1
|
Semper C, Watanabe N, Karimullina E, Patel DT, Di Leo R, Castellanos M, Patel DH, Chaconas G, Savchenko A. Structure analysis of the telomere resolvase from the Lyme disease spirochete Borrelia garinii reveals functional divergence of its C-terminal domain. Nucleic Acids Res 2024; 52:8431-8442. [PMID: 38979576 DOI: 10.1093/nar/gkae580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024] Open
Abstract
Borrelia spirochetes are the causative agents of Lyme disease and relapsing fever, two of the most common tick-borne illnesses. A characteristic feature of these spirochetes is their highly segmented genomes which consists of a linear chromosome and a mixture of up to approximately 24 linear and circular extrachromosomal plasmids. The complexity of this genomic arrangement requires multiple strategies for efficient replication and partitioning during cell division, including the generation of hairpin ends found on linear replicons mediated by the essential enzyme ResT, a telomere resolvase. Using an integrative structural biology approach employing advanced modelling, circular dichroism, X-ray crystallography and small-angle X-ray scattering, we have generated high resolution structural data on ResT from B. garinii. Our data provides the first high-resolution structures of ResT from Borrelia spirochetes and revealed active site positioning in the catalytic domain. We also demonstrate that the C-terminal domain of ResT is required for both transesterification steps of telomere resolution, and is a requirement for DNA binding, distinguishing ResT from other telomere resolvases from phage and bacteria. These results advance our understanding of the molecular function of this essential enzyme involved in genome maintenance in Borrelia pathogens.
Collapse
Affiliation(s)
- Cameron Semper
- Department of Microbiology, Immunology, and Infectious Disease, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| | - Nobuhiko Watanabe
- Department of Microbiology, Immunology, and Infectious Disease, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| | - Elina Karimullina
- Department of Microbiology, Immunology, and Infectious Disease, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| | - Deepak T Patel
- Department of Microbiology, Immunology, and Infectious Disease, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| | - Rosa Di Leo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario M5G 1L6, Canada
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| | - Dhruvin H Patel
- Department of Microbiology, Immunology, and Infectious Disease, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| | - George Chaconas
- Department of Microbiology, Immunology, and Infectious Disease, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| | - Alexei Savchenko
- Department of Microbiology, Immunology, and Infectious Disease, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario M5G 1L6, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
2
|
Huang SH, Abrametz K, McGrath SL, Kobryn K. Design and characterization of hyperactive mutants of the Agrobacterium tumefaciens telomere resolvase, TelA. PLoS One 2024; 19:e0307590. [PMID: 39052566 PMCID: PMC11271964 DOI: 10.1371/journal.pone.0307590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Telomere resolvases are a family of DNA cleavage and rejoining enzymes that produce linear DNAs terminated by hairpin telomeres from replicated intermediates in bacteria that possess linear replicons. The telomere resolvase of Agrobacterium tumefaciens, TelA, has been examined at the structural and biochemical level. The N-terminal domain of TelA, while not required for telomere resolution, has been demonstrated to play an autoinhibitory role in telomere resolution, conferring divalent metal responsiveness on the reaction. The N-terminal domain also inhibits the competing reactions of hp telomere fusion and recombination between replicated telomere junctions. Due to the absence of the N-terminal domain from TelA/DNA co-crystal structures we produced an AlphaFold model of a TelA monomer. The AlphaFold model suggested the presence of two inhibitory interfaces; one between the N-terminal domain and the catalytic domain and a second interface between the C-terminal helix and the N-core domain of the protein. We produced mutant TelA's designed to weaken these putative interfaces to test the validity of the modeled interfaces. While our analysis did not bear out the details of the predicted interfaces the model was, nonetheless, extremely useful in guiding design of mutations that, when combined, demonstrated an additive activation of TelA exceeding 250-fold. For some of these hyperactive mutants stimulation of telomere resolution has also been accompanied by activation of competing reactions. However, we have also characterized hyperactive TelA mutants that retain enough autoinhibition to suppress the competing reactions.
Collapse
Affiliation(s)
- Shu Hui Huang
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kayla Abrametz
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Siobhan L. McGrath
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kerri Kobryn
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Balouchi M, Huang SH, McGrath SL, Kobryn K. The telomere resolvase, TelA, utilizes an underwound pre-cleavage intermediate to promote hairpin telomere formation. PLoS One 2023; 18:e0294732. [PMID: 38019799 PMCID: PMC10686437 DOI: 10.1371/journal.pone.0294732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
The telomere resolvase, TelA, forms the hairpin telomeres of the linear chromosome of Agrobacterium tumefaciens in a process referred to as telomere resolution. Telomere resolution is a unique DNA cleavage and rejoining reaction that resolves replicated telomere junctions into a pair of hairpin telomeres. Telomere resolvases utilize a reaction mechanism with similarities to that of topoisomerase-IB enzymes and tyrosine recombinases. The reaction proceeds without the need for high-energy cofactors due to the use of a covalent, enzyme-cleaved DNA intermediate that stores the bond energy of the cleaved bonds in 3'-phosphotyrosyl linkages. The cleaved DNA strands are then refolded into a hairpin conformation and the 5'-OH ends of the refolded strands attack the 3'-phosphotyrosine linkages in order to rejoin the DNA strands into hairpin telomeres. Because this kind of reaction mechanism is, in principle, reversible it is unclear how TelA controls the direction of the reaction and propels the reaction to completion. We present evidence that TelA forms and/or stabilizes a pre-cleavage intermediate that features breakage of the four central basepairs between the scissile phosphates prior to DNA cleavage to help propel the reaction forwards, thus preventing abortive cleavage and rejoining cycles that regenerate the substrate DNA. We identify eight TelA sidechains, located in the hairpin-binding module and catalytic domains of TelA, implicated in this process. These mutants were deficient for telomere resolution on parental replicated telomere junctions but were rescued by introduction of substrate modifications that mimic unwinding of the DNA between the scissile phosphates.
