1
|
Tang J, Zhang L, Su J, Ye Q, Li Y, Liu D, Cui H, Zhang Y, Ye Z. Insights into Fungal Mitochondrial Genomes and Inheritance Based on Current Findings from Yeast-like Fungi. J Fungi (Basel) 2024; 10:441. [PMID: 39057326 PMCID: PMC11277600 DOI: 10.3390/jof10070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The primary functions of mitochondria are to produce energy and participate in the apoptosis of cells, with them being highly conserved among eukaryotes. However, the composition of mitochondrial genomes, mitochondrial DNA (mtDNA) replication, and mitochondrial inheritance varies significantly among animals, plants, and fungi. Especially in fungi, there exists a rich diversity of mitochondrial genomes, as well as various replication and inheritance mechanisms. Therefore, a comprehensive understanding of fungal mitochondria is crucial for unraveling the evolutionary history of mitochondria in eukaryotes. In this review, we have organized existing reports to systematically describe and summarize the composition of yeast-like fungal mitochondrial genomes from three perspectives: mitochondrial genome structure, encoded genes, and mobile elements. We have also provided a systematic overview of the mechanisms in mtDNA replication and mitochondrial inheritance during bisexual mating. Additionally, we have discussed and proposed open questions that require further investigation for clarification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.T.)
| |
Collapse
|
2
|
Varassas SP, Amillis S, Pappas KM, Kouvelis VN. The Identification of the Mitochondrial DNA Polymerase γ (Mip1) of the Entomopathogenic Fungus Metarhizium brunneum. Microorganisms 2024; 12:1052. [PMID: 38930434 PMCID: PMC11205540 DOI: 10.3390/microorganisms12061052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Replication of the mitochondrial (mt) genome in filamentous fungi is under-studied, and knowledge is based mainly on data from yeasts and higher eukaryotes. In this study, the mitochondrial DNA polymerase γ (Mip1) of the entomopathogenic fungus Metarhizium brunneum is characterized and analyzed with disruption experiments and its in silico interactions with key proteins implicated in mt gene transcription, i.e., mt RNA polymerase Rpo41 and mt transcription factor Mtf1. Disruption of mip1 gene and its partial expression influences cell growth, morphology, germination and stress tolerance. A putative in silico model of Mip1-Rpo41-Mtf1, which is known to be needed for the initiation of replication, was proposed and helped to identify potential amino acid residues of Mip1 that interact with the Rpo41-Mtf1 complex. Moreover, the reduced expression of mip1 indicates that Mip1 is not required for efficient transcription but only for replication. Functional differences between the M. brunneum Mip1 and its counterparts from Saccharomyces cerevisiae and higher eukaryotes are discussed.
Collapse
Affiliation(s)
- Stylianos P. Varassas
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (S.P.V.); (K.M.P.)
| | - Sotiris Amillis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Katherine M. Pappas
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (S.P.V.); (K.M.P.)
| | - Vassili N. Kouvelis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (S.P.V.); (K.M.P.)
| |
Collapse
|
3
|
Fragkoulis G, Hangas A, Fekete Z, Michell C, Moraes C, Willcox S, Griffith JD, Goffart S, Pohjoismäki JO. Linear DNA-driven recombination in mammalian mitochondria. Nucleic Acids Res 2024; 52:3088-3105. [PMID: 38300793 PMCID: PMC11014290 DOI: 10.1093/nar/gkae040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Mitochondrial DNA (mtDNA) recombination in animals has remained enigmatic due to its uniparental inheritance and subsequent homoplasmic state, which excludes the biological need for genetic recombination, as well as limits tools to study it. However, molecular recombination is an important genome maintenance mechanism for all organisms, most notably being required for double-strand break repair. To demonstrate the existence of mtDNA recombination, we took advantage of a cell model with two different types of mitochondrial genomes and impaired its ability to degrade broken mtDNA. The resulting excess of linear DNA fragments caused increased formation of cruciform mtDNA, appearance of heterodimeric mtDNA complexes and recombinant mtDNA genomes, detectable by Southern blot and by long range PacBio® HiFi sequencing approach. Besides utilizing different electrophoretic methods, we also directly observed molecular complexes between different mtDNA haplotypes and recombination intermediates using transmission electron microscopy. We propose that the known copy-choice recombination by mitochondrial replisome could be sufficient for the needs of the small genome, thus removing the requirement for a specialized mitochondrial recombinase. The error-proneness of this system is likely to contribute to the formation of pathological mtDNA rearrangements.
Collapse
Affiliation(s)
- Georgios Fragkoulis
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Anu Hangas
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Zsófia Fekete
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Doctoral School of Animal Biotechnology and Animal Science, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Craig Michell
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami,FL, USA
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, USA
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, USA
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Jaakko L O Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
4
|
Golik P. RNA processing and degradation mechanisms shaping the mitochondrial transcriptome of budding yeasts. IUBMB Life 2024; 76:38-52. [PMID: 37596708 DOI: 10.1002/iub.2779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023]
Abstract
Yeast mitochondrial genes are expressed as polycistronic transcription units that contain RNAs from different classes and show great evolutionary variability. The promoters are simple, and transcriptional control is rudimentary. Posttranscriptional mechanisms involving RNA maturation, stability, and degradation are thus the main force shaping the transcriptome and determining the expression levels of individual genes. Primary transcripts are fragmented by tRNA excision by RNase P and tRNase Z, additional processing events occur at the dodecamer site at the 3' end of protein-coding sequences. groups I and II introns are excised in a self-splicing reaction that is supported by protein splicing factors encoded by the nuclear genes, or by the introns themselves. The 3'-to-5' exoribonucleolytic complex called mtEXO is the main RNA degradation activity involved in RNA turnover and processing, supported by an auxiliary 5'-to-3' exoribonuclease Pet127p. tRNAs and, to a lesser extent, rRNAs undergo several different base modifications. This complex gene expression system relies on the coordinated action of mitochondrial and nuclear genes and undergoes rapid evolution, contributing to speciation events. Moving beyond the classical model yeast Saccharomyces cerevisiae to other budding yeasts should provide important insights into the coevolution of both genomes that constitute the eukaryotic genetic system.
Collapse
Affiliation(s)
- Pawel Golik
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Gilea AI, Magistrati M, Notaroberto I, Tiso N, Dallabona C, Baruffini E. The Saccharomyces cerevisiae mitochondrial DNA polymerase and its contribution to the knowledge about human POLG-related disorders. IUBMB Life 2023; 75:983-1002. [PMID: 37470284 DOI: 10.1002/iub.2770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Most eukaryotes possess a mitochondrial genome, called mtDNA. In animals and fungi, the replication of mtDNA is entrusted by the DNA polymerase γ, or Pol γ. The yeast Pol γ is composed only of a catalytic subunit encoded by MIP1. In humans, Pol γ is a heterotrimer composed of a catalytic subunit homolog to Mip1, encoded by POLG, and two accessory subunits. In the last 25 years, more than 300 pathological mutations in POLG have been identified as the cause of several mitochondrial diseases, called POLG-related disorders, which are characterized by multiple mtDNA deletions and/or depletion in affected tissues. In this review, at first, we summarize the biochemical properties of yeast Mip1, and how mutations, especially those introduced recently in the N-terminal and C-terminal regions of the enzyme, affect the in vitro activity of the enzyme and the in vivo phenotype connected to the mtDNA stability and to the mtDNA extended and point mutability. Then, we focus on the use of yeast harboring Mip1 mutations equivalent to the human ones to confirm their pathogenicity, identify the phenotypic defects caused by these mutations, and find both mechanisms and molecular compounds able to rescue the detrimental phenotype. A closing chapter will be dedicated to other polymerases found in yeast mitochondria, namely Pol ζ, Rev1 and Pol η, and to their genetic interactions with Mip1 necessary to maintain mtDNA stability and to avoid the accumulation of spontaneous or induced point mutations.
