1
|
Pun R, Kim MH, North BJ. Role of Connexin 43 phosphorylation on Serine-368 by PKC in cardiac function and disease. Front Cardiovasc Med 2023; 9:1080131. [PMID: 36712244 PMCID: PMC9877470 DOI: 10.3389/fcvm.2022.1080131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Intercellular communication mediated by gap junction channels and hemichannels composed of Connexin 43 (Cx43) is vital for the propagation of electrical impulses through cardiomyocytes. The carboxyl terminal tail of Cx43 undergoes various post-translational modifications including phosphorylation of its Serine-368 (S368) residue. Protein Kinase C isozymes directly phosphorylate S368 to alter Cx43 function and stability through inducing conformational changes affecting channel permeability or promoting internalization and degradation to reduce intercellular communication between cardiomyocytes. Recent studies have implicated this PKC/Cx43-pS368 circuit in several cardiac-associated diseases. In this review, we describe the molecular and cellular basis of PKC-mediated Cx43 phosphorylation and discuss the implications of Cx43 S368 phosphorylation in the context of various cardiac diseases, such as cardiomyopathy, as well as the therapeutic potential of targeting this pathway.
Collapse
Affiliation(s)
- Renju Pun
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Michael H. Kim
- CHI Health Heart Institute, School of Medicine, Creighton University, Omaha, NE, United States
| | - Brian J. North
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States,*Correspondence: Brian J. North,
| |
Collapse
|
2
|
Abstract
PURPOSE Amplified in breast cancer 1 (AIB1) expression is known to be involved in the initiation and progression of malignant breast cancer (BC), but its prognostic role remains uncertain. This meta-analysis assessed reported studies to evaluate this relationship. METHODS Electronic databases were systematically reviewed to collect eligible studies using pre-established criteria. Hazard ratios (HRs) or odds ratios (ORs) and 95% confidence intervals (CIs) were pooled to estimate the impact of AIB1 protein expression on overall survival (OS) and clinicopathologic properties of BC cases. RESULTS Nine eligible studies, including 6774 patients, were finally assessed by the current clinical meta-analysis. AIB1 positivity correlated with reduced OS (pooled HR = 1.409, 95% CI 1.159-1.714, P = .001). AIB1 overexpression also impacted prognosis as shown by univariate (pooled HR = 1.420, 95% CI 1.154-1.747, P = .001) and multivariate (pooled HR = 1.446, 95% CI 1.099-1.956; P = .009) analyses. Notably, subgroup analyses also revealed that AIB1 overexpression was associated with poor OS in some subgroups, such as ER-positive group (pooled HR = 1.511, 95% CI 1.138-2.006, P = .004), ER-positive without tamoxifen administration group (pooled HR = 2.338, 95% CI 1.489-3.627, P < .001), and premenopausal women group (pooled HR = 1.715, 95% CI 1.231-2.390, P = .001). Additionally, high AIB1 protein levels were associated with HER2 positivity (pooled OR = 0.331, 95% CI 0.245-0.448; P < .001), poorly differentiated histological grade (pooled OR = 0.377, 95% CI 0.317-0.448; P < .001), high Ki67 (pooled OR = 0.501, 95% CI 0.410-0.612; P < .001), presence of lymph node metastases (pooled OR = 0.866, 95% CI 0.752-0.997; P = .045), and absence of progesterone receptor (pooled OR = 1.447, 95% CI 1.190-1.759; P < .001). CONCLUSIONS This analysis demonstrated that AIB1 overexpression is related to aggressive phenotypes and unfavorable clinical outcomes in BC, and might involve in tamoxifen resistance. AIB1 may be a new prognostic biomarker and therapeutic target in BC.
Collapse
Affiliation(s)
- Jianjing Hou
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| | - Jingting Liu
- Department of Emergency, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang
| | - Mengci Yuan
- Division of Breast Surgery, Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning
| | - Chunyan Meng
- Department of General Surgery, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Jianhua Liao
- Department of General Surgery, Zhejiang Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Stallcup MR, Poulard C. Gene-Specific Actions of Transcriptional Coregulators Facilitate Physiological Plasticity: Evidence for a Physiological Coregulator Code. Trends Biochem Sci 2020; 45:497-510. [PMID: 32413325 DOI: 10.1016/j.tibs.2020.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 02/10/2020] [Indexed: 01/14/2023]
Abstract
The actions of transcriptional coregulators are highly gene-specific, that is, each coregulator is required only for a subset of the genes regulated by a specific transcription factor. These coregulator-specific gene subsets often represent selected physiological responses among multiple pathways targeted by a transcription factor. Regulating the activity of a coregulator via post-translational modifications would thus affect only a subset of the transcription factor's physiological actions. Using the context of transcriptional regulation by steroid hormone receptors, this review focuses on gene-specific actions of coregulators and evidence linking individual coregulators with specific physiological pathways. Such evidence suggests that there is a 'physiological coregulator code', which represents a fertile area for future research with important clinical implications.
Collapse
Affiliation(s)
- Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA90089-9176, USA.
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
4
|
Kudriaeva AA, Belogurov AA. Proteasome: a Nanomachinery of Creative Destruction. BIOCHEMISTRY (MOSCOW) 2019; 84:S159-S192. [PMID: 31213201 DOI: 10.1134/s0006297919140104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the middle of the 20th century, it was postulated that degradation of intracellular proteins is a stochastic process. More than fifty years of intense studies have finally proven that protein degradation is a very complex and tightly regulated in time and space process that plays an incredibly important role in the vast majority of metabolic pathways. Degradation of more than a half of intracellular proteins is controlled by a hierarchically aligned and evolutionarily perfect system consisting of many components, the main ones being ubiquitin ligases and proteasomes, together referred to as the ubiquitin-proteasome system (UPS). The UPS includes more than 1000 individual components, and most of them are critical for the cell functioning and survival. In addition to the well-known signaling functions of ubiquitination, such as modification of substrates for proteasomal degradation and DNA repair, polyubiquitin (polyUb) chains are involved in other important cellular processes, e.g., cell cycle regulation, immunity, protein degradation in mitochondria, and even mRNA stability. This incredible variety of ubiquitination functions is related to the ubiquitin ability to form branching chains through the ε-amino group of any of seven lysine residues in its sequence. Deubiquitination is accomplished by proteins of the deubiquitinating enzyme family. The second main component of the UPS is proteasome, a multisubunit proteinase complex that, in addition to the degradation of functionally exhausted and damaged proteins, regulates many important cellular processes through controlled degradation of substrates, for example, transcription factors and cyclins. In addition to the ubiquitin-dependent-mediated degradation, there is also ubiquitin-independent degradation, when the proteolytic signal is either an intrinsic protein sequence or shuttle molecule. Protein hydrolysis is a critically important cellular function; therefore, any abnormalities in this process lead to systemic impairments further transforming into serious diseases, such as diabetes, malignant transformation, and neurodegenerative disorders (multiple sclerosis, Alzheimer's disease, Parkinson's disease, Creutzfeldt-Jakob disease and Huntington's disease). In this review, we discuss the mechanisms that orchestrate all components of the UPS, as well as the plurality of the fine-tuning pathways of proteasomal degradation.
Collapse
Affiliation(s)
- A A Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - A A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia. .,Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
5
|
Buneeva OA, Medvedev AE. [Ubiquitin-independent protein degradation in proteasomes]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:134-148. [PMID: 29723144 DOI: 10.18097/pbmc20186402134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteasomes are large supramolecular protein complexes present in all prokaryotic and eukaryotic cells, where they perform targeted degradation of intracellular proteins. Until recently, it was generally accepted that prior proteolytic degradation in proteasomes the proteins had to be targeted by ubiquitination: the ATP-dependent addition of (typically four sequential) residues of the low-molecular ubiquitin protein, involving the ubiquitin-activating enzyme, ubiquitin-conjugating enzyme and ubiquitin ligase. The cytoplasm and nucleoplasm proteins labeled in this way are then digested in 26S proteasomes. However, in recent years it has become increasingly clear that using this route the cell eliminates only a part of unwanted proteins. Many proteins can be cleaved by the 20S proteasome in an ATP-independent manner and without previous ubiquitination. Ubiquitin-independent protein degradation in proteasomes is a relatively new area of studies of the role of the ubiquitin-proteasome system. However, recent data obtained in this direction already correct existing concepts about proteasomal degradation of proteins and its regulation. Ubiquitin-independent proteasome degradation needs the main structural precondition in proteins: the presence of unstructured regions in the amino acid sequences that provide interaction with the proteasome. Taking into consideration that in humans almost half of all genes encode proteins that contain a certain proportion of intrinsically disordered regions, it appears that the list of proteins undergoing ubiquitin-independent degradation will demonstrate further increase. Since 26S of proteasomes account for only 30% of the total proteasome content in mammalian cells, most of the proteasomes exist in the form of 20S complexes. The latter suggests that ubiquitin-independent proteolysis performed by the 20S proteasome is a natural process of removing damaged proteins from the cell and maintaining a constant level of intrinsically disordered proteins. In this case, the functional overload of proteasomes in aging and/or other types of pathological processes, if it is not accompanied by triggering more radical mechanisms for the elimination of damaged proteins, organelles and whole cells, has the most serious consequences for the whole organism.