Collapse
Affiliation(s)
- Mahrokh Balouchi
- Dept. of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Shu Hui Huang
- Dept. of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Siobhan L. McGrath
- The Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kerri Kobryn
- Dept. of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
McGrath SL, Huang SH, Kobryn K. The N-terminal domain of the Agrobacterium tumefaciens telomere resolvase, TelA, regulates its DNA cleavage and rejoining activities. J Biol Chem 2022; 298:101951. [PMID: 35447111 PMCID: PMC9111995 DOI: 10.1016/j.jbc.2022.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/04/2022] Open
Abstract
Linear replicons can be found in a minority of prokaryotic organisms, including Borrelia species and Agrobacterium tumefaciens. The problem with replicating the lagging strand end of linear DNAs is circumvented in these organisms by the presence of covalently closed DNA hairpin telomeres at the DNA termini. Telomere resolvases are enzymes responsible for generating these hairpin telomeres from a dimeric replication intermediate through a two-step DNA cleavage and rejoining reaction referred to as telomere resolution. It was previously shown that the agrobacterial telomere resolvase, TelA, possesses ssDNA annealing activity in addition to telomere resolution activity. The annealing activity derives, chiefly, from the N-terminal domain. This domain is dispensable for telomere resolution. In this study, we used activity analyses of an N-terminal domain deletion mutant, domain add back experiments, and protein–protein interaction studies and we report that the N-terminal domain of TelA is involved in inhibitory interactions with the remainder of TelA that are relieved by the binding of divalent metal ions. We also found that the regulation of telomere resolution by the N-terminal domain of TelA extends to suppression of inappropriate enzymatic activity, including hairpin telomere fusion (reaction reversal) and recombination between replicated telomeres to form a Holliday junction.
Collapse
Affiliation(s)
- Siobhan L McGrath
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Academic Health Sciences Building, Saskatoon, Saskatchewan, Canada
| | - Shu Hui Huang
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Academic Health Sciences Building, Saskatoon, Saskatchewan, Canada
| | - Kerri Kobryn
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Academic Health Sciences Building, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
5
|
McGrath SL, Huang SH, Kobryn K. Single stranded DNA annealing is a conserved activity of telomere resolvases. PLoS One 2021; 16:e0246212. [PMID: 33539370 PMCID: PMC7861564 DOI: 10.1371/journal.pone.0246212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/14/2021] [Indexed: 12/26/2022] Open
Abstract
Bacterial species of the genera Agrobacterium and Borrelia possess chromosomes terminated by hairpin telomeres. Replication produces dimeric replication intermediates fused via replicated telomere junctions. A specialized class of enzymes, referred to as telomere resolvases, promotes the resolution of the replicated intermediate into linear monomers terminated by hairpin telomeres. Telomere resolution is catalyzed via DNA cleavage and rejoining events mechanistically similar to those promoted by topoisomerase-IB and tyrosine recombinase enzymes. Examination of the borrelial telomere resolvase, ResT, revealed unanticipated multifunctionality; aside from its expected telomere resolution activity ResT possessed a singled-stranded DNA (ssDNA) annealing activity that extended to both naked ssDNA and ssDNA complexed with its cognate single-stranded DNA binding protein (SSB). At present, the role this DNA annealing activity plays in vivo remains unknown. We have demonstrated here that single-stranded DNA annealing is also a conserved property of the agrobacterial telomere resolvase, TelA. This activity in TelA similarly extends to both naked ssDNA and ssDNA bound by its cognate SSB. TelA's annealing activity was shown to stem from the N-terminal domain; removal of this domain abolished annealing without affecting telomere resolution. Further, independent expression of the N-terminal domain of TelA produced a functional annealing protein. We suggest that the apparent conservation of annealing activity in two telomere resolvases, from distantly related bacterial species, implies a role for this activity in hairpin telomere metabolism. Our demonstration of the separation of the telomere resolution and annealing activities of TelA provides a platform for future experiments aimed at identifying the role DNA annealing performs in vivo.