Collapse
Affiliation(s)
- Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Ilenia Notaroberto
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
6
|
Sillamaa S, Piljukov VJ, Vaask I, Sedman T, Jõers P, Sedman J. UvrD-like helicase Hmi1 Has an ATP independent role in yeast mitochondrial DNA maintenance. DNA Repair (Amst) 2023; 132:103582. [PMID: 37839213 DOI: 10.1016/j.dnarep.2023.103582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Hmi1 is a UvrD-like DNA helicase required for the maintenance of the yeast Saccharomyces cerevisiae mitochondrial DNA (mtDNA). Deletion of the HMI1 ORF leads to the formation of respiration-deficient petite mutants, which either contain a short fragment of mtDNA arranged in tandem repeats or lack mtDNA completely. Here we characterize point mutants of the helicase designed to target the ATPase or ssDNA binding activity and show that these mutations do not separately lead to complete loss of the Hmi1 function. The mutant strains support ATP production via oxidative phosphorylation and enable us to directly analyze the impact of both activities on the stability of wild-type mtDNA in this petite-positive yeast. Our data reveal that Hmi1 mutants affecting ssDNA binding display a stronger defect in the maintenance of mtDNA compared to the mutants of ATP binding/hydrolysis. Hmi1 mutants impaired in ssDNA binding demonstrate sensitivity to UV irradiation and lower levels of Cox2 encoded by the mitochondrial genome. This suggests a complex and multifarious role for Hmi1 in mtDNA maintenance-linked transactions, some of which do not require the ATP-dependent helicase activity.
Collapse
Affiliation(s)
- Sirelin Sillamaa
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Vlad-Julian Piljukov
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Iris Vaask
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Tiina Sedman
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Priit Jõers
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Juhan Sedman
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| |
Collapse
|
7
|
Wolters JF, LaBella AL, Opulente DA, Rokas A, Hittinger CT. Mitochondrial genome diversity across the subphylum Saccharomycotina. Front Microbiol 2023; 14:1268944. [PMID: 38075892 PMCID: PMC10701893 DOI: 10.3389/fmicb.2023.1268944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/31/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction Eukaryotic life depends on the functional elements encoded by both the nuclear genome and organellar genomes, such as those contained within the mitochondria. The content, size, and structure of the mitochondrial genome varies across organisms with potentially large implications for phenotypic variance and resulting evolutionary trajectories. Among yeasts in the subphylum Saccharomycotina, extensive differences have been observed in various species relative to the model yeast Saccharomyces cerevisiae, but mitochondrial genome sampling across many groups has been scarce, even as hundreds of nuclear genomes have become available. Methods By extracting mitochondrial assemblies from existing short-read genome sequence datasets, we have greatly expanded both the number of available genomes and the coverage across sparsely sampled clades. Results Comparison of 353 yeast mitochondrial genomes revealed that, while size and GC content were fairly consistent across species, those in the genera Metschnikowia and Saccharomyces trended larger, while several species in the order Saccharomycetales, which includes S. cerevisiae, exhibited lower GC content. Extreme examples for both size and GC content were scattered throughout the subphylum. All mitochondrial genomes shared a core set of protein-coding genes for Complexes III, IV, and V, but they varied in the presence or absence of mitochondrially-encoded canonical Complex I genes. We traced the loss of Complex I genes to a major event in the ancestor of the orders Saccharomycetales and Saccharomycodales, but we also observed several independent losses in the orders Phaffomycetales, Pichiales, and Dipodascales. In contrast to prior hypotheses based on smaller-scale datasets, comparison of evolutionary rates in protein-coding genes showed no bias towards elevated rates among aerobically fermenting (Crabtree/Warburg-positive) yeasts. Mitochondrial introns were widely distributed, but they were highly enriched in some groups. The majority of mitochondrial introns were poorly conserved within groups, but several were shared within groups, between groups, and even across taxonomic orders, which is consistent with horizontal gene transfer, likely involving homing endonucleases acting as selfish elements. Discussion As the number of available fungal nuclear genomes continues to expand, the methods described here to retrieve mitochondrial genome sequences from these datasets will prove invaluable to ensuring that studies of fungal mitochondrial genomes keep pace with their nuclear counterparts.
Collapse
Affiliation(s)
- John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, United States
| | - Abigail L. LaBella
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Dana A. Opulente
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, United States
- Biology Department, Villanova University, Villanova, PA, United States
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
8
|
Wolters JF, LaBella AL, Opulente DA, Rokas A, Hittinger CT. Mitochondrial Genome Diversity across the Subphylum Saccharomycotina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551029. [PMID: 37577532 PMCID: PMC10418067 DOI: 10.1101/2023.07.28.551029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Eukaryotic life depends on the functional elements encoded by both the nuclear genome and organellar genomes, such as those contained within the mitochondria. The content, size, and structure of the mitochondrial genome varies across organisms with potentially large implications for phenotypic variance and resulting evolutionary trajectories. Among yeasts in the subphylum Saccharomycotina, extensive differences have been observed in various species relative to the model yeast Saccharomyces cerevisiae, but mitochondrial genome sampling across many groups has been scarce, even as hundreds of nuclear genomes have become available. By extracting mitochondrial assemblies from existing short-read genome sequence datasets, we have greatly expanded both the number of available genomes and the coverage across sparsely sampled clades. Comparison of 353 yeast mitochondrial genomes revealed that, while size and GC content were fairly consistent across species, those in the genera Metschnikowia and Saccharomyces trended larger, while several species in the order Saccharomycetales, which includes S. cerevisiae, exhibited lower GC content. Extreme examples for both size and GC content were scattered throughout the subphylum. All mitochondrial genomes shared a core set of protein-coding genes for Complexes III, IV, and V, but they varied in the presence or absence of mitochondrially-encoded canonical Complex I genes. We traced the loss of Complex I genes to a major event in the ancestor of the orders Saccharomycetales and Saccharomycodales, but we also observed several independent losses in the orders Phaffomycetales, Pichiales, and Dipodascales. In contrast to prior hypotheses based on smaller-scale datasets, comparison of evolutionary rates in protein-coding genes showed no bias towards elevated rates among aerobically fermenting (Crabtree/Warburg-positive) yeasts. Mitochondrial introns were widely distributed, but they were highly enriched in some groups. The majority of mitochondrial introns were poorly conserved within groups, but several were shared within groups, between groups, and even across taxonomic orders, which is consistent with horizontal gene transfer, likely involving homing endonucleases acting as selfish elements. As the number of available fungal nuclear genomes continues to expand, the methods described here to retrieve mitochondrial genome sequences from these datasets will prove invaluable to ensuring that studies of fungal mitochondrial genomes keep pace with their nuclear counterparts.