Collapse
Affiliation(s)
- O A Buneeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A E Medvedev
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
6
|
Wu Y, Bai X, Li X, Zhu C, Wu ZP. Overexpression of sigma-1 receptor in MCF-7 cells enhances proliferation via the classic protein kinase C subtype signaling pathway. Oncol Lett 2018; 16:6763-6769. [PMID: 30405820 DOI: 10.3892/ol.2018.9448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 08/30/2018] [Indexed: 12/26/2022] Open
Abstract
Sigma-1 receptor (sigma-1R), a 25-kDa integral membrane protein, is expressed at a high density in various tumor cell lines and its ligands mediate tumor cell proliferation. However, the effect of this receptor on proliferation and the associated intracellular molecules in tumors remains unclear. The present study aimed to investigate the effect of sigma-1R overexpression on MCF-7 cell proliferation and the associated intracellular molecules that serve a key role in this process. The sigma-1R proliferative function was examined by comparing the proliferation rates of a sigma-1R-overexpressing line, MCF-41 with a sigma-1R-defective line, MCF-7, in culture media with various serum concentrations. The results demonstrated that MCF-41 cells grew significantly faster compared with MCF-7 cells, indicating a proliferation-enhancing receptor function. This proliferation-enhancing effect was completely eliminated by adding a PKC inhibitor to the culture media for MCF-41 cells. To identify which PKC subtype affects the proliferative function of sigma-1R, five inhibitors of PKC subtypes or enzymes involved in the PKC signaling cascade were introduced to MCF-7 and MCF-41 cell culture media and their effects on cell proliferation were compared. It was revealed that only the classic PKC subtype inhibitor, GF109203×, significantly inhibited MCF-41 cell proliferation compared with the MCF-7 line. In conclusion, among PKC iso-enzymes only classic PKC subtype enzymes serve an important role in sigma-1R overexpression enhancing MCF-7 cell proliferation.
Collapse
Affiliation(s)
- Yuqi Wu
- Department of Pharmacy, College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, P.R. China
| | - Xueyan Bai
- Department of Pharmacy, College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, P.R. China
| | - Xiaoyang Li
- Department of Pharmacy, College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, P.R. China
| | - Chang Zhu
- Department of Pharmacy, College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, P.R. China
| | - Zachary P Wu
- Department of Pharmacy, College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
7
|
Buneeva OA, Medvedev AE. Ubiquitin-Independent Degradation of Proteins in Proteasomes. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2018. [DOI: 10.1134/s1990750818030022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Dasgupta S, Rajapakshe K, Zhu B, Nikolai BC, Yi P, Putluri N, Choi JM, Jung SY, Coarfa C, Westbrook TF, Zhang XHF, Foulds CE, Tsai SY, Tsai MJ, O'Malley BW. Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer. Nature 2018; 556:249-254. [PMID: 29615789 PMCID: PMC5895503 DOI: 10.1038/s41586-018-0018-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/28/2018] [Indexed: 01/27/2023]
Abstract
Alterations in both cell metabolism and transcriptional programs are hallmarks of cancer that sustain rapid proliferation and metastasis 1 . However, the mechanisms that control the interaction between metabolic reprogramming and transcriptional regulation remain unclear. Here we show that the metabolic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) regulates transcriptional reprogramming by activating the oncogenic steroid receptor coactivator-3 (SRC-3). We used a kinome-wide RNA interference-based screening method to identify potential kinases that modulate the intrinsic SRC-3 transcriptional response. PFKFB4, a regulatory enzyme that synthesizes a potent stimulator of glycolysis 2 , is found to be a robust stimulator of SRC-3 that coregulates oestrogen receptor. PFKFB4 phosphorylates SRC-3 at serine 857 and enhances its transcriptional activity, whereas either suppression of PFKFB4 or ectopic expression of a phosphorylation-deficient Ser857Ala mutant SRC-3 abolishes the SRC-3-mediated transcriptional output. Functionally, PFKFB4-driven SRC-3 activation drives glucose flux towards the pentose phosphate pathway and enables purine synthesis by transcriptionally upregulating the expression of the enzyme transketolase. In addition, the two enzymes adenosine monophosphate deaminase-1 (AMPD1) and xanthine dehydrogenase (XDH), which are involved in purine metabolism, were identified as SRC-3 targets that may or may not be directly involved in purine synthesis. Mechanistically, phosphorylation of SRC-3 at Ser857 increases its interaction with the transcription factor ATF4 by stabilizing the recruitment of SRC-3 and ATF4 to target gene promoters. Ablation of SRC-3 or PFKFB4 suppresses breast tumour growth in mice and prevents metastasis to the lung from an orthotopic setting, as does Ser857Ala-mutant SRC-3. PFKFB4 and phosphorylated SRC-3 levels are increased and correlate in oestrogen receptor-positive tumours, whereas, in patients with the basal subtype, PFKFB4 and SRC-3 drive a common protein signature that correlates with the poor survival of patients with breast cancer. These findings suggest that the Warburg pathway enzyme PFKFB4 acts as a molecular fulcrum that couples sugar metabolism to transcriptional activation by stimulating SRC-3 to promote aggressive metastatic tumours.
Collapse
Affiliation(s)
- Subhamoy Dasgupta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bokai Zhu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bryan C Nikolai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Ping Yi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jong Min Choi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sung Y Jung
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Thomas F Westbrook
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Xiang H-F Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Sophia Y Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
PKCζ Promotes Breast Cancer Invasion by Regulating Expression of E-cadherin and Zonula Occludens-1 (ZO-1) via NFκB-p65. Sci Rep 2015. [PMID: 26218882 PMCID: PMC4648478 DOI: 10.1038/srep12520] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Atypical Protein Kinase C zeta (PKCζ) forms Partitioning-defective (PAR) polarity complex for apico-basal distribution of membrane proteins essential to maintain normal cellular junctional complexes and tissue homeostasis. Consistently, tumor suppressive role of PKCζ has been established for multiple human cancers. However, recent studies also indicate pro-oncogenic function of PKCζ without firm understanding of detailed molecular mechanism. Here we report a possible mechanism of oncogenic PKCζ signaling in the context of breast cancer. We observed that depletion of PKCζ promotes epithelial morphology in mesenchymal-like MDA-MB-231 cells. The induction of epithelial morphology is associated with significant upregulation of adherens junction (AJ) protein E-cadherin and tight junction (TJ) protein Zonula Occludens-1 (ZO-1). Functionally, depletion of PKCζ significantly inhibits invasion and metastatic progression. Consistently, we observed higher expression and activation of PKCζ signaling in invasive and metastatic breast cancers compared to non-invasive diseases. Mechanistically, an oncogenic PKCζ– NFκB-p65 signaling node might be involved to suppress E-cadherin and ZO-1 expression and ectopic expression of a constitutively active form of NFκB-p65 (S536E-NFκB-p65) significantly rescues invasive potential of PKCζ-depleted breast cancer cells. Thus, our study discovered a PKCζ - NFκB-p65 signaling pathway might be involved to alter cellular junctional dynamics for breast cancer invasive progression.