Collapse
Affiliation(s)
- Siobhan L. McGrath
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Shu Hui Huang
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kerri Kobryn
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
6
|
Liew PS, Chen Q, Ng AWR, Chew YC, Ravin NV, Sim EUH, Lee CW, Narayanan K. Phage N15 protelomerase resolves its tos recognition site into hairpin telomeres within mammalian cells. Anal Biochem 2019; 583:113361. [DOI: 10.1016/j.ab.2019.113361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 11/30/2022]
|
7
|
Rubio-Cosials A, Schulz EC, Lambertsen L, Smyshlyaev G, Rojas-Cordova C, Forslund K, Karaca E, Bebel A, Bork P, Barabas O. Transposase-DNA Complex Structures Reveal Mechanisms for Conjugative Transposition of Antibiotic Resistance. Cell 2018; 173:208-220.e20. [PMID: 29551265 PMCID: PMC5871717 DOI: 10.1016/j.cell.2018.02.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/08/2018] [Accepted: 02/12/2018] [Indexed: 12/28/2022]
Abstract
Conjugative transposition drives the emergence of multidrug resistance in diverse bacterial pathogens, yet the mechanisms are poorly characterized. The Tn1549 conjugative transposon propagates resistance to the antibiotic vancomycin used for severe drug-resistant infections. Here, we present four high-resolution structures of the conserved Y-transposase of Tn1549 complexed with circular transposon DNA intermediates. The structures reveal individual transposition steps and explain how specific DNA distortion and cleavage mechanisms enable DNA strand exchange with an absolute minimum homology requirement. This appears to uniquely allow Tn916-like conjugative transposons to bypass DNA homology and insert into diverse genomic sites, expanding gene transfer. We further uncover a structural regulatory mechanism that prevents premature cleavage of the transposon DNA before a suitable target DNA is found and generate a peptide antagonist that interferes with the transposase-DNA structure to block transposition. Our results reveal mechanistic principles of conjugative transposition that could help control the spread of antibiotic resistance genes. Antibiotic resistance-carrying conjugative transposon integrase structure revealed DNA distortion and special cleavage site allow insertion into diverse genomic sites Key structural features are conserved among numerous conjugative transposons Structures uncover auto-inhibition, allowing transposition antagonist design
Collapse
Affiliation(s)
- Anna Rubio-Cosials
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Eike C Schulz
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Hamburg Outstation, European Molecular Biology Laboratory, 22603 Hamburg, Germany
| | - Lotte Lambertsen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Georgy Smyshlyaev
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton CB10 1SD, UK
| | - Carlos Rojas-Cordova
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Kristoffer Forslund
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Ezgi Karaca
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey
| | - Aleksandra Bebel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| |
Collapse
|
8
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
9
|
Abstract
The lambdoid phage N15 of Escherichia coli is very unusual among temperate phages in that its prophage is not integrated into the chromosome but is a linear plasmid molecule with covalently closed ends (telomeres). Upon infection, the phage DNA circularizes via cohesive ends, and then a special phage enzyme of the tyrosine recombinase family, protelomerase, cuts at another site and joins the ends, forming hairpin telomeres of the linear plasmid prophage. Replication of the N15 prophage is initiated at an internally located ori site and proceeds bidirectionally, resulting in the formation of duplicated telomeres. The N15 protelomerase cuts them, generating two linear plasmid molecules with hairpin telomeres. Stable inheritance of the plasmid prophage is ensured by a partitioning operon similar to the F factor sop operon. Unlike the F centromere, the N15 centromere consists of four inverted repeats dispersed in the genome. The multiplicity and dispersion of centromeres are required for efficient partitioning of a linear plasmid. The centromeres are located in the N15 genome regions involved in phage replication and control of lytic development, and binding of partition proteins at these sites regulates these processes. The family of N15-like linear phage-plasmids includes lambdoid phages ɸKO2 and pY54, as well as Myoviridae phages ΦHAP-1, VHML, VP882, Vp58.5, and vB_VpaM_MAR of marine gamma-proteobacteria. The genomes of these phages contain similar protelomerase genes, lysogeny control modules, and replication genes, suggesting that these phages may belong to a group diverged from a common ancestor.
Collapse
|
10
|
Abstract
Covalently closed hairpin ends, also known as hairpin telomeres, provide an unusual solution to the end replication problem. The hairpin telomeres are generated from replication intermediates by a process known as telomere resolution. This is a DNA breakage and reunion reaction promoted by hairpin telomere resolvases (also referred to as protelomerases) found in a limited number of phage and bacteria. The reaction promoted by these enzymes is a chemically isoenergetic two-step transesterification without a requirement for divalent metal ions or high-energy cofactors and uses an active site and mechanism similar to that for type IB topoisomerases and tyrosine recombinases. The small number of unrelated telomere resolvases characterized to date all contain a central, catalytic core domain with the active site, but in addition carry variable C- and N-terminal domains with different functions. Similarities and differences in the structure and function of the telomere resolvases are discussed. Of particular interest are the properties of the Borrelia telomere resolvases, which have been studied most extensively at the biochemical level and appear to play a role in shaping the unusual segmented genomes in these organisms and, perhaps, to play a role in recombinational events.
Collapse
|
11
|
Costa Pessoa J, Garribba E, Santos MF, Santos-Silva T. Vanadium and proteins: Uptake, transport, structure, activity and function. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.03.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Lucyshyn D, Huang SH, Kobryn K. Spring loading a pre-cleavage intermediate for hairpin telomere formation. Nucleic Acids Res 2015; 43:6062-74. [PMID: 26007659 PMCID: PMC4499125 DOI: 10.1093/nar/gkv497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/05/2015] [Indexed: 02/03/2023] Open
Abstract
The Borrelia telomere resolvase, ResT, forms the unusual hairpin telomeres of the linear Borrelia replicons in a process referred to as telomere resolution. Telomere resolution is a DNA cleavage and rejoining reaction that proceeds from a replicated telomere intermediate in a reaction with mechanistic similarities to that catalyzed by type IB topoisomerases. Previous reports have implicated the hairpin-binding module, at the end of the N-terminal domain of ResT, in distorting the DNA between the scissile phosphates so as to promote DNA cleavage and hairpin formation by the catalytic domain. We report that unwinding the DNA between the scissile phosphates, prior to DNA cleavage, is a key cold-sensitive step in telomere resolution. Through the analysis of ResT mutants, rescued by substrate modifications that mimic DNA unwinding between the cleavage sites, we show that formation and/or stabilization of an underwound pre-cleavage intermediate depends upon cooperation of the hairpin-binding module and catalytic domain. The phenotype of the mutants argues that the pre-cleavage intermediate promotes strand ejection to favor the forward reaction and that subsequent hairpin capture is a reversible reaction step. These reaction features are proposed to promote hairpin formation over strand resealing while allowing reversal back to substrate of aborted reactions.