Collapse
Affiliation(s)
- John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Abigail L. LaBella
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte NC, 28223, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Dana A. Opulente
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Biology Department Villanova University, Villanova, PA 19085, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53726, USA
| |
Collapse
|
9
|
Tarrés-Solé A, Battistini F, Gerhold JM, Piétrement O, Martínez-García B, Ruiz-López E, Lyonnais S, Bernadó P, Roca J, Orozco M, Le Cam E, Sedman J, Solà M. Structural analysis of the Candida albicans mitochondrial DNA maintenance factor Gcf1p reveals a dynamic DNA-bridging mechanism. Nucleic Acids Res 2023; 51:5864-5882. [PMID: 37207342 PMCID: PMC10287934 DOI: 10.1093/nar/gkad397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 04/01/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
The compaction of mitochondrial DNA (mtDNA) is regulated by architectural HMG-box proteins whose limited cross-species similarity suggests diverse underlying mechanisms. Viability of Candida albicans, a human antibiotic-resistant mucosal pathogen, is compromised by altering mtDNA regulators. Among them, there is the mtDNA maintenance factor Gcf1p, which differs in sequence and structure from its human and Saccharomyces cerevisiae counterparts, TFAM and Abf2p. Our crystallographic, biophysical, biochemical and computational analysis showed that Gcf1p forms dynamic protein/DNA multimers by a combined action of an N-terminal unstructured tail and a long helix. Furthermore, an HMG-box domain canonically binds the minor groove and dramatically bends the DNA while, unprecedentedly, a second HMG-box binds the major groove without imposing distortions. This architectural protein thus uses its multiple domains to bridge co-aligned DNA segments without altering the DNA topology, revealing a new mechanism of mtDNA condensation.
Collapse
Affiliation(s)
- Aleix Tarrés-Solé
- Structural MitoLab, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona Science Park, Barcelona 08028, Spain
| | - Federica Battistini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- Department of Biochemistry, University of Barcelona, Barcelona 08028, Spain
| | - Joachim M Gerhold
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Olivier Piétrement
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris Saclay, Gustave Roussy Campus, 114 rue Edouard Vaillant 94805VillejuifCedex, France
| | | | - Elena Ruiz-López
- Structural MitoLab, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona Science Park, Barcelona 08028, Spain
| | - Sébastien Lyonnais
- Structural MitoLab, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona Science Park, Barcelona 08028, Spain
| | - Pau Bernadó
- Centre de Biologie Structurale (CBS), Inserm, CNRS and Université de Montpellier, France, Sébastien Lyonnais, UAR 3725 CNRS, Université de Montpellier, 34000 Montpellier, France
| | - Joaquim Roca
- Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- Department of Biochemistry, University of Barcelona, Barcelona 08028, Spain
| | - Eric Le Cam
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris Saclay, Gustave Roussy Campus, 114 rue Edouard Vaillant 94805VillejuifCedex, France
| | - Juhan Sedman
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Maria Solà
- Structural MitoLab, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona Science Park, Barcelona 08028, Spain
| |
Collapse
|
10
|
Christinaki AC, Theelen B, Zania A, Coutinho SDA, Cabañes JF, Boekhout T, Kouvelis VN. Co-evolution of large inverted repeats and G-quadruplex DNA in fungal mitochondria may facilitate mitogenome stability: the case of Malassezia. Sci Rep 2023; 13:6308. [PMID: 37072481 PMCID: PMC10113387 DOI: 10.1038/s41598-023-33486-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Mitogenomes are essential due to their contribution to cell respiration. Recently they have also been implicated in fungal pathogenicity mechanisms. Members of the basidiomycetous yeast genus Malassezia are an important fungal component of the human skin microbiome, linked to various skin diseases, bloodstream infections, and they are increasingly implicated in gut diseases and certain cancers. In this study, the comparative analysis of Malassezia mitogenomes contributed to phylogenetic tree construction for all species. The mitogenomes presented significant size and gene order diversity which correlates to their phylogeny. Most importantly, they showed the inclusion of large inverted repeats (LIRs) and G-quadruplex (G4) DNA elements, rendering Malassezia mitogenomes a valuable test case for elucidating the evolutionary mechanisms responsible for this genome diversity. Both LIRs and G4s coexist and convergently evolved to provide genome stability through recombination. This mechanism is common in chloroplasts but, hitherto, rarely found in mitogenomes.
Collapse
Affiliation(s)
- Anastasia C Christinaki
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Alkmini Zania
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | | - Javier F Cabañes
- Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Vassili N Kouvelis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece.
| |
Collapse
|
11
|
Goffart S, Pohjoismäki J. Analysis of Mitochondrial DNA Replication by Two-Dimensional Agarose Gel Electrophoresis. Methods Mol Biol 2023; 2615:241-266. [PMID: 36807797 DOI: 10.1007/978-1-0716-2922-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Two-dimensional neutral/neutral agarose gel electrophoresis (2D-AGE) has been employed for nearly two decades in the analysis of replication and maintenance processes of animal mitochondrial DNA, but the method's potential has not been fully exploited. Here, we describe the various steps involved in this technique, from DNA isolation, to two-dimensional neutral/neutral agarose gel electrophoresis (2D-AGE), Southern hybridization and interpretation. We also provide examples of the applicability of 2D-AGE to investigate the different features of mtDNA maintenance and regulation.
Collapse
Affiliation(s)
- Steffi Goffart
- University of Eastern Finland, Department of Environmental and Biological Sciences, Joensuu, Finland.
| | - Jaakko Pohjoismäki
- University of Eastern Finland, Department of Environmental and Biological Sciences, Joensuu, Finland
| |
Collapse
|
12
|
Mitochondrial Genomic Landscape: A Portrait of the Mitochondrial Genome 40 Years after the First Complete Sequence. Life (Basel) 2021; 11:life11070663. [PMID: 34357035 PMCID: PMC8303319 DOI: 10.3390/life11070663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022] Open
Abstract
Notwithstanding the initial claims of general conservation, mitochondrial genomes are a largely heterogeneous set of organellar chromosomes which displays a bewildering diversity in terms of structure, architecture, gene content, and functionality. The mitochondrial genome is typically described as a single chromosome, yet many examples of multipartite genomes have been found (for example, among sponges and diplonemeans); the mitochondrial genome is typically depicted as circular, yet many linear genomes are known (for example, among jellyfish, alveolates, and apicomplexans); the chromosome is normally said to be “small”, yet there is a huge variation between the smallest and the largest known genomes (found, for example, in ctenophores and vascular plants, respectively); even the gene content is highly unconserved, ranging from the 13 oxidative phosphorylation-related enzymatic subunits encoded by animal mitochondria to the wider set of mitochondrial genes found in jakobids. In the present paper, we compile and describe a large database of 27,873 mitochondrial genomes currently available in GenBank, encompassing the whole eukaryotic domain. We discuss the major features of mitochondrial molecular diversity, with special reference to nucleotide composition and compositional biases; moreover, the database is made publicly available for future analyses on the MoZoo Lab GitHub page.
Collapse
|
13
|
Basu U, Bostwick AM, Das K, Dittenhafer-Reed KE, Patel SS. Structure, mechanism, and regulation of mitochondrial DNA transcription initiation. J Biol Chem 2020; 295:18406-18425. [PMID: 33127643 PMCID: PMC7939475 DOI: 10.1074/jbc.rev120.011202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are specialized compartments that produce requisite ATP to fuel cellular functions and serve as centers of metabolite processing, cellular signaling, and apoptosis. To accomplish these roles, mitochondria rely on the genetic information in their small genome (mitochondrial DNA) and the nucleus. A growing appreciation for mitochondria's role in a myriad of human diseases, including inherited genetic disorders, degenerative diseases, inflammation, and cancer, has fueled the study of biochemical mechanisms that control mitochondrial function. The mitochondrial transcriptional machinery is different from nuclear machinery. The in vitro re-constituted transcriptional complexes of Saccharomyces cerevisiae (yeast) and humans, aided with high-resolution structures and biochemical characterizations, have provided a deeper understanding of the mechanism and regulation of mitochondrial DNA transcription. In this review, we will discuss recent advances in the structure and mechanism of mitochondrial transcription initiation. We will follow up with recent discoveries and formative findings regarding the regulatory events that control mitochondrial DNA transcription, focusing on those involved in cross-talk between the mitochondria and nucleus.