Collapse
|
10
|
Eedunuri VK, Rajapakshe K, Fiskus W, Geng C, Chew SA, Foley C, Shah SS, Shou J, Mohamed JS, Coarfa C, O'Malley BW, Mitsiades N. miR-137 Targets p160 Steroid Receptor Coactivators SRC1, SRC2, and SRC3 and Inhibits Cell Proliferation. Mol Endocrinol 2015; 29:1170-83. [PMID: 26066330 DOI: 10.1210/me.2015-1080] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The p160 family of steroid receptor coactivators (SRCs) are pleiotropic transcription factor coactivators and "master regulators" of gene expression that promote cancer cell proliferation, survival, metabolism, migration, invasion, and metastasis. Cancers with high p160 SRC expression exhibit poor clinical outcomes and resistance to therapy, highlighting the SRCs as critical oncogenic drivers and, thus, therapeutic targets. microRNAs are important epigenetic regulators of protein expression. To examine the regulation of p160 SRCs by microRNAs, we used and combined 4 prediction algorithms to identify microRNAs that could target SRC1, SRC2, and SRC3 expression. For validation of these predictions, we assessed p160 SRC protein expression and cell viability after transfection of corresponding microRNA mimetics in breast cancer, uveal melanoma, and prostate cancer (PC) cell lines. Transfection of selected microRNA mimetics into breast cancer, uveal melanoma, and PC cells depleted SRC protein expression levels and exerted potent antiproliferative activity in these cell types. In particular, microRNA-137 (miR-137) depleted expression of SRC1, SRC2, and very potently, SRC3. The latter effect can be attributed to the presence of 3 miR-137 recognition sequences within the SRC3 3'-untranslated region. Using reverse phase protein array analysis, we identified a network of proteins, in addition to SRC3, that were modulated by miR-137 in PC cells. We also found that miR-137 and its host gene are epigenetically silenced in human cancer specimens and cell lines. These results support the development and testing of microRNA-based therapies (in particular based on restoring miR-137 levels) for targeting the oncogenic family of p160 SRCs in cancer.
Collapse
Affiliation(s)
- Vijay Kumar Eedunuri
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Kimal Rajapakshe
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Warren Fiskus
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Chuandong Geng
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Sue Anne Chew
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Christopher Foley
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Shrijal S Shah
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - John Shou
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Junaith S Mohamed
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Cristian Coarfa
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Bert W O'Malley
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Nicholas Mitsiades
- Adrienne Helis Malvin Medical Research Foundation (V.K.E.), New Orleans, Louisiana 70130; and Departments of Molecular and Cellular Biology (K.R., W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., C.C., B.W.O., N.M.) and Department of Medicine (W.F., C.G., S.A.C., C.F., S.S.S., J.S., J.S.M., N.M.), Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
11
|
González-Arenas A, Peña-Ortiz MÁ, Hansberg-Pastor V, Marquina-Sánchez B, Baranda-Ávila N, Nava-Castro K, Cabrera-Wrooman A, González-Jorge J, Camacho-Arroyo I. PKCα and PKCδ activation regulates transcriptional activity and degradation of progesterone receptor in human astrocytoma cells. Endocrinology 2015; 156:1010-22. [PMID: 25514083 DOI: 10.1210/en.2014-1137] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Progesterone regulates cancer cell proliferation and invasion through its receptors (PR-A and PR-B), whose phosphorylation modifies their transcriptional activity and induce their degradation. We identified by in silico analysis a putative residue (Ser400) in PR that might be phosphorylated by protein kinase C (PKC), a family of enzymes involved in the proliferation and infiltration of astrocytomas, the most frequent and aggressive brain tumors. A grade III human astrocytoma-derived cell line was used to study the role of PKC in PR phosphorylation, transcriptional activity, and degradation. Treatment with PKC activator [tetradecanoyl phorbol acetate (TPA)] increased PR phosphorylation in Ser400 after 5 minutes, which in turn induced PR transcriptional activity and its subsequent degradation by the 26S proteasome 3-5 hours after treatment. Silencing or inhibition of PKCα and PKCδ blocked PR phosphorylation and degradation induced by TPA. Both PR isoforms were associated with PKCα and reached the maximum association after 5 minutes of TPA addition. These data correlated with immunnofluorescence assays in which nuclear colocalization of PKCα with PR increased after TPA treatment. We observed a 2-fold increase in cell proliferation after PKC activation with TPA that was reduced with the PR antagonist, RU486. The PR S400A mutant revealed that this residue is essential for PKC-mediated PR phosphorylation and degradation. Our results show a key participation of PKCα and PKCδ in PR regulation and function.
Collapse
Affiliation(s)
- Aliesha González-Arenas
- Departamento de Biología (A.G.-A., M.A.P.-O., V.H.-P., B.M.-S., K.N.-C., A.C.-W., J.G.-J., I.C.-A.), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, Distrito Federal, México; and División de Investigación Básica (N.B.-A.), Instituto Nacional de Cancerología, México City 14080, Distrito Federal, México
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sánchez-Lanzas R, Castaño JG. Proteins directly interacting with mammalian 20S proteasomal subunits and ubiquitin-independent proteasomal degradation. Biomolecules 2014; 4:1140-54. [PMID: 25534281 PMCID: PMC4279173 DOI: 10.3390/biom4041140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 11/25/2014] [Accepted: 12/11/2014] [Indexed: 12/12/2022] Open
Abstract
The mammalian 20S proteasome is a heterodimeric cylindrical complex (α7β7β7α7), composed of four rings each composed of seven different α or β subunits with broad proteolytic activity. We review the mammalian proteins shown to directly interact with specific 20S proteasomal subunits and those subjected to ubiquitin-independent proteasomal degradation (UIPD). The published reports of proteins that interact with specific proteasomal subunits, and others found on interactome databases and those that are degraded by a UIPD mechanism, overlap by only a few protein members. Therefore, systematic studies of the specificity of the interactions, the elucidation of the protein regions implicated in the interactions (that may or may not be followed by degradation) and competition experiments between proteins known to interact with the same proteasomal subunit, are needed. Those studies should provide a coherent picture of the molecular mechanisms governing the interactions of cellular proteins with proteasomal subunits, and their relevance to cell proteostasis and cell functioning.
Collapse
Affiliation(s)
- Raúl Sánchez-Lanzas
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas 'Alberto Sols', UAM-CSIC, Facultad de Medicina de la Universidad Autónoma de Madrid, Madrid 28029, Spain.
| | - José G Castaño
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas 'Alberto Sols', UAM-CSIC, Facultad de Medicina de la Universidad Autónoma de Madrid, Madrid 28029, Spain.
| |
Collapse
|
13
|
Artamonova TO, Khodorkovskii MA, Tsimokha AS. Mass spectrometric analysis of affinity-purified proteasomes from the human myelogenous leukemia K562 cell line. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2014; 40:720-34. [DOI: 10.1134/s1068162014060041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Dasgupta S, O'Malley BW. Transcriptional coregulators: emerging roles of SRC family of coactivators in disease pathology. J Mol Endocrinol 2014; 53:R47-59. [PMID: 25024406 PMCID: PMC4152414 DOI: 10.1530/jme-14-0080] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcriptional coactivators have evolved as an important new class of functional proteins that participate with virtually all transcription factors and nuclear receptors (NRs) to intricately regulate gene expression in response to a wide variety of environmental cues. Recent findings have highlighted that coactivators are important for almost all biological functions, and consequently, genetic defects can lead to severe pathologies. Drug discovery efforts targeting coactivators may prove valuable for treatment of a variety of diseases.
Collapse
Affiliation(s)
- Subhamoy Dasgupta
- Department of Molecular and Cellular BiologyBaylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular BiologyBaylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
15
|
Abstract
Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine kinases, which can be further classified into three PKC isozymes subfamilies: conventional or classic, novel or nonclassic, and atypical. PKC isozymes are known to be involved in cell proliferation, survival, invasion, migration, apoptosis, angiogenesis, and drug resistance. Because of their key roles in cell signaling, PKC isozymes also have the potential to be promising therapeutic targets for several diseases, such as cardiovascular diseases, immune and inflammatory diseases, neurological diseases, metabolic disorders, and multiple types of cancer. This review primarily focuses on the activation, mechanism, and function of PKC isozymes during cancer development and progression.
Collapse
|
16
|
MicroRNA-195 regulates steroid receptor coactivator-3 protein expression in hepatocellular carcinoma cells. Tumour Biol 2014; 35:6955-60. [DOI: 10.1007/s13277-014-1933-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/03/2014] [Indexed: 12/19/2022] Open
|
17
|
Regulation of estrogen receptor signaling in breast carcinogenesis and breast cancer therapy. Cell Mol Life Sci 2014; 71:1549. [PMID: 25031550 PMCID: PMC3962223 DOI: 10.1007/s00018-013-1376-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/19/2022]
Abstract
Estrogen and estrogen receptors (ERs) are critical regulators of breast epithelial cell proliferation, differentiation, and apoptosis. Compromised signaling vis-à-vis the estrogen receptor is believed to be a major contributing factor in the malignancy of breast cells. Targeting the ER signaling pathway has been a focal point in the development of breast cancer therapy. Although approximately 75 % of breast cancer patients are classified as luminal type (ER(+)), which predicts for response to endocrine-based therapy; however, innate or acquired resistance to endocrine-based drugs remains a serious challenge. The complexity of regulation for estrogen signaling coupled with the crosstalk of other oncogenic signaling pathways is a reason for endocrine therapy resistance. Alternative strategies that target novel molecular mechanisms are necessary to overcome this current and urgent gap in therapy. A thorough analysis of estrogen-signaling regulation is critical. In this review article, we will summarize current insights into the regulation of estrogen signaling as related to breast carcinogenesis and breast cancer therapy.