Collapse
Affiliation(s)
- Danica Lucyshyn
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan, Academic Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Shu Hui Huang
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan, Academic Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Kerri Kobryn
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan, Academic Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
13
|
Casjens SR, Hendrix RW. Bacteriophage lambda: Early pioneer and still relevant. Virology 2015; 479-480:310-30. [PMID: 25742714 PMCID: PMC4424060 DOI: 10.1016/j.virol.2015.02.010] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/13/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022]
Abstract
Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid-1950s to mid-1980s was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives has continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building, 15 North Medical Drive East, Salt Lake City, UT 84112, USA; Biology Department, University of Utah, Salt Lake City, UT 84112, USA.
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
14
|
Marcand S. How do telomeres and NHEJ coexist? Mol Cell Oncol 2014; 1:e963438. [PMID: 27308342 PMCID: PMC4904885 DOI: 10.4161/23723548.2014.963438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/01/2014] [Accepted: 08/07/2014] [Indexed: 12/21/2022]
Abstract
The telomeres of eukaryotes are stable open double-strand ends that coexist with nonhomologous end joining (NHEJ), the repair pathway that directly ligates DNA ends generated by double-strand breaks. Since a single end-joining event between 2 telomeres generates a circular chromosome or an unstable dicentric chromosome, NHEJ must be prevented from acting on telomeres. Multiple mechanisms mediated by telomere factors act in synergy to achieve this inhibition.
Collapse
Affiliation(s)
- Stéphane Marcand
- CEA; DSV/IRCM/SIGRR/LTR; Fontenay-aux-roses; France; INSERM UMR 967; Fontenay-aux-roses; France
| |
Collapse
|
15
|
|
16
|
Ramírez-Bahena MH, Vial L, Lassalle F, Diel B, Chapulliot D, Daubin V, Nesme X, Muller D. Single acquisition of protelomerase gave rise to speciation of a large and diverse clade within the Agrobacterium/Rhizobium supercluster characterized by the presence of a linear chromid. Mol Phylogenet Evol 2014; 73:202-7. [PMID: 24440816 DOI: 10.1016/j.ympev.2014.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 12/21/2022]
Abstract
Linear chromosomes are atypical in bacteria and likely a secondary trait derived from ancestral circular molecules. Within the Rhizobiaceae family, whose genome contains at least two chromosomes, a particularity of Agrobacterium fabrum (formerly A. tumefaciens) secondary chromosome (chromid) is to be linear and hairpin-ended thanks to the TelA protelomerase. Linear topology and telA distributions within this bacterial family was screened by pulse field gel electrophoresis and PCR. In A. rubi, A. larrymoorei, Rhizobium skierniewicense, A. viscosum, Agrobacterium sp. NCPPB 1650, and every genomospecies of the biovar 1/A. tumefaciens species complex (including R. pusense, A. radiobacter, A. fabrum, R. nepotum plus seven other unnamed genomospecies), linear chromid topologies were retrieved concomitantly with telA presence, whereas the remote species A. vitis, Allorhizobium undicola, Rhizobium rhizogenes and Ensifer meliloti harbored a circular chromid as well as no telA gene. Moreover, the telA phylogeny is congruent with that of recA used as a marker gene of the Agrobacterium phylogeny. Collectively, these findings strongly suggest that single acquisition of telA by an ancestor was the founding event of a large and diverse clade characterized by the presence of a linear chromid. This clade, characterized by unusual genome architecture, appears to be a relevant candidate to serve as a basis for a possible redefinition of the controversial Agrobacterium genus. In this respect, investigating telA in sequenced genomes allows to both ascertain the place of concerned strains into Agrobacterium spp. and their actual assignation to species/genomospecies in this genus.
Collapse
Affiliation(s)
- Martha H Ramírez-Bahena
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, 69622 Villeurbanne, France; INRA, USC 1364, Ecologie Microbienne, 69622 Villeurbanne, France
| | - Ludovic Vial
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, 69622 Villeurbanne, France
| | - Florent Lassalle
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, 69622 Villeurbanne, France; INRA, USC 1364, Ecologie Microbienne, 69622 Villeurbanne, France; CNRS, UMR5558, Biométrie et Biologie Evolutive, 69622 Villeurbanne, France; Ecole Normale Supérieure de Lyon, 69342 Lyon, France
| | - Benjamin Diel
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, 69622 Villeurbanne, France
| | - David Chapulliot
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, 69622 Villeurbanne, France; INRA, USC 1364, Ecologie Microbienne, 69622 Villeurbanne, France
| | - Vincent Daubin
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5558, Biométrie et Biologie Evolutive, 69622 Villeurbanne, France
| | - Xavier Nesme
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, 69622 Villeurbanne, France; INRA, USC 1364, Ecologie Microbienne, 69622 Villeurbanne, France.
| | - Daniel Muller
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, 69622 Villeurbanne, France
| |
Collapse
|
17
|
Mir T, Huang SH, Kobryn K. The telomere resolvase of the Lyme disease spirochete, Borrelia burgdorferi, promotes DNA single-strand annealing and strand exchange. Nucleic Acids Res 2013; 41:10438-48. [PMID: 24049070 PMCID: PMC3905847 DOI: 10.1093/nar/gkt832] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spirochetes of the genus Borrelia include the tick-transmitted causative agents of Lyme disease and relapsing fever. They possess unusual genomes composed mainly of linear replicons terminated by closed DNA hairpin telomeres. Hairpin telomeres present an uninterrupted DNA chain to the replication machinery overcoming the 'end-replication problem' for the linear replicons. Hairpin telomeres are formed from inverted repeat replicated telomere junctions by the telomere resolvase, ResT. ResT uses a reaction mechanism similar to that of the type IB topoisomerases and tyrosine recombinases. We report here that ResT also possesses single-strand annealing activity and a limited ability to promote DNA strand exchange reactions on partial duplex substrates. This combination of activities suggests ResT is a nexus between the seemingly distinct processes of telomere resolution and homologous recombination. Implications for hairpin telomere replication and linear plasmid recombination, including antigenic variation, are discussed.