Collapse
Affiliation(s)
- Urmimala Basu
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | - Kalyan Das
- Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.
| |
Collapse
|
14
|
Kang JS, Zhang HR, Wang YR, Liang SQ, Mao ZY, Zhang XC, Xiang QP. Distinctive evolutionary pattern of organelle genomes linked to the nuclear genome in Selaginellaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1657-1672. [PMID: 33073395 DOI: 10.1111/tpj.15028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/21/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Plastids and mitochondria are endosymbiotic organelles that store genetic information. The genomes of these organelles generally exhibit contrasting patterns regarding genome architecture and genetic content. However, they have similar genetic features in Selaginellaceae, and little is known about what causes parallel evolution. Here, we document the multipartite plastid genomes (plastomes) and the highly divergent mitochondrial genomes (mitogenomes) from spikemoss obtained by combining short- and long-reads. The 188-kb multipartite plastome has three ribosomal operon copies in the master genomic conformation, creating the alternative subgenomic conformation composed of 110- and 78-kb subgenomes. The long-read data indicated that the two different genomic conformations were present in almost equal proportions in the plastomes of Selaginella nipponica. The mitogenome of S. nipponica was assembled into 27 contigs with a total size of 110 kb. All contigs contained directly arranged repeats at both ends, which introduced multiple conformations. Our results showed that plastomes and mitogenomes share high tRNA losses, GC-biased nucleotides, elevated substitution rates and complicated organization. The exploration of nuclear-encoded organelle DNA replication, recombination and repair proteins indicated that, several single-targeted proteins, particularly plastid-targeted recombinase A1, have been lost in Selaginellaceae; conversely, the dual-targeted proteins remain intact. According to the reported function of recombinase A1, we propose that the plastomes of spikemoss often fail to pair homologous sequences during recombination, and the dual-targeted proteins play a key role in the convergent genetic features of plastomes and mitogenomes. Our results provide a distinctive evolutionary pattern of the organelle genomes in Selaginellaceae and evidence of their convergent evolution.
Collapse
Affiliation(s)
- Jong-Soo Kang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ya-Rong Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Si-Qi Liang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Yuan Mao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qiao-Ping Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
15
|
Vozáriková V, Kunová N, Bauer JA, Frankovský J, Kotrasová V, Procházková K, Džugasová V, Kutejová E, Pevala V, Nosek J, Tomáška Ľ. Mitochondrial HMG-Box Containing Proteins: From Biochemical Properties to the Roles in Human Diseases. Biomolecules 2020; 10:biom10081193. [PMID: 32824374 PMCID: PMC7463775 DOI: 10.3390/biom10081193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial DNA (mtDNA) molecules are packaged into compact nucleo-protein structures called mitochondrial nucleoids (mt-nucleoids). Their compaction is mediated in part by high-mobility group (HMG)-box containing proteins (mtHMG proteins), whose additional roles include the protection of mtDNA against damage, the regulation of gene expression and the segregation of mtDNA into daughter organelles. The molecular mechanisms underlying these functions have been identified through extensive biochemical, genetic, and structural studies, particularly on yeast (Abf2) and mammalian mitochondrial transcription factor A (TFAM) mtHMG proteins. The aim of this paper is to provide a comprehensive overview of the biochemical properties of mtHMG proteins, the structural basis of their interaction with DNA, their roles in various mtDNA transactions, and the evolutionary trajectories leading to their rapid diversification. We also describe how defects in the maintenance of mtDNA in cells with dysfunctional mtHMG proteins lead to different pathologies at the cellular and organismal level.
Collapse
Affiliation(s)
- Veronika Vozáriková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Nina Kunová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Jacob A. Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Ján Frankovský
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Veronika Kotrasová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Katarína Procházková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Vladimíra Džugasová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Eva Kutejová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Vladimír Pevala
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina CH-1, 842 15 Bratislava, Slovakia;
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
- Correspondence: ; Tel.: +421-2-90149-433
| |
Collapse
|
16
|
Piljukov V, Garber N, Sedman T, Sedman J. Irc3 is a monomeric DNA branch point‐binding helicase in mitochondria of the yeast
Saccharomyces cerevisiae. FEBS Lett 2020; 594:3142-3155. [DOI: 10.1002/1873-3468.13893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/03/2020] [Accepted: 07/18/2020] [Indexed: 01/10/2023]
Affiliation(s)
| | - Natalja Garber
- Institute of Molecular and Cell Biology University of Tartu Estonia
| | - Tiina Sedman
- Institute of Molecular and Cell Biology University of Tartu Estonia
| | - Juhan Sedman
- Institute of Molecular and Cell Biology University of Tartu Estonia
| |
Collapse
|
17
|
Deng Y, Zhang X, Xie B, Lin L, Hsiang T, Lin X, Lin Y, Zhang X, Ma Y, Miao W, Ming R. Intra-specific comparison of mitochondrial genomes reveals host gene fragment exchange via intron mobility in Tremella fuciformis. BMC Genomics 2020; 21:426. [PMID: 32580700 PMCID: PMC7315562 DOI: 10.1186/s12864-020-06846-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/17/2020] [Indexed: 01/21/2023] Open
Abstract
Background Mitochondrial genomic sequences are known to be variable. Comparative analyses of mitochondrial genomes can reveal the nature and extent of their variation. Results Draft mitochondrial genomes of 16 Tremella fuciformis isolates (TF01-TF16) were assembled from Illumina and PacBio sequencing data. Mitochondrial DNA contigs were extracted and assembled into complete circular molecules, ranging from 35,104 bp to 49,044 bp in size. All mtDNAs contained the same set of 41 conserved genes with identical gene order. Comparative analyses revealed that introns and intergenic regions were variable, whereas genic regions (including coding sequences, tRNA, and rRNA genes) were conserved. Among 24 introns detected, 11 were in protein-coding genes, 3 in tRNA genes, and the other 10 in rRNA genes. In addition, two mobile fragments were found in intergenic regions. Interestingly, six introns containing N-terminal duplication of the host genes were found in five conserved protein-coding gene sequences. Comparison of genes with and without these introns gave rise to the following proposed model: gene fragment exchange with other species can occur via gain or loss of introns with N-terminal duplication of the host genes. Conclusions Our findings suggest a novel mechanism of fungal mitochondrial gene evolution: partial foreign gene replacement though intron mobility.