Collapse
|
18
|
Han SJ, O'Malley BW. The dynamics of nuclear receptors and nuclear receptor coregulators in the pathogenesis of endometriosis. Hum Reprod Update 2014; 20:467-84. [PMID: 24634322 DOI: 10.1093/humupd/dmu002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Endometriosis is defined as the colonization and growth of endometrial tissue at anatomic sites outside the uterine cavity. Up to 15% of reproductive-aged women in the USA suffer from painful symptoms of endometriosis, such as infertility, pelvic pain, menstrual cycle abnormalities and increased risk of certain cancers. However, many of the current clinical treatments for endometriosis are not sufficiently effective and yield unacceptable side effects. There is clearly an urgent need to identify new molecular mechanisms that critically underpin the initiation and progression of endometriosis in order to develop more specific and effective therapeutics which lack the side effects of current therapies. The aim of this review is to discuss how nuclear receptors (NRs) and their coregulators promote the progression of endometriosis. Understanding the pathogenic molecular mechanisms for the genesis and maintenance of endometriosis as modulated by NRs and coregulators can reveal new therapeutic targets for alternative endometriosis treatments. METHODS This review was prepared using published gene expression microarray data sets obtained from patients with endometriosis and published literature on NRs and their coregulators that deal with endometriosis progression. Using the above observations, our current understanding of how NRs and NR coregulators are involved in the progression of endometriosis is summarized. RESULTS Aberrant levels of NRs and NR coregulators in ectopic endometriosis lesions are associated with the progression of endometriosis. As an example, endometriotic cell-specific alterations in gene expression are correlated with a differential methylation status of the genome compared with the normal endometrium. These differential epigenetic regulations can generate favorable cell-specific NR and coregulator milieus for endometriosis progression. Genetic alterations, such as single nucleotide polymorphisms and insertion/deletion polymorphisms of NR and coregulator genes, are frequently detected in ectopic lesions compared with the normal endometrium. These genetic variations impart new molecular properties to NRs and coregulators to increase their capacity to stimulate progression of endometriosis. Finally, post-translational modifications of NR coregulators, such as proteolytic processing, generate endometriosis-specific isoforms. Compared with the unmodified coregulators, these coregulator isoforms have unique functions that enhance the pathogenesis of endometriosis. CONCLUSIONS Epigenetic/genetic variations and posttranslational modifications of NRs and coregulators alter their original function so that they become potent 'drivers' of endometriosis progression.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
19
|
Dasgupta S, Lonard DM, O'Malley BW. Nuclear receptor coactivators: master regulators of human health and disease. Annu Rev Med 2013; 65:279-92. [PMID: 24111892 DOI: 10.1146/annurev-med-051812-145316] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transcriptional coregulators (coactivators and corepressors) have emerged as the principal modulators of the functions of nuclear receptors and other transcription factors. During the decade since the discovery of steroid receptor coactivator-1 (SRC-1), the first authentic coregulator, more than 400 coregulators have been identified and characterized, and deciphering their function has contributed significantly to our understanding of their role in human physiology. Deregulated expression of coregulators has been implicated in diverse disease states and related pathologies. The advancement of molecular technologies has enabled us to better characterize the molecular associations of the SRC family of coactivators with other protein complexes in the context of gene regulation. These continuing discoveries not only expand our knowledge of the roles of coactivators in various human diseases but allow us to discover novel coactivator-targeting strategies for therapeutic intervention in these diseases.
Collapse
Affiliation(s)
- Subhamoy Dasgupta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030;
| | | | | |
Collapse
|
20
|
Zhang Y, Wang JH, Liu B, Qu PB. Steroid Receptor Coactivator-3 Promotes Bladder Cancer Through Upregulation of CXCR4. Asian Pac J Cancer Prev 2013; 14:3847-50. [DOI: 10.7314/apjcp.2013.14.6.3847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Hoang T, Fenne IS, Madsen A, Bozickovic O, Johannessen M, Bergsvåg M, Lien EA, Stallcup MR, Sagen JV, Moens U, Mellgren G. cAMP response element-binding protein interacts with and stimulates the proteasomal degradation of the nuclear receptor coactivator GRIP1. Endocrinology 2013; 154:1513-27. [PMID: 23462962 PMCID: PMC5393311 DOI: 10.1210/en.2012-2049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The glucocorticoid receptor interacting protein (GRIP1) belongs to the p160 steroid receptor coactivator family that plays essential roles in nuclear receptor-dependent transcriptional regulation. Previously, we reported that the cAMP-dependent protein kinase (PKA) induces ubiquitination leading to degradation of GRIP1. Here we show that the cAMP response element-binding protein (CREB) downregulates GRIP1 and is necessary for the PKA-stimulated degradation of GRIP1, which leads to changes in the expression of a subset of genes regulated by estrogen receptor-α in MCF-7 breast cancer cells. Our data of domain-mapping and ubiquitination analyses suggest that CREB promotes the proteasomal breakdown of ubiquitinated GRIP1 through 2 functionally independent protein domains containing amino acids 347 to 758 and 1121 to 1462. We provide evidence that CREB interacts directly with GRIP1 and that CREB Ser-133 phosphorylation or transcriptional activity is not required for GRIP1 interaction and degradation. The basic leucine zipper domain (bZIP) of CREB is important for the interaction with GRIP1, and deletion of this domain led to an inability to downregulate GRIP1. We propose that CREB mediates the PKA-stimulated degradation of GRIP1 through protein-protein interaction and stimulation of proteasomal degradation of ubiquitinated GRIP1.
Collapse
Affiliation(s)
- Tuyen Hoang
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Manavathi B, Dey O, Gajulapalli VNR, Bhatia RS, Bugide S, Kumar R. Derailed estrogen signaling and breast cancer: an authentic couple. Endocr Rev 2013; 34:1-32. [PMID: 22947396 PMCID: PMC3565105 DOI: 10.1210/er.2011-1057] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 07/09/2012] [Indexed: 02/06/2023]
Abstract
Estrogen or 17β-estradiol, a steroid hormone, plays a critical role in the development of mammary gland via acting through specific receptors. In particular, estrogen receptor-α (ERα) acts as a transcription factor and/or a signal transducer while participating in the development of mammary gland and breast cancer. Accumulating evidence suggests that the transcriptional activity of ERα is altered by the action of nuclear receptor coregulators and might be responsible, at least in part, for the development of breast cancer. In addition, this process is driven by various posttranslational modifications of ERα, implicating active participation of the upstream receptor modifying enzymes in breast cancer progression. Emerging studies suggest that the biological outcome of breast cancer cells is also influenced by the cross talk between microRNA and ERα signaling, as well as by breast cancer stem cells. Thus, multiple regulatory controls of ERα render mammary epithelium at risk for transformation upon deregulation of normal homeostasis. Given the importance that ERα signaling has in breast cancer development, here we will highlight how the activity of ERα is controlled by various regulators in a spatial and temporal manner, impacting the progression of the disease. We will also discuss the possible therapeutic value of ERα modulators as alternative drug targets to retard the progression of breast cancer.
Collapse
Affiliation(s)
- Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, Gachibowli, Prof. CR Rao Road, University of Hyderabad, Hyderabad 500046, India.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The nuclear receptor superfamily includes transcription factors that transduce steroid, thyroid and retinoid hormones and other ligands in conjunction with coregulators. To date, over 350 coregulators have been reported in the literature, and advances in proteomic analyses of coregulator protein complexes have revealed that a far greater number of coregulator-interacting proteins also exist. Coregulator dysfunction has been implicated in diverse pathological states, genetic syndromes and cancer. A hallmark of disease related to the disruption of normal coregulator function is the pleiotropic effect on animal physiology, which is frequently manifested as the dysregulation of metabolic and neurological systems. Coregulators have broad physiological and pathological functions that make them promising new drug targets for diseases such as hormone-dependent cancers. Advances in proteomics, genomics and transcriptomics have provided novel insights into the biology of coregulators at a system-wide level and will lead the way to a new understanding of how coregulators can be evaluated in the context of complex and multifaceted genetic factors, hormones, diet, the environment and stress. Ultimately, better knowledge of the associations that exist between coregulator function and human diseases is expected to expand the indications for the use of future coregulator-targeted drugs.
