorylation of two sites in the C terminus of REST that require activity of beta-transducin repeat containing E3 ubiquitin protein ligase, βTrCP. We identify a proline-directed phosphorylation motif, at serines 861/864 upstream of these sites, which is a substrate for the peptidylprolyl cis/trans isomerase, Pin1, as well as the ERK1/2 kinases. Mutation at S861/864 stabilizes REST, as does inhibition of Pin1 activity. Interestingly, we find that C-terminal domain small phosphatase 1 (CTDSP1), which is recruited by REST to neuronal genes, is present in REST immunocomplexes, dephosphorylates S861/864, and stabilizes REST. Expression of a REST peptide containing S861/864 in neural progenitors inhibits terminal neuronal differentiation. Together with previous work indicating that both REST and CTDSP1 are expressed to high levels in stem cells and down-regulated during neurogenesis, our results suggest that CTDSP1 activity stabilizes REST in stem cells and that ERK-dependent phosphorylation combined with Pin1 activity promotes REST degradation in neural progenitors.
Collapse
|
47
|
Wani S, Yuda M, Fujiwara Y, Yamamoto M, Harada F, Ohkuma Y, Hirose Y. Vertebrate Ssu72 regulates and coordinates 3'-end formation of RNAs transcribed by RNA polymerase II. PLoS One 2014; 9:e106040. [PMID: 25166011 PMCID: PMC4148344 DOI: 10.1371/journal.pone.0106040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/26/2014] [Indexed: 01/18/2023] Open
Abstract
In eukaryotes, the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is composed of tandem repeats of the heptapeptide YSPTSPS, which is subjected to reversible phosphorylation at Ser2, Ser5, and Ser7 during the transcription cycle. Dynamic changes in CTD phosphorylation patterns, established by the activities of multiple kinases and phosphatases, are responsible for stage-specific recruitment of various factors involved in RNA processing, histone modification, and transcription elongation/termination. Yeast Ssu72, a CTD phosphatase specific for Ser5 and Ser7, functions in 3′-end processing of pre-mRNAs and in transcription termination of small non-coding RNAs such as snoRNAs and snRNAs. Vertebrate Ssu72 exhibits Ser5- and Ser7-specific CTD phosphatase activity in vitro, but its roles in gene expression and CTD dephosphorylation in vivo remain to be elucidated. To investigate the functions of vertebrate Ssu72 in gene expression, we established chicken DT40 B-cell lines in which Ssu72 expression was conditionally inactivated. Ssu72 depletion in DT40 cells caused defects in 3′-end formation of U2 and U4 snRNAs and GAPDH mRNA. Surprisingly, however, Ssu72 inactivation increased the efficiency of 3′-end formation of non-polyadenylated replication-dependent histone mRNA. Chromatin immunoprecipitation analyses revealed that Ssu72 depletion caused a significant increase in both Ser5 and Ser7 phosphorylation of the Pol II CTD on all genes in which 3′-end formation was affected. These results suggest that vertebrate Ssu72 plays positive roles in 3′-end formation of snRNAs and polyadenylated mRNAs, but negative roles in 3′-end formation of histone mRNAs, through dephosphorylation of both Ser5 and Ser7 of the CTD.
Collapse
Affiliation(s)
- Shotaro Wani
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Masamichi Yuda
- Department of Molecular and Cellular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Yosuke Fujiwara
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Masaya Yamamoto
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Fumio Harada
- Department of Molecular and Cellular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Yoshiaki Ohkuma
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Yutaka Hirose
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
- * E-mail:
| |
Collapse
|
48
|
Hsu PL, Yang F, Smith-Kinnaman W, Yang W, Song JE, Mosley AL, Varani G. Rtr1 is a dual specificity phosphatase that dephosphorylates Tyr1 and Ser5 on the RNA polymerase II CTD. J Mol Biol 2014; 426:2970-81. [PMID: 24951832 PMCID: PMC4119023 DOI: 10.1016/j.jmb.2014.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 01/07/2023]
Abstract
The phosphorylation state of heptapeptide repeats within the C-terminal domain (CTD) of the largest subunit of RNA polymerase II (PolII) controls the transcription cycle and is maintained by the competing action of kinases and phosphatases. Rtr1 was recently proposed to be the enzyme responsible for the transition of PolII into the elongation and termination phases of transcription by removing the phosphate marker on serine 5, but this attribution was questioned by the apparent lack of enzymatic activity. Here we demonstrate that Rtr1 is a phosphatase of new structure that is auto-inhibited by its own C-terminus. The enzymatic activity of the protein in vitro is functionally important in vivo as well: a single amino acid mutation that reduces activity leads to the same phenotype in vivo as deletion of the protein-coding gene from yeast. Surprisingly, Rtr1 dephosphorylates not only serine 5 on the CTD but also the newly described anti-termination tyrosine 1 marker, supporting the hypothesis that Rtr1 and its homologs promote the transition from transcription to termination.