Collapse
Affiliation(s)
- Youjin Deng
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Department of Plant Biology, University of Illinois at Urbana-Champaign, 1201 W. Gregory Drive, Urbana, IL, 61801, USA
| | - Xunxiao Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baogui Xie
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Longji Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tom Hsiang
- Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Xiangzhi Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yiying Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanhong Ma
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenjing Miao
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Department of Plant Biology, University of Illinois at Urbana-Champaign, 1201 W. Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
18
|
Tomáška Ľ, Nosek J. Co-evolution in the Jungle: From Leafcutter Ant Colonies to Chromosomal Ends. J Mol Evol 2020; 88:293-318. [PMID: 32157325 DOI: 10.1007/s00239-020-09935-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Biological entities are multicomponent systems where each part is directly or indirectly dependent on the others. In effect, a change in a single component might have a consequence on the functioning of its partners, thus affecting the fitness of the entire system. In this article, we provide a few examples of such complex biological systems, ranging from ant colonies to a population of amino acids within a single-polypeptide chain. Based on these examples, we discuss one of the central and still challenging questions in biology: how do such multicomponent consortia co-evolve? More specifically, we ask how telomeres, nucleo-protein complexes protecting the integrity of linear DNA chromosomes, originated from the ancestral organisms having circular genomes and thus not dealing with end-replication and end-protection problems. Using the examples of rapidly evolving topologies of mitochondrial genomes in eukaryotic microorganisms, we show what means of co-evolution were employed to accommodate various types of telomere-maintenance mechanisms in mitochondria. We also describe an unprecedented runaway evolution of telomeric repeats in nuclei of ascomycetous yeasts accompanied by co-evolution of telomere-associated proteins. We propose several scenarios derived from research on telomeres and supported by other studies from various fields of biology, while emphasizing that the relevant answers are still not in sight. It is this uncertainty and a lack of a detailed roadmap that makes the journey through the jungle of biological systems still exciting and worth undertaking.
Collapse
Affiliation(s)
- Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
19
|
Dujon B. Mitochondrial genetics revisited. Yeast 2020; 37:191-205. [DOI: 10.1002/yea.3445] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Bernard Dujon
- Department Genomes and GeneticsInstitut Pasteur Paris France
| |
Collapse
|
20
|
Mishmar D, Levin R, Naeem MM, Sondheimer N. Higher Order Organization of the mtDNA: Beyond Mitochondrial Transcription Factor A. Front Genet 2019; 10:1285. [PMID: 31998357 PMCID: PMC6961661 DOI: 10.3389/fgene.2019.01285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/21/2019] [Indexed: 01/09/2023] Open
Abstract
The higher order organization of eukaryotic and prokaryotic genomes is pivotal in the regulation of gene expression. Specifically, chromatin accessibility in eukaryotes and nucleoid accessibility in bacteria are regulated by a cohort of proteins to alter gene expression in response to diverse physiological conditions. By contrast, prior studies have suggested that the mitochondrial genome (mtDNA) is coated solely by mitochondrial transcription factor A (TFAM), whose increased cellular concentration was proposed to be the major determinant of mtDNA packaging in the mitochondrial nucleoid. Nevertheless, recent analysis of DNase-seq and ATAC-seq experiments from multiple human and mouse samples suggest gradual increase in mtDNA occupancy during the course of embryonic development to generate a conserved footprinting pattern which correlate with sites that have low TFAM occupancy in vivo (ChIP-seq) and tend to adopt G-quadruplex structures. These findings, along with recent identification of mtDNA binding by known modulators of chromatin accessibility such as MOF, suggest that mtDNA higher order organization is generated by cross talk with the nuclear regulatory system, may have a role in mtDNA regulation, and is more complex than once thought.
Collapse
Affiliation(s)
- Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rotem Levin
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mansur M Naeem
- Institute of Medical Sciences and the Department of Paediatrics, The University of Toronto, Toronto, ON, Canada
| | - Neal Sondheimer
- Institute of Medical Sciences and the Department of Paediatrics, The University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Dunn MJ, Anderson MZ. To Repeat or Not to Repeat: Repetitive Sequences Regulate Genome Stability in Candida albicans. Genes (Basel) 2019; 10:genes10110866. [PMID: 31671659 PMCID: PMC6896093 DOI: 10.3390/genes10110866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Genome instability often leads to cell death but can also give rise to innovative genotypic and phenotypic variation through mutation and structural rearrangements. Repetitive sequences and chromatin architecture in particular are critical modulators of recombination and mutability. In Candida albicans, four major classes of repeats exist in the genome: telomeres, subtelomeres, the major repeat sequence (MRS), and the ribosomal DNA (rDNA) locus. Characterization of these loci has revealed how their structure contributes to recombination and either promotes or restricts sequence evolution. The mechanisms of recombination that give rise to genome instability are known for some of these regions, whereas others are generally unexplored. More recent work has revealed additional repetitive elements, including expanded gene families and centromeric repeats that facilitate recombination and genetic innovation. Together, the repeats facilitate C. albicans evolution through construction of novel genotypes that underlie C. albicans adaptive potential and promote persistence across its human host.
Collapse
Affiliation(s)
- Matthew J. Dunn
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Matthew Z. Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +614-247-0058
| |
Collapse
|
22
|
Nieuwenhuis M, van de Peppel LJJ, Bakker FT, Zwaan BJ, Aanen DK. Enrichment of G4DNA and a Large Inverted Repeat Coincide in the Mitochondrial Genomes of Termitomyces. Genome Biol Evol 2019; 11:1857-1869. [PMID: 31209489 PMCID: PMC6609731 DOI: 10.1093/gbe/evz122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
Mitochondria retain their own genome, a hallmark of their bacterial ancestry. Mitochondrial genomes (mtDNA) are highly diverse in size, shape, and structure, despite their conserved function across most eukaryotes. Exploring extreme cases of mtDNA architecture can yield important information on fundamental aspects of genome biology. We discovered that the mitochondrial genomes of a basidiomycete fungus (Termitomyces spp.) contain an inverted repeat (IR), a duplicated region half the size of the complete genome. In addition, we found an abundance of sequences capable of forming G-quadruplexes (G4DNA); structures that can disrupt the double helical formation of DNA. G4DNA is implicated in replication fork stalling, double-stranded breaks, altered gene expression, recombination, and other effects. To determine whether this occurrence of IR and G4DNA was correlated within the genus Termitomyces, we reconstructed the mitochondrial genomes of 11 additional species including representatives of several closely related genera. We show that the mtDNA of all sampled species of Termitomyces and its sister group, represented by the species Tephrocybe rancida and Blastosporella zonata, are characterized by a large IR and enrichment of G4DNA. To determine whether high mitochondrial G4DNA content is common in fungi, we conducted the first broad survey of G4DNA content in fungal mtDNA, revealing it to be a highly variable trait. The results of this study provide important direction for future research on the function and evolution of G4DNA and organellar IRs.
Collapse
Affiliation(s)
| | | | - Freek T Bakker
- Biosystematics Group, Wageningen University & Research, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University & Research, The Netherlands
| | - Duur K Aanen
- Laboratory of Genetics, Wageningen University & Research, The Netherlands
| |
Collapse
|
23
|
Twist and Turn-Topoisomerase Functions in Mitochondrial DNA Maintenance. Int J Mol Sci 2019; 20:ijms20082041. [PMID: 31027213 PMCID: PMC6514783 DOI: 10.3390/ijms20082041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Like any genome, mitochondrial DNA (mtDNA) also requires the action of topoisomerases to resolve topological problems in its maintenance, but for a long time, little was known about mitochondrial topoisomerases. The last years have brought a closer insight into the function of these fascinating enzymes in mtDNA topology regulation, replication, transcription, and segregation. Here, we summarize the current knowledge about mitochondrial topoisomerases, paying special attention to mammalian mitochondrial genome maintenance. We also discuss the open gaps in the existing knowledge of mtDNA topology control and the potential involvement of mitochondrial topoisomerases in human pathologies. While Top1mt, the only exclusively mitochondrial topoisomerase in mammals, has been studied intensively for nearly a decade, only recent studies have shed some light onto the mitochondrial function of Top2β and Top3α, enzymes that are shared between nucleus and mitochondria. Top3α mediates the segregation of freshly replicated mtDNA molecules, and its dysfunction leads to mtDNA aggregation and copy number depletion in patients. Top2β, in contrast, regulates mitochondrial DNA replication and transcription through the alteration of mtDNA topology, a fact that should be acknowledged due to the frequent use of Topoisomerase 2 inhibitors in medical therapy.