Collapse
Affiliation(s)
- David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
24
|
Abstract
Cell polarization and cell division are two fundamental cellular processes. The mechanisms that establish and maintain cell polarity and the mechanisms by which cells progress through the cell cycle are now fairly well understood following decades of experimental work. There is also increasing evidence that the polarization state of a cell affects its proliferative properties. The challenge now is to understand how these two phenomena are mechanistically connected. The aim of the present chapter is to provide an overview of the evidence of cross-talk between apicobasal polarity and proliferation, and the current state of knowledge of the precise mechanism by which this cross-talk is achieved.
Collapse
|
25
|
Tien JCY, Xu J. Steroid receptor coactivator-3 as a potential molecular target for cancer therapy. Expert Opin Ther Targets 2012; 16:1085-96. [PMID: 22924430 DOI: 10.1517/14728222.2012.718330] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Steroid receptor coactivator-3 (SRC-3), also called amplified-in-breast cancer-1 (AIB1), is an oncogenic coactivator in endocrine and non-endocrine cancers. Functional studies demonstrate SRC-3 promotes numerous aspects of cancer, through its capacity as a coactivator for nuclear hormone receptors and other transcription factors, and via its ability to control multiple growth pathways simultaneously. Targeting SRC-3 with specific inhibitors therefore holds future promise for clinical cancer therapy. AREAS COVERED We discuss critical advances in understanding SRC-3 as a cancer mediator and prospective drug target. We review SRC-3 structure and function and its role in distinct aspects of cancer. In addition, we discuss SRC-3 regulation and degradation. Finally, we comment on a recently discovered SRC-3 small molecular inhibitor. EXPERT OPINION Most targeted chemotherapeutic drugs block only a single cellular pathway. In response, cancers frequently acquire resistance by upregulating alternative pathways. SRC-3 coordinates multiple signaling networks, suggesting SRC-3 inhibition offers a promising therapeutic strategy. Development of an effective SRC-3 inhibitor faces critical challenges. Better understanding of SRC-3 function and interacting partners, in both the nucleus and cytosol, is required for optimized inhibitor development. Ultimately, blockade of SRC-3 oncogenic function may inhibit multiple cancer-related signaling pathways.
Collapse
Affiliation(s)
- Jean Ching-Yi Tien
- Baylor College of Medicine, Department of Molecular and Cellular Biology, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
26
|
PKA phosphorylation redirects ERα to promoters of a unique gene set to induce tamoxifen resistance. Oncogene 2012; 32:3543-51. [PMID: 22907427 DOI: 10.1038/onc.2012.361] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/18/2012] [Accepted: 06/30/2012] [Indexed: 01/12/2023]
Abstract
Protein kinase A (PKA)-induced estrogen receptor alpha (ERα) phosphorylation at serine residue 305 (ERαS305-P) can induce tamoxifen (TAM) resistance in breast cancer. How this phospho-modification affects ERα specificity and translates into TAM resistance is unclear. Here, we show that S305-P modification of ERα reprograms the receptor, redirecting it to new transcriptional start sites, thus modulating the transcriptome. By altering the chromatin-binding pattern, Ser305 phosphorylation of ERα translates into a 26-gene expression classifier that identifies breast cancer patients with a poor disease outcome after TAM treatment. MYC-target genes and networks were significantly enriched in this gene classifier that includes a number of selective targets for ERαS305-P. The enhanced expression of MYC increased cell proliferation in the presence of TAM. We demonstrate that activation of the PKA signaling pathway alters the transcriptome by redirecting ERα to new transcriptional start sites, resulting in altered transcription and TAM resistance.
Collapse
|
27
|
Chang AK, Wu H. The role of AIB1 in breast cancer. Oncol Lett 2012; 4:588-594. [PMID: 23226788 DOI: 10.3892/ol.2012.803] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/02/2012] [Indexed: 12/23/2022] Open
Abstract
Amplified in breast cancer 1 (AIB1) is a member of the p160 steroid receptor coactivator family that mediates the transcriptional activities of nuclear receptors including estrogen receptor (ER) and progesterone receptor (PR), as well as certain other transcription factors, including E2F1 and p53. AIB1 is widely implicated in nuclear receptor-mediated diseases, particularly malignant diseases, including breast, prostate, gastric and pancreatic cancers. AIB1 was initially implicated in hormone-dependent breast cancer, where increasing levels of AIB1 mRNA and protein were detected in some of these specimens and the overexpression of AIB1 in mice led to an increased incidence of tumors. More recent studies revealed that AIB1 also affects the growth of hormone-independent breast cancer via signaling pathways such as those of E2F1, IGF-I, EGF and PI3K/Akt/mTOR. The pleiotropic effect of AIB1 and the roles it plays in both normal development and cancer have presented a great challenge to formulating an effective therapeutic strategy for breast cancer. In this review, we highlight the significant progress made with the recent findings and present an overview of the current understanding of the influence of AIB1 on breast cancer via hormone-dependent and -independent signaling pathways.
Collapse
Affiliation(s)
- Alan K Chang
- College of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
| | | |
Collapse
|
28
|
Long W, Foulds CE, Qin J, Liu J, Ding C, Lonard DM, Solis LM, Wistuba II, Qin J, Tsai SY, Tsai MJ, O'Malley BW. ERK3 signals through SRC-3 coactivator to promote human lung cancer cell invasion. J Clin Invest 2012; 122:1869-80. [PMID: 22505454 DOI: 10.1172/jci61492] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/07/2012] [Indexed: 12/30/2022] Open
Abstract
In contrast to the well-studied classic MAPKs, such as ERK1/2, little is known concerning the regulation and substrates of the atypical MAPK ERK3 signaling cascade and its function in cancer progression. Here, we report that ERK3 interacted with and phosphorylated steroid receptor coactivator 3 (SRC-3), an oncogenic protein overexpressed in multiple human cancers at serine 857 (S857). This ERK3-mediated phosphorylation at S857 was essential for interaction of SRC-3 with the ETS transcription factor PEA3, which promotes upregulation of MMP gene expression and proinvasive activity in lung cancer cells. Importantly, knockdown of ERK3 or SRC-3 inhibited the ability of lung cancer cells to invade and form tumors in the lung in a xenograft mouse model. In addition, ERK3 was found to be highly upregulated in human lung carcinomas. Our study identifies a previously unknown role for ERK3 in promoting lung cancer cell invasiveness by phosphorylating SRC-3 and regulating SRC-3 proinvasive activity by site-specific phosphorylation. As such, ERK3 protein kinase may be an attractive target for therapeutic treatment of invasive lung cancer.
Collapse
Affiliation(s)
- Weiwen Long
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Malovannaya A, Lanz RB, Jung SY, Bulynko Y, Le NT, Chan DW, Ding C, Shi Y, Yucer N, Krenciute G, Kim BJ, Li C, Chen R, Li W, Wang Y, O'Malley BW, Qin J. Analysis of the human endogenous coregulator complexome. Cell 2011; 145:787-99. [PMID: 21620140 DOI: 10.1016/j.cell.2011.05.006] [Citation(s) in RCA: 333] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/22/2011] [Accepted: 05/05/2011] [Indexed: 01/03/2023]
Abstract
Elucidation of endogenous cellular protein-protein interactions and their networks is most desirable for biological studies. Here we report our study of endogenous human coregulator protein complex networks obtained from integrative mass spectrometry-based analysis of 3290 affinity purifications. By preserving weak protein interactions during complex isolation and utilizing high levels of reciprocity in the large dataset, we identified many unreported protein associations, such as a transcriptional network formed by ZMYND8, ZNF687, and ZNF592. Furthermore, our work revealed a tiered interplay within networks that share common proteins, providing a conceptual organization of a cellular proteome composed of minimal endogenous modules (MEMOs), complex isoforms (uniCOREs), and regulatory complex-complex interaction networks (CCIs). This resource will effectively fill a void in linking correlative genomic studies with an understanding of transcriptional regulatory protein functions within the proteome for formulation and testing of future hypotheses.
Collapse
Affiliation(s)
- Anna Malovannaya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tumor-suppressor role for the SPOP ubiquitin ligase in signal-dependent proteolysis of the oncogenic co-activator SRC-3/AIB1. Oncogene 2011; 30:4350-64. [PMID: 21577200 PMCID: PMC3158261 DOI: 10.1038/onc.2011.151] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Steroid receptor co-activator-3 (SRC-3/AIB1) is an oncogene that is amplified and overexpressed in many human cancers. However, the molecular mechanisms that regulate 'activated SRC-3 oncoprotein' turnover during tumorigenesis remain to be elucidated. Here, we report that speckle-type POZ protein (SPOP), a cullin 3 (CUL3)-based ubiquitin ligase, is responsible for SRC-3 ubiquitination and proteolysis. SPOP interacts directly with an SRC-3 phospho-degron in a phosphorylation-dependent manner. Casein kinase Iɛ phosphorylates the S102 in this degron and promotes SPOP-dependent turnover of SRC-3. Short hairpin RNA knockdown and overexpression experiments substantiated that the SPOP/CUL3/Rbx1 ubiquitin ligase complex promotes SRC-3 turnover. A systematic analysis of the SPOP genomic locus revealed that a high percentage of genomic loss or loss of heterozygosity occurs at this locus in breast cancers. Furthermore, we demonstrate that restoration of SPOP expression inhibited SRC-3-mediated oncogenic signaling and tumorigenesis, thus positioning SPOP as a tumor suppressor.