Collapse
Affiliation(s)
- Taskia Mir
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | | | | |
Collapse
|
18
|
The carboxy-terminal αN helix of the archaeal XerA tyrosine recombinase is a molecular switch to control site-specific recombination. PLoS One 2013; 8:e63010. [PMID: 23667562 PMCID: PMC3646895 DOI: 10.1371/journal.pone.0063010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/27/2013] [Indexed: 11/21/2022] Open
Abstract
Tyrosine recombinases are conserved in the three kingdoms of life. Here we present the first crystal structure of a full-length archaeal tyrosine recombinase, XerA from Pyrococcus abyssi, at 3.0 Å resolution. In the absence of DNA substrate XerA crystallizes as a dimer where each monomer displays a tertiary structure similar to that of DNA-bound Tyr-recombinases. Active sites are assembled in the absence of dif except for the catalytic Tyr, which is extruded and located equidistant from each active site within the dimer. Using XerA active site mutants we demonstrate that XerA follows the classical cis-cleavage reaction, suggesting rearrangements of the C-terminal domain upon DNA binding. Surprisingly, XerA C-terminal αN helices dock in cis in a groove that, in bacterial tyrosine recombinases, accommodates in trans αN helices of neighbour monomers in the Holliday junction intermediates. Deletion of the XerA C-terminal αN helix does not impair cleavage of suicide substrates but prevents recombination catalysis. We propose that the enzymatic cycle of XerA involves the switch of the αN helix from cis to trans packing, leading to (i) repositioning of the catalytic Tyr in the active site in cis and (ii) dimer stabilisation via αN contacts in trans between monomers.
Collapse
|
19
|
Shi K, Huang WM, Aihara H. An enzyme-catalyzed multistep DNA refolding mechanism in hairpin telomere formation. PLoS Biol 2013; 11:e1001472. [PMID: 23382649 PMCID: PMC3558466 DOI: 10.1371/journal.pbio.1001472] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 12/12/2012] [Indexed: 12/19/2022] Open
Abstract
Crystal structures reveal catalysis of DNA refolding in the molecular mechanism underlying generation of bacterial hairpin telomeres. Hairpin telomeres of bacterial linear chromosomes are generated by a DNA cutting–rejoining enzyme protelomerase. Protelomerase resolves a concatenated dimer of chromosomes as the last step of chromosome replication, converting a palindromic DNA sequence at the junctions between chromosomes into covalently closed hairpins. The mechanism by which protelomerase transforms a duplex DNA substrate into the hairpin telomeres remains largely unknown. We report here a series of crystal structures of the protelomerase TelA bound to DNA that represent distinct stages along the reaction pathway. The structures suggest that TelA converts a linear duplex substrate into hairpin turns via a transient strand-refolding intermediate that involves DNA-base flipping and wobble base-pairs. The extremely compact di-nucleotide hairpin structure of the product is fully stabilized by TelA prior to strand ligation, which drives the reaction to completion. The enzyme-catalyzed, multistep strand refolding is a novel mechanism in DNA rearrangement reactions. Linear chromosomes capped by hairpin telomeres are widespread in prokaryotes and are found in important bacterial pathogens. However, three-dimensional structure of the hairpin telomere, as well as the molecular mechanisms underlying its generation, has remained poorly understood. In this work, we investigated how the enzyme responsible for generating the bacterial hairpin telomeres (protelomerase, also known as telomere resolvase) transforms a linear double-stranded DNA molecule into sharp hairpin turns. Our X-ray crystallographic and biochemical data collectively suggest that protelomerase employs a multistep DNA strand-refolding mechanism as described below. Protelomerase first cleaves both strands of a double-helical DNA substrate and reshapes the DNA strands into a transition state conformation (refolding intermediate) stabilized by specific protein–DNA and DNA–DNA interactions including noncanonical (non-Watson–Crick) base-pairs. The DNA strands are then refolded into extremely compact hairpin products, stabilized by a set of interactions distinct from those stabilizing the refolding intermediate. We believe that an enzyme “catalyzing” not only the chemical reactions of DNA strand cutting/rejoining but also the ordered transition between different DNA conformations to guide refolding of the DNA strand is a novel concept, and we suspect that similar mechanisms may be employed by other enzymes involved in conformational changes/refolding of biological macromolecules.
Collapse
Affiliation(s)
- Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wai Mun Huang
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
20
|
Landry MP, Zou X, Wang L, Huang WM, Schulten K, Chemla YR. DNA target sequence identification mechanism for dimer-active protein complexes. Nucleic Acids Res 2012; 41:2416-27. [PMID: 23275566 PMCID: PMC3575837 DOI: 10.1093/nar/gks1345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Sequence-specific DNA-binding proteins must quickly and reliably localize specific target sites on DNA. This search process has been well characterized for monomeric proteins, but it remains poorly understood for systems that require assembly into dimers or oligomers at the target site. We present a single-molecule study of the target-search mechanism of protelomerase TelK, a recombinase-like protein that is only active as a dimer. We show that TelK undergoes 1D diffusion on non-target DNA as a monomer, and it immobilizes upon dimerization even in the absence of a DNA target site. We further show that dimeric TelK condenses non-target DNA, forming a tightly bound nucleoprotein complex. Together with theoretical calculations and molecular dynamics simulations, we present a novel target-search model for TelK, which may be generalizable to other dimer and oligomer-active proteins.