Collapse
|
24
|
Pohjoismäki JLO, Forslund JME, Goffart S, Torregrosa-Muñumer R, Wanrooij S. Known Unknowns of Mammalian Mitochondrial DNA Maintenance. Bioessays 2018; 40:e1800102. [DOI: 10.1002/bies.201800102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/18/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Jaakko L. O. Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland; 80101 Joensuu Finland
| | | | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland; 80101 Joensuu Finland
| | - Rubén Torregrosa-Muñumer
- Department of Environmental and Biological Sciences, University of Eastern Finland; 80101 Joensuu Finland
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University; 90187 Umeå Sweden
| |
Collapse
|
25
|
Liu J, Li Y, Chen J, Wang Y, Zou M, Su R, Huang Y. The fission yeast Schizosaccharomyces pombe Mtf2 is required for mitochondrial cox1 gene expression. MICROBIOLOGY-SGM 2018; 164:400-409. [PMID: 29458562 DOI: 10.1099/mic.0.000602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mitochondrial gene expression is essential for adenosine triphosphate synthesis via oxidative phosphorylation, which is the universal energy currency of cells. Here, we report the identification and characterization of a homologue of Saccharomyces cerevisiae Mtf2 (also called Nam1) in Schizosaccharomyces pombe. The Δmtf2 mutant with the intron-containing mitochondrial DNA (mtDNA) exhibited impaired growth on a rich medium containing the non-fermentable carbon source glycerol, suggesting that mtf2 is involved in mitochondrial function. mtf2 deletion in a mitochondrial intron-containing background resulted in a barely detectable level of the cox1 mRNA and a reduction in the level of the cob1 mRNA, and severely impaired cox1 translation. In contrast, mtf2 deletion in a mitochondrial intron-less background did not affect the levels of cox1 and cob1 mRNAs. However, Cox1 synthesis could not be restored to the control level in the Δmtf2 mutant with intron-less mtDNA. Our results suggest that unlike its counterpart in S. cerevisiae which plays a general role in synthesis of mtDNA-encoded proteins, S. pombe Mtf2 primarily functions in cox1 translation and the effect of mtf2 deletion on splicing of introns in mtDNA is likely due to a deficiency in the synthesis of intron-encoded maturases.
Collapse
Affiliation(s)
- Jinyu Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Yan Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Jie Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Mengting Zou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Ruyue Su
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| |
Collapse
|
26
|
Sedman T, Garber N, Gaidutšik I, Sillamaa S, Paats J, Piljukov VJ, Sedman J. Mitochondrial helicase Irc3 translocates along double-stranded DNA. FEBS Lett 2017; 591:3831-3841. [PMID: 29113022 DOI: 10.1002/1873-3468.12903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022]
Abstract
Irc3 is a superfamily II helicase required for mitochondrial DNA stability in Saccharomyces cerevisiae. Irc3 remodels branched DNA structures, including substrates without extensive single-stranded regions. Therefore, it is unlikely that Irc3 uses the conventional single-stranded DNA translocase mechanism utilized by most helicases. Here, we demonstrate that Irc3 disrupts partially triple-stranded DNA structures in an ATP-dependent manner. Our kinetic experiments indicate that the rate of ATP hydrolysis by Irc3 is dependent on the length of the double-stranded DNA cosubstrate. Furthermore, the previously uncharacterized C-terminal region of Irc3 is essential for these two characteristic features and forms a high affinity complex with branched DNA. Together, our experiments demonstrate that Irc3 has double-stranded DNA translocase activity.
Collapse
Affiliation(s)
- Tiina Sedman
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Natalja Garber
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Ilja Gaidutšik
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Sirelin Sillamaa
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Joosep Paats
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Vlad J Piljukov
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Juhan Sedman
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| |
Collapse
|
27
|
Abstract
Eukaryotic PrimPol is a recently discovered DNA-dependent DNA primase and translesion synthesis DNA polymerase found in the nucleus and mitochondria. Although PrimPol has been shown to be required for repriming of stalled replication forks in the nucleus, its role in mitochondria has remained unresolved. Here we demonstrate in vivo and in vitro that PrimPol can reinitiate stalled mtDNA replication and can prime mtDNA replication from nonconventional origins. Our results not only help in the understanding of how mitochondria cope with replicative stress but can also explain some controversial features of the lagging-strand replication.
Collapse
|
28
|
Chen XJ, Clark-Walker GD. Unveiling the mystery of mitochondrial DNA replication in yeasts. Mitochondrion 2017; 38:17-22. [PMID: 28778567 DOI: 10.1016/j.mito.2017.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/12/2017] [Accepted: 07/28/2017] [Indexed: 11/27/2022]
Abstract
Conventional DNA replication is initiated from specific origins and requires the synthesis of RNA primers for both the leading and lagging strands. In contrast, the replication of yeast mitochondrial DNA is origin-independent. The replication of the leading strand is likely primed by recombinational structures and proceeded by a rolling circle mechanism. The coexistent linear and circular DNA conformers facilitate the recombination-based initiation. The replication of the lagging strand is poorly understood. Re-evaluation of published data suggests that the rolling circle may also provide structures for the synthesis of the lagging-strand by mechanisms such as template switching. Thus, the coupling of recombination with rolling circle replication and possibly, template switching, may have been selected as an economic replication mode to accommodate the reductive evolution of mitochondria. Such a replication mode spares the need for conventional replicative components, including those required for origin recognition/remodelling, RNA primer synthesis and lagging-strand processing.
Collapse
Affiliation(s)
- Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| | | |
Collapse
|
29
|
Hamaji T, Kawai-Toyooka H, Toyoda A, Minakuchi Y, Suzuki M, Fujiyama A, Nozaki H, Smith DR. Multiple Independent Changes in Mitochondrial Genome Conformation in Chlamydomonadalean Algae. Genome Biol Evol 2017; 9:993-999. [PMID: 31972029 PMCID: PMC5398295 DOI: 10.1093/gbe/evx060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
Chlamydomonadalean green algae are no stranger to linear mitochondrial genomes, particularly members of the Reinhardtinia clade. At least nine different Reinhardtinia species are known to have linear mitochondrial DNAs (mtDNAs), including the model species Chlamydomonas reinhardtii. Thus, it is no surprise that some have suggested that the most recent common ancestor of the Reinhardtinia clade had a linear mtDNA. But the recent uncovering of circular-mapping mtDNAs in a range of Reinhardtinia algae, such as Volvox carteri and Tetrabaena socialis, has shed doubt on this hypothesis. Here, we explore mtDNA sequence and structure within the colonial Reinhardtinia algae Yamagishiella unicocca and Eudorina sp. NIES-3984, which occupy phylogenetically intermediate positions between species with opposing mtDNA mapping structures. Sequencing and gel electrophoresis data indicate that Y. unicocca has a linear monomeric mitochondrial genome with long (3 kb) palindromic telomeres. Conversely, the mtDNA of Eudorina sp., despite having an identical gene order to that of Y. unicocca, assembled as a circular-mapping molecule. Restriction digests of Eudorina sp. mtDNA supported its circular map, but also revealed a linear monomeric form with a matching architecture and gene order to the Y. unicocca mtDNA. Based on these data, we suggest that there have been at least three separate shifts in mtDNA conformation in the Reinhardtinia, and that the common ancestor of this clade had a linear monomeric mitochondrial genome with palindromic telomeres.
