1
|
Niss K, Gomez-Casado C, Hjaltelin JX, Joeris T, Agace WW, Belling KG, Brunak S. Complete Topological Mapping of a Cellular Protein Interactome Reveals Bow-Tie Motifs as Ubiquitous Connectors of Protein Complexes. Cell Rep 2020; 31:107763. [PMID: 32553166 DOI: 10.1016/j.celrep.2020.107763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/03/2020] [Accepted: 05/21/2020] [Indexed: 11/18/2022] Open
Abstract
The network topology of a protein interactome is shaped by the function of each protein, making it a resource of functional knowledge in tissues and in single cells. Today, this resource is underused, as complete network topology characterization has proved difficult for large protein interactomes. We apply a matrix visualization and decoding approach to a physical protein interactome of a dendritic cell, thereby characterizing its topology with no prior assumptions of structure. We discover 294 proteins, each forming topological motifs called "bow-ties" that tie together the majority of observed protein complexes. The central proteins of these bow-ties have unique network properties, display multifunctional capabilities, are enriched for essential proteins, and are widely expressed in other cells and tissues. Collectively, the bow-tie motifs are a pervasive and previously unnoted topological trend in cellular interactomes. As such, these results provide fundamental knowledge on how intracellular protein connectivity is organized and operates.
Collapse
Affiliation(s)
- Kristoffer Niss
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Cristina Gomez-Casado
- Immunology Section, Lund University, BMC D14, 221-84 Lund, Sweden; Institute of Applied Molecular Medicine, Faculty of Medicine, San Pablo CEU University, 28925 Madrid, Spain
| | - Jessica X Hjaltelin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thorsten Joeris
- Immunology Section, Lund University, BMC D14, 221-84 Lund, Sweden
| | - William W Agace
- Immunology Section, Lund University, BMC D14, 221-84 Lund, Sweden; Mucosal Immunology Group, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kirstine G Belling
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
2
|
Fang Y, Shen X. Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications. Cancer Metastasis Rev 2018; 36:669-682. [PMID: 29080080 DOI: 10.1007/s10555-017-9702-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein ubiquitination and deubiquitination participate in a number of biological processes, including cell growth, differentiation, transcriptional regulation, and oncogenesis. Ubiquitin C-terminal hydrolases (UCHs), a subfamily of deubiquitinating enzymes (DUBs), includes four members: UCH-L1/PGP9.5 (protein gene product 9.5), UCH-L3, UCHL5/UCH37, and BRCA1-associated protein-1 (BAP1). Recently, more attention has been paid to the relationship between the UCH family and malignancies, which play different roles in the progression of different tumors. It remains controversial whether UCHL1 is a tumor promoter or suppressor. UCHL3 and UCH37 are considered to be tumor promoters, while BAP1 is considered to be a tumor suppressor. Studies have showed that UCH enzymes influence several signaling pathways that play crucial roles in oncogenesis, tumor invasion, and migration. In addition, UCH families are associated with tumor cell sensitivity to therapeutic modalities. Here, we reviewed the roles of UCH enzymes in the development of tumors, highlighting the potential consideration of UCH enzymes as new interesting targets for the development of anticancer drugs.
Collapse
Affiliation(s)
- Ying Fang
- The Department of Gastroenterology of Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
| | - Xizhong Shen
- The Department of Gastroenterology of Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, People's Republic of China. .,Key Laboratory of Medical Molecule Virology, Ministry of Education and Health, Shanghai Institute of Liver Diseases Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
3
|
Kikuchi M, Ogishima S, Mizuno S, Miyashita A, Kuwano R, Nakaya J, Tanaka H. Network-Based Analysis for Uncovering Mechanisms Underlying Alzheimer's Disease. Methods Mol Biol 2016; 1303:479-91. [PMID: 26235086 DOI: 10.1007/978-1-4939-2627-5_29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Alzheimer's disease (AD) is known to be a multifactorial neurodegenerative disorder, and is one of the main causes of dementia in the elderly. Many studies have demonstrated molecules involved in the pathogenesis of AD, however its underlying mechanisms remain obscure. It may be simplistic to try to explain the disease based on the role of a few genes only. Accumulating new, huge amount of information from e.g. genome, proteome and interactome datasets and new knowledge, we are now able to clarify and characterize diseases essentially as a result of dysfunction of molecular networks. Recent studies have indicated that relevant genes affected in human diseases concentrate in a part of the network, often called as "disease module." In the case of AD, some disease-associated pathways seem different, but some of them are clearly disease-related and coherent. This suggests the existence of a common pathway that negatively drives from healthy state to disease state (i.e., the disease module(s)). Additionally, such disease modules should dynamically change through AD progression. Thus, network-level approaches are indispensable to address unknown mechanisms of AD. In this chapter, we introduce network strategies using gene co-expression and protein interaction networks.