Collapse
Affiliation(s)
- Markita P Landry
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
21
|
Iyer LM, Aravind L. ALOG domains: provenance of plant homeotic and developmental regulators from the DNA-binding domain of a novel class of DIRS1-type retroposons. Biol Direct 2012; 7:39. [PMID: 23146749 PMCID: PMC3537659 DOI: 10.1186/1745-6150-7-39] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 10/30/2012] [Indexed: 11/10/2022] Open
Abstract
Members of the Arabidopsis LSH1 and Oryza G1 (ALOG) family of proteins have been shown to function as key developmental regulators in land plants. However, their precise mode of action remains unclear. Using sensitive sequence and structure analysis, we show that the ALOG domains are a distinct version of the N-terminal DNA-binding domain shared by the XerC/D-like, protelomerase, topoisomerase-IA, and Flp tyrosine recombinases. ALOG domains are distinguished by the insertion of an additional zinc ribbon into this DNA-binding domain. In particular, we show that the ALOG domain is derived from the XerC/D-like recombinases of a novel class of DIRS-1-like retroposons. Copies of this element, which have been recently inactivated, are present in several marine metazoan lineages, whereas the stramenopile Ectocarpus, retains an active copy of the same. Thus, we predict that ALOG domains help establish organ identity and differentiation by binding specific DNA sequences and acting as transcription factors or recruiters of repressive chromatin. They are also found in certain plant defense proteins, where they are predicted to function as DNA sensors. The evolutionary history of the ALOG domain represents a unique instance of a domain, otherwise exclusively found in retroelements, being recruited as a specific transcription factor in the streptophyte lineage of plants. Hence, they add to the growing evidence for derivation of DNA-binding domains of eukaryotic specific TFs from mobile and selfish elements.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | |
Collapse
|
22
|
Huang WM, DaGloria J, Fox H, Ruan Q, Tillou J, Shi K, Aihara H, Aron J, Casjens S. Linear chromosome-generating system of Agrobacterium tumefaciens C58: protelomerase generates and protects hairpin ends. J Biol Chem 2012; 287:25551-63. [PMID: 22582388 DOI: 10.1074/jbc.m112.369488] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agrobacterium tumefaciens C58, the pathogenic bacteria that causes crown gall disease in plants, harbors one circular and one linear chromosome and two circular plasmids. The telomeres of its unusual linear chromosome are covalently closed hairpins. The circular and linear chromosomes co-segregate and are stably maintained in the organism. We have determined the sequence of the two ends of the linear chromosome thus completing the previously published genome sequence of A. tumefaciens C58. We found that the telomeres carry nearly identical 25-bp sequences at the hairpin ends that are related by dyad symmetry. We further showed that its Atu2523 gene encodes a protelomerase (resolvase) and that the purified enzyme can generate the linear chromosomal closed hairpin ends in a sequence-specific manner. Agrobacterium protelomerase, whose presence is apparently limited to biovar 1 strains, acts via a cleavage-and-religation mechanism by making a pair of transient staggered nicks invariably at 6-bp spacing as the reaction intermediate. The enzyme can be significantly shortened at both the N and C termini and still maintain its enzymatic activity. Although the full-length enzyme can uniquely bind to its product telomeres, the N-terminal truncations cannot. The target site can also be shortened from the native 50-bp inverted repeat to 26 bp; thus, the Agrobacterium hairpin-generating system represents the most compact activity of all hairpin linear chromosome- and plasmid-generating systems to date. The biochemical analyses of the protelomerase reactions further revealed that the tip of the hairpin telomere may be unusually polymorphically capable of accommodating any nucleotide.
Collapse
Affiliation(s)
- Wai Mun Huang
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ravin NV. N15: the linear phage-plasmid. Plasmid 2010; 65:102-9. [PMID: 21185326 DOI: 10.1016/j.plasmid.2010.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/14/2010] [Accepted: 12/17/2010] [Indexed: 11/24/2022]
Abstract
The lambdoid phage N15 of Escherichia coli is very unusual among temperate phages in that its prophage is not integrated into chromosome but is a linear plasmid molecule with covalently closed ends. Upon infection the phage DNA circularises via cohesive ends, then phage-encoded enzyme, protelomerase, cuts at an inverted repeat site and forms hairpin ends (telomeres) of the linear plasmid prophage. Replication of the N15 prophage is initiated at an internally located ori site and proceeds bidirectionally resulting in formation of duplicated telomeres. Then the N15 protelomerase cuts duplicated telomeres generating two linear plasmid molecules with hairpin telomeres. Stable inheritance of the plasmid prophage is ensured by partitioning operon similar to the F factor sop operon. Unlike F sop, the N15 centromere consists of four inverted repeats dispersed in the genome. The multiplicity and dispersion of centromeres are required for efficient partitioning of a linear plasmid. The centromeres are located in N15 genome regions involved in phage replication and control of lysogeny, and binding of partition proteins at these sites regulates these processes. Two N15-related lambdoid Siphoviridae phages, φKO2 in Klebsiella oxytoca and pY54 in Yersinia enterocolitica, also lysogenize their hosts as linear plasmids, as well as Myoviridae marine phages VP882 and VP58.5 in Vibrio parahaemolyticus and ΦHAP-1 in Halomonas aquamarina. The genomes of all these phages contain similar protelomerase genes, lysogeny modules and replication genes, as well as plasmid-partitioning genes, suggesting that these phages may belong to a group diverged from a common ancestor.