Collapse
|
31
|
Namdarian B, Wong E, Galea R, Pedersen J, Chin X, Speirs R, Humbert PO, Costello AJ, Corcoran NM, Hovens CM. Loss of APKC expression independently predicts tumor recurrence in superficial bladder cancers. Urol Oncol 2011; 31:649-55. [PMID: 21549621 DOI: 10.1016/j.urolonc.2011.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/02/2011] [Accepted: 03/28/2011] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Epithelial-mesenchymal transition (EMT) is known to play an important role in the development of tumor invasion and progression in tumors of epithelial origin. Our aim was to investigate the role of tight junction proteins, Par3/Par6/atypical protein kinase C (APKC), Discs large (Dlg), and Scribble in human bladder pathogenesis. METHODS We evaluated levels of APKC, Dlg, and Scribble in 92 superficial bladder tumors using tissue microarrays and immunohistochemistry, and correlated expression with pathologic variables and clinical outcomes. RESULTS There was a slight apparent enrichment in strong vs. weak staining for APKC (54.9% vs. 45.1%), Dlg (65.7% vs. 34.3%), and a marked enrichment for Scribble (75% vs. 25%) in the superficial bladder tumors. Univariate analysis determined that both tumor focality and APKC expression were significantly associated with tumor recurrence (P < 0.05). Multivariate analysis using the Cox's proportional hazards model revealed that only APKC (P = 0.025) as well as tumor focality (P = 0.018) were independent and significant prognostic factors for tumor recurrence in all patients. We found that no immunohistochemical staining of any of the cell polarity proteins significantly predicted for tumor progression on either univariate or multivariate analysis. CONCLUSIONS Loss of APKC expression in superficial bladder tumors is a strong predictor of tumor recurrence.
Collapse
Affiliation(s)
- Benjamin Namdarian
- Department of Surgery, Division of Urology, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Moore NL, Weigel NL. Regulation of progesterone receptor activity by cyclin dependent kinases 1 and 2 occurs in part by phosphorylation of the SRC-1 carboxyl-terminus. Int J Biochem Cell Biol 2011; 43:1157-67. [PMID: 21550420 DOI: 10.1016/j.biocel.2011.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 12/15/2022]
Abstract
We described previously a novel role for cyclin A2/Cdk2 as a progesterone receptor (PR) coactivator. In reporter gene assays, cyclin A2 overexpression enhanced PR activity while inhibition of Cdk2 activity using the chemical inhibitor roscovitine or Cdk2 siRNA strongly inhibited PR activity. We demonstrate here that both Cdk1 and Cdk2 contribute to maximal induction of endogenous progestin responsive genes in T47D breast cancer cells. Our earlier studies suggested that the mechanism by which cyclin A2/Cdk2 enhances PR activity is via phosphorylation of steroid receptor coactivator-1 (SRC-1), which increases PR-SRC-1 interactions. To assess the importance of SRC-1 phosphorylation in the regulation of PR activity, SRC-1 was phosphorylated by cyclin A2/Cdk2 in vitro and seventeen phosphorylation sites were identified using biochemical techniques. We show that one of these sites, T1426 (adjacent to the C-terminal LXXLL nuclear receptor interaction motif), is an in vivo target of Cdks in mammalian cells and an in vitro target of Cdk1 and Cdk2. Phosphorylation of T1426 also contributes to SRC-1 coactivation potential, as mutation of the threonine target site to alanine results in reduced stimulation of PR activity by SRC-1. Together, these results suggest a role for Cdk1 and Cdk2 in the regulation of endogenous PR activity in part through phosphorylation of SRC-1.
Collapse
Affiliation(s)
- Nicole L Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
33
|
Sun Y, Perera J, Rubin BP, Huang J. SYT-SSX1 (synovial sarcoma translocated) regulates PIASy ligase activity to cause overexpression of NCOA3 protein. J Biol Chem 2011; 286:18623-32. [PMID: 21454665 DOI: 10.1074/jbc.m110.176693] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chromosomal translocations are a major source of genetic abnormalities causally linked to certain malignancies. Synovial sarcoma is an aggressive soft tissue tumor characterized by a chromosomal translocation between chromosome 18 and X, generating oncoproteins such as SYT-SSX1 and SYT-SSX2. The molecular mechanism underlying the oncogenic potential of SYT-SSX1/2 is not clear. Here we show that SYT-SSX1 leads to up-regulation of NCOA3, a protein critical for the formation of various cancers. The increase of NCOA3 is essential for SYT-SSX1-mediated synovial sarcoma formation. SYT-SSX1 does so by increasing the sumoylation of NCOA3 through interaction with a SUMO E3 ligase, PIASy, as well as the sumoylation of NEMO. NEMO has also been shown to physically interact with NCOA3. Increased sumoylation of NCOA3 leads to its increased steady state level and nuclear localization. Our findings represent the first example that an oncoprotein directly regulates substrate modification by a SUMO E3 ligase, and leads to overexpression of a protein essential for tumor formation. Such a mechanistic finding provides an opportunity to design specific therapeutic interventions to treat synovial sarcoma.
Collapse
Affiliation(s)
- Yin Sun
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
34
|
Amazit L, Roseau A, Khan JA, Chauchereau A, Tyagi RK, Loosfelt H, Leclerc P, Lombès M, Guiochon-Mantel A. Ligand-dependent degradation of SRC-1 is pivotal for progesterone receptor transcriptional activity. Mol Endocrinol 2011; 25:394-408. [PMID: 21273440 PMCID: PMC3320859 DOI: 10.1210/me.2010-0458] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/13/2010] [Indexed: 02/08/2023] Open
Abstract
The progesterone receptor (PR), a ligand-activated transcription factor, recruits the primary coactivator steroid receptor coactivator-1 (SRC-1) gene promoters. It is known that PR transcriptional activity is paradoxically coupled to its ligand-dependent down-regulation. However, despite its importance in PR function, the regulation of SRC-1 expression level during hormonal exposure is poorly understood. Here we report that SRC-1 expression level (but not other p160 family members) is down-regulated by the agonist ligand R5020 in a PR-dependent manner. In contrast, the antagonist RU486 fails to induce down-regulation of the coactivator and impairs PR agonist-dependent degradation of SRC-1. We show that SRC-1 proteolysis is a proteasome- and ubiquitin-mediated process that, predominantly but not exclusively, occurs in the cytoplasmic compartment in which SRC-1 colocalizes with proteasome antigens as demonstrated by confocal imaging. Moreover, SRC-1 was stabilized in the presence of leptomycin B or several proteasomal inhibitors. Two degradation motifs, amino-acids 2-16 corresponding to a PEST motif and amino acids 41-136 located in the basic helix loop helix domain of the coactivator, were identified and shown to control the stability as well as the hormone-dependent down-regulation of the coactivator. SRC-1 degradation is of physiological importance because the two nondegradable mutants that still interacted with PR as demonstrated by coimmunoprecipitation failed to stimulate transcription of exogenous and endogenous target genes, suggesting that concomitant PR/SRC-1 ligand-dependent degradation is a necessary step for PR transactivation activity. Collectively our findings are consistent with the emerging role of proteasome-mediated proteolysis in the gene-regulating process and indicate that the ligand-dependent down-regulation of SRC-1 is critical for PR transcriptional activity.
Collapse
Affiliation(s)
- Larbi Amazit
- Institut National de la Santé et de la Recherche Médicale Unité 693, 63 Rue Gabriel Péri, Le Kremlin-Bicêtre F-94276, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bulynko YA, O'Malley BW. Nuclear receptor coactivators: structural and functional biochemistry. Biochemistry 2010; 50:313-28. [PMID: 21141906 DOI: 10.1021/bi101762x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transcription of eukaryotic cell is a multistep process tightly controlled by concerted action of macromolecules. Nuclear receptors are ligand-activated sequence-specific transcription factors that bind DNA and activate (or repress) transcription of specific sets of nuclear target genes. Successful activation of transcription by nuclear receptors and most other transcription factors requires "coregulators" of transcription. Coregulators make up a diverse family of proteins that physically interact with and modulate the activity of transcription factors and other components of the gene expression machinery via multiple biochemical mechanisms. The coregulators include coactivators that accomplish reactions required for activation of transcription and corepressors that suppress transcription. This review summarizes our current knowledge of nuclear receptor coactivators with an emphasis on their biochemical mechanisms of action and means of regulation.