Collapse
Affiliation(s)
- Takashi Hamaji
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroko Kawai-Toyooka
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan.,Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yohei Minakuchi
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Masahiro Suzuki
- Kobe University Research Center for Inland Seas, Awaji, Hyogo, Japan
| | - Asao Fujiyama
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
30
|
Ravoitytė B, Wellinger RE. Non-Canonical Replication Initiation: You're Fired! Genes (Basel) 2017; 8:genes8020054. [PMID: 28134821 PMCID: PMC5333043 DOI: 10.3390/genes8020054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
The division of prokaryotic and eukaryotic cells produces two cells that inherit a perfect copy of the genetic material originally derived from the mother cell. The initiation of canonical DNA replication must be coordinated to the cell cycle to ensure the accuracy of genome duplication. Controlled replication initiation depends on a complex interplay of cis-acting DNA sequences, the so-called origins of replication (ori), with trans-acting factors involved in the onset of DNA synthesis. The interplay of cis-acting elements and trans-acting factors ensures that cells initiate replication at sequence-specific sites only once, and in a timely order, to avoid chromosomal endoreplication. However, chromosome breakage and excessive RNA:DNA hybrid formation can cause break-induced (BIR) or transcription-initiated replication (TIR), respectively. These non-canonical replication events are expected to affect eukaryotic genome function and maintenance, and could be important for genome evolution and disease development. In this review, we describe the difference between canonical and non-canonical DNA replication, and focus on mechanistic differences and common features between BIR and TIR. Finally, we discuss open issues on the factors and molecular mechanisms involved in TIR.
Collapse
Affiliation(s)
- Bazilė Ravoitytė
- Nature Research Centre, Akademijos g. 2, LT-08412 Vilnius, Lithuania.
| | - Ralf Erik Wellinger
- CABIMER-Universidad de Sevilla, Avd Americo Vespucio sn, 41092 Sevilla, Spain.
| |
Collapse
|
31
|
Chakraborty A, Lyonnais S, Battistini F, Hospital A, Medici G, Prohens R, Orozco M, Vilardell J, Solà M. DNA structure directs positioning of the mitochondrial genome packaging protein Abf2p. Nucleic Acids Res 2017; 45:951-967. [PMID: 27899643 PMCID: PMC5314765 DOI: 10.1093/nar/gkw1147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/16/2016] [Accepted: 11/01/2016] [Indexed: 12/16/2022] Open
Abstract
The mitochondrial genome (mtDNA) is assembled into nucleo-protein structures termed nucleoids and maintained differently compared to nuclear DNA, the involved molecular basis remaining poorly understood. In yeast (Saccharomyces cerevisiae), mtDNA is a ∼80 kbp linear molecule and Abf2p, a double HMG-box protein, packages and maintains it. The protein binds DNA in a non-sequence-specific manner, but displays a distinct 'phased-binding' at specific DNA sequences containing poly-adenine tracts (A-tracts). We present here two crystal structures of Abf2p in complex with mtDNA-derived fragments bearing A-tracts. Each HMG-box of Abf2p induces a 90° bend in the contacted DNA, causing an overall U-turn. Together with previous data, this suggests that U-turn formation is the universal mechanism underlying mtDNA compaction induced by HMG-box proteins. Combining this structural information with mutational, biophysical and computational analyses, we reveal a unique DNA binding mechanism for Abf2p where a characteristic N-terminal flag and helix are crucial for mtDNA maintenance. Additionally, we provide the molecular basis for A-tract mediated exclusion of Abf2p binding. Due to high prevalence of A-tracts in yeast mtDNA, this has critical relevance for nucleoid architecture. Therefore, an unprecedented A-tract mediated protein positioning mechanism regulates DNA packaging proteins in the mitochondria, and in combination with DNA-bending and U-turn formation, governs mtDNA compaction.
Collapse
Affiliation(s)
- Arka Chakraborty
- Structural MitoLab, Department of Structural Biology, "Maria de Maeztu" Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Sébastien Lyonnais
- Structural MitoLab, Department of Structural Biology, "Maria de Maeztu" Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Federica Battistini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Adam Hospital
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Giorgio Medici
- Structural MitoLab, Department of Structural Biology, "Maria de Maeztu" Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Rafel Prohens
- Unitat de Polimorfisme i Calorimetria, Centres Científics i Tecnològics, University of Barcelona, Barcelona 08028, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Josep Vilardell
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, Barcelona 08010, Spain
- Molecular Genomics Department, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, 08028, Spain
| | - Maria Solà
- Structural MitoLab, Department of Structural Biology, "Maria de Maeztu" Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| |
Collapse
|
32
|
Cheng N, Lo YS, Ansari MI, Ho KC, Jeng ST, Lin NS, Dai H. Correlation between mtDNA complexity and mtDNA replication mode in developing cotyledon mitochondria during mung bean seed germination. THE NEW PHYTOLOGIST 2017; 213:751-763. [PMID: 27611966 DOI: 10.1111/nph.14158] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 07/18/2016] [Indexed: 05/11/2023]
Abstract
The currently accepted model of recombination-dependent replication (RDR) in plant mitochondrial DNA (mtDNA) does not clearly explain how RDR progresses and how highly complex mtDNA develops. This study aimed to investigate the correlation between RDR and mtDNA complexity during mitochondrial development in mung bean (Vigna radiata) seed, and the initiation and processing of RDR in plant mitochondria. Flow cytometry, pulsed-field gel electrophoresis, electron microscopy, real-time PCR and biochemical studies were used in this study. The highly dynamic changes in mtDNA complexity correspond to mtDNA RDR activity throughout mitochondrial development. With in vitro freeze-thaw treatment or prolonged in vivo cold incubation, the mtDNA rosette core disappeared and the rosette structure converted to a much longer linear DNA structure. D-loops, Holliday junctions and putative RDR forks often appeared near the rosette cores. We hypothesize that the rosette core may consist of condensed mtDNA and a replication starting sequence, and play an initial and central role in RDR. The satellite cores in the rosette structure may represent the re-initiation sites of mtDNA RDR in the same parental molecule, thereby forming highly complex and giant mitochondrial molecules, representing the RDR intermediates, in vivo.
Collapse
Affiliation(s)
- Ning Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yih-Shan Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | | | - Kuo-Chieh Ho
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Shih-Tong Jeng
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hwa Dai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
33
|
Liberatore KL, Dukowic-Schulze S, Miller ME, Chen C, Kianian SF. The role of mitochondria in plant development and stress tolerance. Free Radic Biol Med 2016; 100:238-256. [PMID: 27036362 DOI: 10.1016/j.freeradbiomed.2016.03.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 01/03/2023]
Abstract
Eukaryotic cells require orchestrated communication between nuclear and organellar genomes, perturbations in which are linked to stress response and disease in both animals and plants. In addition to mitochondria, which are found across eukaryotes, plant cells contain a second organelle, the plastid. Signaling both among the organelles (cytoplasmic) and between the cytoplasm and the nucleus (i.e. nuclear-cytoplasmic interactions (NCI)) is essential for proper cellular function. A deeper understanding of NCI and its impact on development, stress response, and long-term health is needed in both animal and plant systems. Here we focus on the role of plant mitochondria in development and stress response. We compare and contrast features of plant and animal mitochondrial genomes (mtDNA), particularly highlighting the large and highly dynamic nature of plant mtDNA. Plant-based tools are powerful, yet underutilized, resources for enhancing our fundamental understanding of NCI. These tools also have great potential for improving crop production. Across taxa, mitochondria are most abundant in cells that have high energy or nutrient demands as well as at key developmental time points. Although plant mitochondria act as integrators of signals involved in both development and stress response pathways, little is known about plant mtDNA diversity and its impact on these processes. In humans, there are strong correlations between particular mitotypes (and mtDNA mutations) and developmental differences (or disease). We propose that future work in plants should focus on defining mitotypes more carefully and investigating their functional implications as well as improving techniques to facilitate this research.