Collapse
Affiliation(s)
- Peter L. Hsu
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Fan Yang
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Whitney Smith-Kinnaman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wen Yang
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Jae-Eun Song
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington, USA,Corresponding author. , telephone (206) 543-7113
| |
Collapse
|
49
|
Jaramillo-Tatis S, Bamm VV, Vassall KA, Harauz G. Over-expression in E. coli and purification of functional full-length murine small C-terminal domain phosphatase (SCP1, or Golli-interacting protein). Protein Expr Purif 2014; 101:106-14. [PMID: 24925644 DOI: 10.1016/j.pep.2014.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/26/2014] [Accepted: 05/31/2014] [Indexed: 01/13/2023]
Abstract
During myelination in the central nervous system, proteins arising from the gene in the oligodendrocyte lineage (golli) participate in diverse events in signal transduction and gene regulation. One of the interacting partners of the Golli-isoform BG21 was discovered by yeast-2-hybrid means and was denoted the Golli-interacting-protein (GIP). In subsequent in vitro studies of recombinant murine GIP, it was not possible to produce a full-length version of recombinant murine rmGIP in functional form under native conditions, primarily because of solubility issues, necessitating the study of a hexahistidine-tagged, truncated form ΔN-rmGIP. This protein is an acidic phosphatase belonging to the family of RNA-polymerase-2, small-subunit, C-terminal phosphatases (SCP1), and studies of the human ortholog hSCP1 have also been performed on truncated forms. Here, a new SUMO-expression and purification protocol has been developed for the preparation of a functional, full-length mSCP1/GIP (our nomenclature henceforth), with no additional purification tags. Both full-length mSCP1/GIP and the truncated murine form (now denoted ΔN-rmSCP1/GIP) had similar melting temperatures, indicating that the integrity of the catalytic core per se was minimally affected by the N-terminus. Characterization of mSCP1/GIP activity with the artificial substrate p-NPP (p-nitrophenylphosphate) yielded kinetic parameters comparable to those of ΔN-rmSCP1/GIP and the truncated human ortholog ΔN-hSCP1. Similarly, mSCP1/GIP dephosphorylated a more natural CTD-peptide substrate (but not protein kinase C-phosphorylated BG21) with comparable kinetics to ΔN-hSCP1. The successful production of an active, full-length mSCP1/GIP will enable future evaluation of the functional role of its N-terminus in protein-protein interactions (e.g., BG21) that regulate its phosphatase activity.
Collapse
Affiliation(s)
- Sergio Jaramillo-Tatis
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Vladimir V Bamm
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Kenrick A Vassall
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
50
|
A study of substrate specificity for a CTD phosphatase, SCP1, by proteomic screening of binding partners. Biochem Biophys Res Commun 2014; 448:189-94. [PMID: 24769477 DOI: 10.1016/j.bbrc.2014.04.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/17/2014] [Indexed: 11/21/2022]
Abstract
RNA polymerase II carboxyl-terminal domain (RNAPII CTD) phosphatases are a newly emerging family of phosphatases. Recently a CTD-specific phosphatase, small CTD phosphatase 1 (SCP1), has shown to act as an evolutionarily conserved transcriptional corepressor for inhibiting neuronal gene transcription in non-neuronal cells. In this study, using the established NIH/3T3 and HEK293T cells, which are expressing human SCP1 proteins under the tight control of expression by doxycycline, a proteomic screening was conducted to identify the binding partners for SCP1. Although the present findings provide the possibility for new avenues to provide to a better understanding of cellular physiology of SCP1, now these proteomic and some immunological approaches for SCP1 interactome might not represent the accurate physiological relevance in vivo. In this presentation, we focus the substrate specificity to delineate an appearance of the dephosphorylation reaction catalyzed by SCP1 phosphatase. We compared the phosphorylated sequences of the immunologically confirmed binding partners with SCP1 searched in HPRD. We found the similar sequences from CdcA3 and validated the efficiency of enzymatic catalysis for synthetic phosphopeptides the recombinant SCP1. This approach led to the identification of several interacting partners with SCP1. We suggest that CdcA3 could be an enzymatic substrate for SCP1 and that SCP1 might have the relationship with cell cycle regulation through enzymatic activity against CdcA3.
Collapse
|