Collapse
Affiliation(s)
- Yaroslava A Bulynko
- Molecular and Cellular Biology, BCM130 Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
36
|
Abstract
The three members of the p160 family of steroid receptor coactivators (SRC-1, SRC-2, and SRC-3) steer the functional output of numerous genetic programs and serve as pleiotropic rheostats for diverse physiological processes. Since their discovery ∼15 years ago, the extraordinary sum of examination of SRC function has shaped the foundation of our knowledge for the now 350+ coregulators that have been identified to date. In this perspective, we retrace our steps into the field of coregulators and provide a summary of selected seminal work that helped define the SRCs as masters of systems biology.
Collapse
Affiliation(s)
- Brian York
- From the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Bert W. O'Malley
- From the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
37
|
Shkreta L, Michelle L, Toutant J, Tremblay ML, Chabot B. The DNA damage response pathway regulates the alternative splicing of the apoptotic mediator Bcl-x. J Biol Chem 2010; 286:331-40. [PMID: 20980256 DOI: 10.1074/jbc.m110.162644] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alternative splicing often produces effectors with opposite functions in apoptosis. Splicing decisions must therefore be tightly connected to stresses, stimuli, and pathways that control cell survival and cell growth. We have shown previously that PKC signaling prevents the production of proapoptotic Bcl-x(S) to favor the accumulation of the larger antiapoptotic Bcl-x(L) splice variant in 293 cells. Here we show that the genotoxic stress induced by oxaliplatin elicits an ATM-, CHK2-, and p53-dependent splicing switch that favors the production of the proapoptotic Bcl-x(S) variant. This DNA damage-induced splicing shift requires the activity of protein-tyrosine phosphatases. Interestingly, the ATM/CHK2/p53/tyrosine phosphatases pathway activated by oxaliplatin regulates Bcl-x splicing through the same regulatory sequence element (SB1) that receives signals from the PKC pathway. Convergence of the PKC and DNA damage signaling routes may control the abundance of a key splicing repressor because SB1-mediated repression is lost when protein synthesis is impaired but is rescued by blocking proteasome-mediated protein degradation. The SB1 splicing regulatory module therefore receives antagonistic signals from the PKC and the p53-dependent DNA damage response pathways to control the balance of pro- and antiapoptotic Bcl-x splice variants.
Collapse
Affiliation(s)
- Lulzim Shkreta
- RNA/RNP Group, Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | |
Collapse
|
38
|
He LR, Zhao HY, Li BK, Zhang LJ, Liu MZ, Kung HF, Guan XY, Bian XW, Zeng YX, Xie D. Overexpression of AIB1 negatively affects survival of surgically resected non-small-cell lung cancer patients. Ann Oncol 2010; 21:1675-1681. [DOI: 10.1093/annonc/mdp592] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Arakawa T, Masuhiro Y, Kamiya Y, Kojima H, Hanazawa S. Identification of significant regions of transcription factor DP-1 (TFDP-1) involved in stability/instability of the protein. Biochem Biophys Res Commun 2010; 397:345-9. [DOI: 10.1016/j.bbrc.2010.05.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 05/25/2010] [Indexed: 12/30/2022]
|
40
|
Schmidt F, Dahlmann B, Hustoft HK, Koehler CJ, Strozynski M, Kloss A, Zimny-Arndt U, Jungblut PR, Thiede B. Quantitative proteome analysis of the 20S proteasome of apoptotic Jurkat T cells. Amino Acids 2010; 41:351-61. [PMID: 20364280 DOI: 10.1007/s00726-010-0575-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 03/17/2010] [Indexed: 01/27/2023]
Abstract
Regulated proteolysis plays important roles in cell biology and pathological conditions. A crosstalk exists between apoptosis and the ubiquitin-proteasome system, two pathways responsible for regulated proteolysis executed by different proteases. To investigate whether the apoptotic process also affects the 20S proteasome, we performed three independent SILAC-based quantitative proteome approaches: 1-DE/MALDI-MS, small 2-DE/MALDI-MS and large 2-DE/nano-LC-ESI-MS. Taking the results of all experiments together, no quantitative changes were observed for the α- and β-subunits of the 20S proteasome except for subunit α7. This protein was identified in two protein spots with a down-regulation of the more acidic protein species (α7a) and up-regulation of the more basic protein species (α7b) during apoptosis. The difference in these two α7 protein species could be attributed to oxidation of cysteine-41 to cysteine sulfonic acid and phosphorylation at serine-250 near the C terminus in α7a, whereas these modifications were missing in α7b. These results pointed to the biological significance of posttranslational modifications of proteasome subunit α7 after induction of apoptosis.
Collapse
Affiliation(s)
- Frank Schmidt
- The Biotechnology Centre of Oslo, University of Oslo, Gaustadalleen 21, Blindern, P.O. Box 1125, 0317, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Haugan Moi LL, Hauglid Flågeng M, Gandini S, Guerrieri-Gonzaga A, Bonanni B, Lazzeroni M, Gjerde J, Lien EA, DeCensi A, De Censi A, Mellgren G. Effect of low-dose tamoxifen on steroid receptor coactivator 3/amplified in breast cancer 1 in normal and malignant human breast tissue. Clin Cancer Res 2010; 16:2176-86. [PMID: 20332317 DOI: 10.1158/1078-0432.ccr-09-1859] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Nuclear receptor coactivator expression and activity may partly explain the complex agonist/antagonist effects of tamoxifen at clinical level. In a preoperative trial, dose reduction from 20 to 1 mg tamoxifen was associated with retained antiproliferative effect on breast cancer. Here, we assessed the gene expression of the steroid receptor coactivators SRC-1, SRC-2/transcription intermediary factor 2, and SRC-3/amplified in breast cancer 1 (AIB1) and the growth factor receptor HER-2/neu under three tamoxifen dose regimens. EXPERIMENTAL DESIGN Surgical specimens from estrogen receptor-positive breast cancer and adjacent normal breast tissue from 64 patients treated 4 weeks preoperatively with 20, 5, or 1 mg/d tamoxifen and 28 nontreated breast cancer controls were analyzed for coactivator and HER-2/neu mRNA expression using real-time reverse transcription-PCR. The gene expression levels were related to immunohistochemical expression of Ki67, serum levels of insulin-like growth factor I and sex hormone binding globulin, other prognostic factors, and clinical outcome. RESULTS The coactivators and HER-2/neu mRNA levels were higher in malignant compared with normal tissue (P < 0.001). Tamoxifen significantly increased the expression of coactivators in normal and malignant tissue irrespective of dose, especially for SRC-3/AIB1 (P < 0.001 tamoxifen-treated versus nontreated subjects). SRC-3/AIB1 and HER-2/neu mRNA levels were positively correlated (P = 0.016), but the coactivators could not explain the variability of Ki67, insulin-like growth factor I, and sex hormone binding. Although not significant, SRC-3/AIB1 tended to be higher in subjects with poor clinical outcome and unfavorable prognostic factors. CONCLUSIONS Increased coactivator mRNA levels seem to be an early response to tamoxifen without dose-response relationship in the 1- to 20-mg range. Clinical and molecular effects of low-dose tamoxifen should be further explored.
Collapse
Affiliation(s)
- Line L Haugan Moi
- Institute of Medicine, University of Bergen, Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lanz RB, Bulynko Y, Malovannaya A, Labhart P, Wang L, Li W, Qin J, Harper M, O'Malley BW. Global characterization of transcriptional impact of the SRC-3 coregulator. Mol Endocrinol 2010; 24:859-72. [PMID: 20181721 DOI: 10.1210/me.2009-0499] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The nuclear receptor and bona fide oncogene, steroid receptor coactivator-3 (SRC-3, AIB1), acts as a master transcriptional regulator of breast cancer by transducing growth signals via the estrogen receptor alpha (ER). In this resource paper, we present the genome-wide localization analysis of SRC-3 chromatin affinity sites in MCF-7 human breast cancer chromatin and compare the cis binding sites to global cartographies for ER and FoxA1. By correlating their gene proximal binding sites to integrated gene expression signatures, and in combination with gene ontology analyses, we provide a functional classification of estradiol-induced gene regulation that further highlights an intricate transcriptional control of interdependent cellular pathways by SRC-3. Furthermore, by presenting proteomics analyses of in vivo SRC-3- and ER-associated proteins, we give strong evidence to support the idea that the interpretative power of SRC-3 in estrogen signaling is mediated through the formation of distinct, cell state-dependent protein complexes. Altogether, we present the first approach in complementary comparative analyses that converges results obtained by three discovery-driven methods (cistromics, transcriptomics, and proteomics) into testable hypotheses, thus providing a valuable resource for follow-up studies that further our understanding of estrogen signaling in human diseases in general and breast cancer in particular.