Collapse
Affiliation(s)
- Masataka Kikuchi
- Department of Molecular Genetics, Center for Bioresources, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
4
|
Swygert SG, Peterson CL. Chromatin dynamics: interplay between remodeling enzymes and histone modifications. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:728-36. [PMID: 24583555 DOI: 10.1016/j.bbagrm.2014.02.013] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/13/2014] [Accepted: 02/20/2014] [Indexed: 01/08/2023]
Abstract
Chromatin dynamics play an essential role in regulating the accessibility of genomic DNA for a variety of nuclear processes, including gene transcription and DNA repair. The posttranslational modification of the core histones and the action of ATP-dependent chromatin remodeling enzymes represent two primary mechanisms by which chromatin dynamics are controlled and linked to nuclear events. Although there are examples in which a histone modification or a remodeling enzyme may be sufficient to drive a chromatin transition, these mechanisms typically work in concert to integrate regulatory inputs, leading to a coordinated alteration in chromatin structure and function. Indeed, site-specific histone modifications can facilitate the recruitment of chromatin remodeling enzymes to particular genomic regions, or they can regulate the efficiency or the outcome of a chromatin remodeling reaction. Conversely, chromatin remodeling enzymes can also influence, and sometimes directly modulate, the modification state of histones. These functional interactions are generally complex, frequently transient, and often require the association of myriad additional factors. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Sarah G Swygert
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
5
|
Chen YJ, Ma YS, Fang Y, Wang Y, Fu D, Shen XZ. Power and Promise of Ubiquitin Carboxyl-terminal Hydrolase 37 as a Target of Cancer Therapy. Asian Pac J Cancer Prev 2013; 14:2173-9. [DOI: 10.7314/apjcp.2013.14.4.2173] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
6
|
Fang Y, Fu D, Tang W, Cai Y, Ma D, Wang H, Xue R, Liu T, Huang X, Dong L, Wu H, Shen X. Ubiquitin C-terminal Hydrolase 37, a novel predictor for hepatocellular carcinoma recurrence, promotes cell migration and invasion via interacting and deubiquitinating PRP19. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:559-72. [DOI: 10.1016/j.bbamcr.2012.11.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/11/2012] [Accepted: 11/25/2012] [Indexed: 02/06/2023]
|
7
|
Fang Y, Mu J, Ma Y, Ma D, Fu D, Shen X. The interaction between ubiquitin C-terminal hydrolase 37 and glucose-regulated protein 78 in hepatocellular carcinoma. Mol Cell Biochem 2011; 359:59-66. [DOI: 10.1007/s11010-011-0999-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/19/2011] [Indexed: 10/17/2022]
|
8
|
Förster F, Lasker K, Nickell S, Sali A, Baumeister W. Toward an integrated structural model of the 26S proteasome. Mol Cell Proteomics 2010; 9:1666-77. [PMID: 20467039 PMCID: PMC2938054 DOI: 10.1074/mcp.r000002-mcp201] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/26/2010] [Indexed: 11/06/2022] Open
Abstract
The 26S proteasome is the end point of the ubiquitin-proteasome pathway and degrades ubiquitylated substrates. It is composed of the 20S core particle (CP), where degradation occurs, and the 19S regulatory particle (RP), which ensures substrate specificity of degradation. Whereas the CP is resolved to atomic resolution, the architecture of the RP is largely unknown. We provide a comprehensive analysis of the current structural knowledge on the RP, including structures of the RP subunits, physical protein-protein interactions, and cryoelectron microscopy data. These data allowed us to compute an atomic model for the CP-AAA-ATPase subcomplex. In addition to this atomic model, further subunits can be mapped approximately, which lets us hypothesize on the substrate path during its degradation.
Collapse
Affiliation(s)
- Friedrich Förster
- From the ‡Department of Structural Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Keren Lasker
- ¶Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California 94158, and
- ‖Blavatnik School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stephan Nickell
- From the ‡Department of Structural Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Andrej Sali
- ¶Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California 94158, and
| | - Wolfgang Baumeister
- From the ‡Department of Structural Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| |
Collapse
|
9
|
Fang Y, Fu D, Shen XZ. The potential role of ubiquitin c-terminal hydrolases in oncogenesis. Biochim Biophys Acta Rev Cancer 2010; 1806:1-6. [PMID: 20302916 DOI: 10.1016/j.bbcan.2010.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 03/01/2010] [Accepted: 03/08/2010] [Indexed: 12/20/2022]
Abstract
Deubiquitinating enzymes (DUBs), capable of removing ubiquitin (Ub) from protein substrates, are involved in numerous biological processes. The ubiquitin C-terminal hydrolases (UCHs) subfamily of DUBs consists of four members: UCH-L1, UCH-L3, UCH37 and BRCA1-associated protein-1 (BAP1). UCH-L1 possesses deubiquitinating activity and dimerization-dependent ubiquitin ligase activity, and functions as a mono-ubiquitin stabilizer; UCH-L3 does both deubiquitinating and deneddylating activity, except dimerization or ligase activity, and unlike UCH-L1, can interact with Lys48-linked Ub dimers to protect it from degradation and in the meanwhile to inhibit its hydrolase activity; UCH37 is responsible for the deubiquitinating activity in the 19S proteasome regulatory complex, and as indicated by the recent study, UCH37 is also associated with the human Ino80 chromatin-remodeling complex (hINO80) in the nucleus and can be activated via transient association of 19S regulatory particle- or proteasome-bound hRpn13 with hINO80; BAP1, binding to the wild-type BRCA1 RING finger domain, is regarded as a tumor suppressor, but for such suppressing activity, as demonstrated otherwise, both deubiquitinating activity and nucleus localization are required. There is growing evidence that UCH enzymes and human malignancies are closely correlated. Previous studies have shown that UCH enzymes play a crucial role in some signalings and cell-cycle regulation. In this review, we provided an insight into the relation between UCH enzymes and oncogenesis.
Collapse
Affiliation(s)
- Ying Fang
- Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | | | | |
Collapse
|