Collapse
Affiliation(s)
- Nikolai V Ravin
- Centre "Bioengineering", Russian Academy of Sciences, Prosp. 60-let Oktiabria, bld. 7-1, Moscow 117312, Russia.
| |
Collapse
|
24
|
Briffotaux J, Kobryn K. Preventing broken Borrelia telomeres: ResT couples dual hairpin telomere formation with product release. J Biol Chem 2010; 285:41010-8. [PMID: 20952394 DOI: 10.1074/jbc.m110.150060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spirochetes of the genus Borrelia include the tick-transmitted causative agents of Lyme disease and relapsing fever. They possess unusual genomes composed mainly of linear replicons terminated by closed DNA hairpins. Hairpin telomeres are formed from inverted repeat replicated telomere junctions (rTels) by the telomere resolvase ResT. ResT uses a reaction mechanism similar to that of the type IB topoisomerases and tyrosine recombinases. ResT can catalyze three distinct reactions: telomere resolution, telomere fusion, and Holliday junction (HJ) formation. HJ formation is known to occur only in the context of a synapsed pair of rTels. To test whether telomere resolution was synapsis-dependent, we performed experiments with rTel substrates immobilized on streptavidin-coated beads. We report that telomere resolution by ResT is synapsis-independent, indicating that alternative complexes are formed for telomere resolution and HJ formation. We also present evidence that dual hairpin telomere formation precedes product release. This mechanism of telomere resolution prevents the appearance of broken telomeres. We compare and contrast this mechanism with that proposed for TelK, the telomere resolvase of ϕKO2.
Collapse
Affiliation(s)
- Julien Briffotaux
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | |
Collapse
|
25
|
Chaconas G, Kobryn K. Structure, Function, and Evolution of Linear Replicons inBorrelia. Annu Rev Microbiol 2010; 64:185-202. [DOI: 10.1146/annurev.micro.112408.134037] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- George Chaconas
- Department of Biochemistry & Molecular Biology and Department of Microbiology & Infectious Diseases, The University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Kerri Kobryn
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| |
Collapse
|
26
|
Abstract
Nonhomologous end-joining (NHEJ) inhibition at telomeres ensures that native chromosome ends do not fuse together. But the occurrence and consequences of rare telomere fusions are not well understood. It is notably unclear whether a telomere fusion could be processed to restore telomere ends. Here we address the behavior of individual dicentrics formed by telomere fusion in the yeast Saccharomyces cerevisiae. Our approach was to first stabilize and amplify fusions between two chromosomes by temporarily inactivating one centromere. Next we analyzed dicentric breakage following centromere reactivation. Unexpectedly, dicentrics often break at the telomere fusions during progression through mitosis, a process that restores the parental chromosomes. This unforeseen result suggests a rescue pathway able to process telomere fusions and to back up NHEJ inhibition at telomeres.
Collapse
Affiliation(s)
- Sabrina Pobiega
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service Instabilité Génétique Réparation et Recombinaison, Laboratoire Télmère et Réparation du Chromosome, Fontenay-aux-roses 92260, France
| | | |
Collapse
|
27
|
Vanhooff V, Normand C, Galloy C, Segall AM, Hallet B. Control of directionality in the DNA strand-exchange reaction catalysed by the tyrosine recombinase TnpI. Nucleic Acids Res 2009; 38:2044-56. [PMID: 20044348 PMCID: PMC2847244 DOI: 10.1093/nar/gkp1187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In DNA site-specific recombination catalysed by tyrosine recombinases, two pairs of DNA strands are sequentially exchanged between separate duplexes and the mechanisms that confer directionality to this theoretically reversible reaction remain unclear. The tyrosine recombinase TnpI acts at the internal resolution site (IRS) of the transposon Tn4430 to resolve intermolecular transposition products. Recombination is catalysed at the IRS core sites (IR1–IR2) and is regulated by adjacent TnpI-binding motifs (DR1 and DR2). These are dispensable accessory sequences that confer resolution selectivity to the reaction by stimulating synapsis between directly repeated IRSs. Here, we show that formation of the DR1–DR2-containing synapse imposes a specific order of activation of the TnpI catalytic subunits in the complex so that the IR1-bound subunits catalyse the first strand exchange and the IR2-bound subunits the second strand exchange. This ordered pathway was demonstrated for a complete recombination reaction using a TnpI catalytic mutant (TnpI-H234L) partially defective in DNA rejoining. The presence of the DR1- and DR2-bound TnpI subunits was also found to stabilize transient recombination intermediates, further displacing the reaction equilibrium towards product formation. Implication of TnpI/IRS accessory elements in the initial architecture of the synapse and subsequent conformational changes taking place during strand exchange is discussed.
Collapse
Affiliation(s)
- Virginie Vanhooff
- Unité de Génétique, Institut des Sciences de la Vie, UCLouvain, 5/6 Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|
28
|
Conversion of Linear DNA with Hairpin Telomeres into a Circular Molecule in the Course of Phage N15 Lytic Replication. J Mol Biol 2009; 391:261-8. [DOI: 10.1016/j.jmb.2009.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 06/03/2009] [Accepted: 06/05/2009] [Indexed: 11/23/2022]
|
29
|
Moriarty TJ, Chaconas G. Identification of the determinant conferring permissive substrate usage in the telomere resolvase, ResT. J Biol Chem 2009; 284:23293-301. [PMID: 19561077 DOI: 10.1074/jbc.m109.023549] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Linear genome stability requires specialized telomere replication and protection mechanisms. A common solution to this problem in non-eukaryotes is the formation of hairpin telomeres by telomere resolvases (also known as protelomerases). These enzymes perform a two-step transesterification on replication intermediates to generate hairpin telomeres using an active site similar to that of tyrosine recombinases and type IB topoisomerases. Unlike phage telomere resolvases, the telomere resolvase from the Lyme disease pathogen Borrelia burgdorferi (ResT) is a permissive enzyme that resolves several types of telomere in vitro. However, the ResT region and residues mediating permissive substrate usage have not been identified. The relapsing fever Borrelia hermsii ResT exhibits a more restricted substrate usage pattern than B. burgdorferi ResT and cannot efficiently resolve a Type 2 telomere. In this study, we determined that all relapsing fever ResTs process Type 2 telomeres inefficiently. Using a library of chimeric and mutant B. hermsii/B. burgdorferi ResTs, we mapped the determinants in B. burgdorferi ResT conferring the ability to resolve multiple Type 2 telomeres. Type 2 telomere resolution was dependent on a single proline in the ResT catalytic region that was conserved in all Lyme disease but not relapsing fever ResTs and that is part of a 2-amino acid insertion absent from phage telomere resolvase sequences. The identification of a permissive substrate usage determinant explains the ability of B. burgdorferi ResT to process the 19 unique telomeres found in its segmented genome and will aid further studies on the structure and function of this essential enzyme.