Collapse
Affiliation(s)
- Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hsia EYC, Kalashnikova EV, Revenko AS, Zou JX, Borowsky AD, Chen HW. Deregulated E2F and the AAA+ coregulator ANCCA drive proto-oncogene ACTR/AIB1 overexpression in breast cancer. Mol Cancer Res 2010; 8:183-93. [PMID: 20124470 DOI: 10.1158/1541-7786.mcr-09-0095] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The proto-oncogene ACTR/AIB1, a coactivator for transcription factors such as the nuclear receptors and E2Fs, is frequently overexpressed in various cancers including breast cancers. However, the underlying mechanism is poorly understood. Here, we identified several functional, noncanonical E2F binding sites in the ACTR first exon and intron that are critical for ACTR gene activation. We also found that the newly identified AAA+ coregulator AAA+ nuclear coregulator cancer associated (ANCCA) is recruited to the ACTR promoter and directly controls ACTR expression in breast cancer cells. Importantly, immunohistochemistry analysis indicated that ACTR overexpression is highly correlated with the expression of E2F1 and ANCCA in a cohort of human primary and lymph node-metastasized breast cancer specimens. Along with previous findings from us and others that ACTR is involved in its own gene regulation, these results suggest that one major mechanism of ACTR overexpression in cancer is the concerted, aberrant function of the nuclear coregulators such as ANCCA and ACTR, and they point to therapeutic strategies that target the Rb-E2F axis and/or the coregulator ANCCA for ACTR-overexpressing cancers.
Collapse
Affiliation(s)
- Elaine Y C Hsia
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
44
|
Gustafsson N, Zhao C, Gustafsson JÅ, Dahlman-Wright K. RBCK1 Drives Breast Cancer Cell Proliferation by Promoting Transcription of Estrogen Receptor α and Cyclin B1. Cancer Res 2010; 70:1265-74. [DOI: 10.1158/0008-5472.can-09-2674] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Polarity protein alterations in carcinoma: a focus on emerging roles for polarity regulators. Curr Opin Genet Dev 2010; 20:41-50. [PMID: 20093003 DOI: 10.1016/j.gde.2009.12.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 12/12/2009] [Accepted: 12/16/2009] [Indexed: 12/24/2022]
Abstract
In this review we discuss both gene expression and protein localization changes of polarity proteins in carcinoma. We highlight the importance of protein mislocalization and its possible role in cancer. We also discuss the emerging role of polarity proteins as regulators of proliferation, apoptosis, tissue polarity, epithelial-mesenchymal transition, in addition to their known role in cell junction biogenesis.
Collapse
|
46
|
Malik S, Shukla A, Sen P, Bhaumik SR. The 19 s proteasome subcomplex establishes a specific protein interaction network at the promoter for stimulated transcriptional initiation in vivo. J Biol Chem 2010; 284:35714-24. [PMID: 19843524 DOI: 10.1074/jbc.m109.035709] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 26 S proteasome complex that comprises the 20 S core and 19 S regulatory (with six ATPases) particles is engaged in an ATP-dependent degradation of a variety of key regulatory proteins and, thus, controls important cellular processes. Interestingly, several recent studies have implicated the 19 S regulatory particle in controlling eukaryotic transcriptional initiation or activation independently of the 20 S core particle. However, the mechanism of action of the 19 S proteasome subcomplex in regulation of eukaryotic transcriptional activation is not clearly understood in vivo. Here, using a chromatin immunoprecipitation assay in conjunction with mutational and transcriptional analyses in Saccharomyces cerevisiae, we show that the 19 S proteasomal subcomplex establishes a specific protein interaction network at the upstream activating sequence of the promoter. Such an interaction network is essential for formation of the preinitiation complex at the core promoter to initiate transcription. Furthermore, we demonstrate that the formation of the transcription complex assembly at the promoter is dependent on 19 S ATPase activity. Intriguingly, 19 S ATPases appear to cross-talk for stimulation of the assembly of transcription factors at the promoter. Together, these results provide significant insights as to how the 19 S proteasome subcomplex regulates the formation of the active transcription complex assembly (and, hence, transcriptional initiation) at the promoter in vivo.
Collapse
Affiliation(s)
- Shivani Malik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, USA
| | | | | | | |
Collapse
|
47
|
Gojis O, Rudraraju B, Gudi M, Hogben K, Sousha S, Coombes CR, Cleator S, Palmieri C. The role of SRC-3 in human breast cancer. Nat Rev Clin Oncol 2009; 7:83-9. [DOI: 10.1038/nrclinonc.2009.219] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
48
|
Emerging roles of the ubiquitin proteasome system in nuclear hormone receptor signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:117-35. [PMID: 20374703 DOI: 10.1016/s1877-1173(09)87004-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptor (NR)-mediated transcription is intimately tied to the ubiquitin proteasome system (UPS). The UPS targets numerous NR and coregulator proteins, regulating their stability and altering their transcriptional activities through the posttranslational placement of ubiquitin marks on them. Differences in the manner in which ubiquitin is attached to target proteins or itself have distinct regulatory consequences. Protein monoubiquitination, polyubiquitination, the site of ubiquitin attachment to a target protein, and the type of polyubiquitin chain linkage all lead to different biological outcomes and have an important regulatory function in NR-mediated transcription. Consistent with its role in protein degradation, the UPS is able to limit the biological actions of both NRs and coregulators by reducing their protein concentrations in the cell. However, in spite of its destructive capabilities, the UPS can play a positive role in facilitating NR-mediated transcription as well. In addition, ubiquitin-like modifications such as SUMOylation also modify and regulate NRs and coregulators. The UPS forms a key biological system that underlies a sophisticated postranslational regulatory scheme from which complex and dynamic regulation of NR-mediated transcription can occur.
Collapse
|
49
|
Hsia EYC, Zou JX, Chen HW. The roles and action mechanisms of p160/SRC coactivators and the ANCCA coregulator in cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:261-98. [PMID: 20374707 DOI: 10.1016/s1877-1173(09)87008-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chromosomal aberrations involving genes encoding members of the p160/SRC transcriptional coactivator family such as AIB1/ACTR and TIF2 implicated the coactivators in malignancy of human cells. Significant progress has been made in the last decade toward uncovering their roles in the development and progression of solid tissue tumors as well as leukemia and understanding of the underlying molecular mechanisms. Here, we review their genetic aberrations and dysregulation in expression in breast cancer, prostate cancer, and other nonhormone-responsive cancers. The experimental evidence gathered from studies using cell culture and animal models strongly supports a critical and, in some circumstances, their oncogenic function. We summarize results that the SRCs may contribute to tumorigenesis and disease progression through transcription factors such as E2F, PEA3, and AP-1 and through an intimate control of signaling pathways of growth factors-Akt and the receptor tyrosine kinases. The finding that a recently identified nuclear receptor coregulator ANCCA, like the SRCs, is frequently overexpressed in many types of cancers again underscores their broader roles in cancer.
Collapse
Affiliation(s)
- Elaine Y C Hsia
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, California 95817, USA
| | | | | |
Collapse
|
50
|
Xu J, Wu RC, O’Malley BW. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev Cancer 2009; 9:615-30. [PMID: 19701241 PMCID: PMC2908510 DOI: 10.1038/nrc2695] [Citation(s) in RCA: 381] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The three homologous members of the p160 SRC family (SRC1, SRC2 and SRC3) mediate the transcriptional functions of nuclear receptors and other transcription factors, and are the most studied of all the transcriptional co-activators. Recent work has indicated that the SRCgenes are subject to amplification and overexpression in various human cancers. Some of the molecular mechanisms responsible for SRC overexpression, along with the mechanisms by which SRCs promote breast and prostate cancer cell proliferation and survival, have been identified, as have the specific contributions of individual SRC family members to spontaneous breast and prostate carcinogenesis in genetically manipulated mouse models. These studies have identified new challenges for cancer research and therapy.
Collapse
Affiliation(s)
- Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
- Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Ray-Chang Wu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| |
Collapse
|