Collapse
Affiliation(s)
- Tara J Moriarty
- Department of Biochemistry, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
30
|
Characterization of a new plasmid-like prophage in a pandemic Vibrio parahaemolyticus O3:K6 strain. Appl Environ Microbiol 2009; 75:2659-67. [PMID: 19286788 DOI: 10.1128/aem.02483-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus is a common food-borne pathogen that is normally associated with seafood. In 1996, a pandemic O3:K6 strain abruptly appeared and caused the first pandemic of this pathogen to spread throughout many Asian countries, America, Europe, and Africa. The role of temperate bacteriophages in the evolution of this pathogen is of great interest. In this work, a new temperate phage, VP882, from a pandemic O3:K6 strain of V. parahaemolyticus was purified and characterized after mitomycin C induction. VP882 was a Myoviridae bacteriophage with a polyhedral head and a long rigid tail with a sheath-like structure. It infected and lysed high proportions of V. parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae strains. The genome of phage VP882 was sequenced and was 38,197 bp long, and 71 putative open reading frames were identified, of which 27 were putative functional phage or bacterial genes. VP882 had a linear plasmid-like genome with a putative protelomerase gene and cohesive ends. The genome does not integrate into the host chromosome but was maintained as a plasmid in the lysogen. Analysis of the reaction sites of the protelomerases in different plasmid-like phages revealed that VP882 and PhiHAP-1 were highly similar, while N15, PhiKO2, and PY54 made up another closely related group. The presence of DNA adenine methylase and quorum-sensing transcriptional regulators in VP882 may play a specific role in this phage or regulate physiological or virulence-associated traits of the hosts. These genes may also be remnants from the bacterial chromosome following transduction.
Collapse
|
31
|
Kobryn K, Briffotaux J, Karpov V. Holliday junction formation by theBorrelia burgdorferitelomere resolvase, ResT: implications for the origin of genome linearity. Mol Microbiol 2009; 71:1117-30. [DOI: 10.1111/j.1365-2958.2008.06584.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Schroeder DC, Park Y, Yoon HM, Lee YS, Kang SW, Meints RH, Ivey RG, Choi TJ. Genomic analysis of the smallest giant virus--Feldmannia sp. virus 158. Virology 2009; 384:223-32. [PMID: 19054537 DOI: 10.1016/j.virol.2008.10.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/08/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022]
Abstract
Genomic analysis of Feldmannia sp. virus 158, the second phaeovirus to be sequenced in its entirety, provides further evidence that large double-stranded DNA viruses share similar evolutionary pressures as cellular organisms. Reductive evolution is clearly evident within the phaeoviruses which occurred via several routes: the loss of genes from an ancestral virus core genome most likely through genetic drift; and as a result of relatively large recombination events that caused wholesale loss of genes. The entire genome is 154,641 bp in length and has 150 predicted coding sequences of which 87% have amino acid sequence similarities to other algal virus coding sequences within the family Phycodnaviridae. Significant similarities were found, for thirty eight coding sequences (25%), to genes in gene databanks that are known to be involved in processes that include DNA replication, DNA methylation, signal transduction, viral integration and transposition, and protein-protein interactions. Unsurprisingly, the greatest similarity was observed between the two known viruses that infect Feldmannia, indicating the taxonomic linkage of these two viruses with their hosts. Moreover, comparative analysis of phycodnaviral genomic sequences revealed the smallest set of core genes (10 out of a possible 31) required to make a functional nucleocytoplasmic large dsDNA virus.
Collapse
|
33
|
Tourand Y, Deneke J, Moriarty TJ, Chaconas G. Characterization and in vitro reaction properties of 19 unique hairpin telomeres from the linear plasmids of the lyme disease spirochete. J Biol Chem 2009; 284:7264-72. [PMID: 19122193 DOI: 10.1074/jbc.m808918200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The genome of the Lyme disease pathogen Borrelia burgdorferi contains about a dozen linear DNA molecules that carry covalently closed hairpin telomeres as a specialized mechanism for dealing with the end-replication problem. The hairpin telomeres are generated from replicative intermediates through a two-step transesterification promoted by the telomere resolvase ResT. Although the genome of B. burgdorferi has been sequenced, the sequence of most telomeres has remained unknown because of difficulties in recovering and completely sequencing the covalently closed hairpin ends. In this study we report a new approach for the direct sequencing Borrelia telomeres and report the sequence, characterization, and in vitro reaction properties of 19 unique telomeres. Surprisingly, a variation of greater than 160-fold in the initial reaction rates of in vitro ResT-mediated telomere resolution was observed between the most active and least active telomeres. Moreover, three of the hairpin telomeres were completely inactive in vitro, but their in vivo functionality was demonstrated. Our results provide important new information on the structure and function of the B. burgdorferi telomeres and suggest the possibility that factors besides the telomere resolvase ResT may influence the reaction in vivo and rescue those telomeres that are not functional in vitro with ResT alone.
Collapse
Affiliation(s)
- Yvonne Tourand
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|