Collapse
Affiliation(s)
- Katie L Liberatore
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, United States.
| | | | - Marisa E Miller
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, United States
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, United States
| | - Shahryar F Kianian
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, United States
| |
Collapse
|
34
|
Sanitá Lima M, Woods LC, Cartwright MW, Smith DR. The (in)complete organelle genome: exploring the use and nonuse of available technologies for characterizing mitochondrial and plastid chromosomes. Mol Ecol Resour 2016; 16:1279-1286. [PMID: 27482846 DOI: 10.1111/1755-0998.12585] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 02/04/2023]
Abstract
Not long ago, scientists paid dearly in time, money and skill for every nucleotide that they sequenced. Today, DNA sequencing technologies epitomize the slogan 'faster, easier, cheaper and more', and in many ways, sequencing an entire genome has become routine, even for the smallest laboratory groups. This is especially true for mitochondrial and plastid genomes. Given their relatively small sizes and high copy numbers per cell, organelle DNAs are currently among the most highly sequenced kind of chromosome. But accurately characterizing an organelle genome and the information it encodes can require much more than DNA sequencing and bioinformatics analyses. Organelle genomes can be surprisingly complex and can exhibit convoluted and unconventional modes of gene expression. Unravelling this complexity can demand a wide assortment of experiments, from pulsed-field gel electrophoresis to Southern and Northern blots to RNA analyses. Here, we show that it is exactly these types of 'complementary' analyses that are often lacking from contemporary organelle genome papers, particularly short 'genome announcement' articles. Consequently, crucial and interesting features of organelle chromosomes are going undescribed, which could ultimately lead to a poor understanding and even a misrepresentation of these genomes and the genes they express. High-throughput sequencing and bioinformatics have made it easy to sequence and assemble entire chromosomes, but they should not be used as a substitute for or at the expense of other types of genomic characterization methods.
Collapse
Affiliation(s)
- Matheus Sanitá Lima
- Department of Biology, University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Laura C Woods
- Department of Biology, University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Matthew W Cartwright
- Department of Biology, University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada, N6A 5B7.
| |
Collapse
|
35
|
Ramachandran A, Nandakumar D, Deshpande AP, Lucas TP, R-Bhojappa R, Tang GQ, Raney K, Yin YW, Patel SS. The Yeast Mitochondrial RNA Polymerase and Transcription Factor Complex Catalyzes Efficient Priming of DNA Synthesis on Single-stranded DNA. J Biol Chem 2016; 291:16828-39. [PMID: 27311715 DOI: 10.1074/jbc.m116.740282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 01/12/2023] Open
Abstract
Primases use single-stranded (ss) DNAs as templates to synthesize short oligoribonucleotide primers that initiate lagging strand DNA synthesis or reprime DNA synthesis after replication fork collapse, but the origin of this activity in the mitochondria remains unclear. Herein, we show that the Saccharomyces cerevisiae mitochondrial RNA polymerase (Rpo41) and its transcription factor (Mtf1) is an efficient primase that initiates DNA synthesis on ssDNA coated with the yeast mitochondrial ssDNA-binding protein, Rim1. Both Rpo41 and Rpo41-Mtf1 can synthesize short and long RNAs on ssDNA template and prime DNA synthesis by the yeast mitochondrial DNA polymerase Mip1. However, the ssDNA-binding protein Rim1 severely inhibits the RNA synthesis activity of Rpo41, but not the Rpo41-Mtf1 complex, which continues to prime DNA synthesis efficiently in the presence of Rim1. We show that RNAs as short as 10-12 nt serve as primers for DNA synthesis. Characterization of the RNA-DNA products shows that Rpo41 and Rpo41-Mtf1 have slightly different priming specificity. However, both prefer to initiate with ATP from short priming sequences such as 3'-TCC, TTC, and TTT, and the consensus sequence is 3'-Pu(Py)2-3 Based on our studies, we propose that Rpo41-Mtf1 is an attractive candidate for serving as the primase to initiate lagging strand DNA synthesis during normal replication and/or to restart stalled replication from downstream ssDNA.
Collapse
Affiliation(s)
- Aparna Ramachandran
- From the Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Divya Nandakumar
- From the Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, Graduate School of Biomedical Sciences, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Aishwarya P Deshpande
- From the Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Thomas P Lucas
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas 77555, and
| | - Ramanagouda R-Bhojappa
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Guo-Qing Tang
- From the Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Kevin Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Y Whitney Yin
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas 77555, and
| | - Smita S Patel
- From the Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854,
| |
Collapse
|
36
|
Gaidutšik I, Sedman T, Sillamaa S, Sedman J. Irc3 is a mitochondrial DNA branch migration enzyme. Sci Rep 2016; 6:26414. [PMID: 27194389 PMCID: PMC4872236 DOI: 10.1038/srep26414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/03/2016] [Indexed: 01/03/2023] Open
Abstract
Integrity of mitochondrial DNA (mtDNA) is essential for cellular energy metabolism. In the budding yeast Saccharomyces cerevisiae, a large number of nuclear genes influence the stability of mitochondrial genome; however, most corresponding gene products act indirectly and the actual molecular mechanisms of mtDNA inheritance remain poorly characterized. Recently, we found that a Superfamily II helicase Irc3 is required for the maintenance of mitochondrial genome integrity. Here we show that Irc3 is a mitochondrial DNA branch migration enzyme. Irc3 modulates mtDNA metabolic intermediates by preferential binding and unwinding Holliday junctions and replication fork structures. Furthermore, we demonstrate that the loss of Irc3 can be complemented with mitochondrially targeted RecG of Escherichia coli. We suggest that Irc3 could support the stability of mtDNA by stimulating fork regression and branch migration or by inhibiting the formation of irregular branched molecules.
Collapse
Affiliation(s)
- Ilja Gaidutšik
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| | - Tiina Sedman
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| | - Sirelin Sillamaa
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| | - Juhan Sedman
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| |
Collapse
|
37
|
Misas E, Muñoz JF, Gallo JE, McEwen JG, Clay OK. From NGS assembly challenges to instability of fungal mitochondrial genomes: A case study in genome complexity. Comput Biol Chem 2016; 61:258-69. [PMID: 26970210 DOI: 10.1016/j.compbiolchem.2016.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 02/03/2016] [Accepted: 02/16/2016] [Indexed: 01/26/2023]
Abstract
The presence of repetitive or non-unique DNA persisting over sizable regions of a eukaryotic genome can hinder the genome's successful de novo assembly from short reads: ambiguities in assigning genome locations to the non-unique subsequences can result in premature termination of contigs and thus overfragmented assemblies. Fungal mitochondrial (mtDNA) genomes are compact (typically less than 100 kb), yet often contain short non-unique sequences that can be shown to impede their successful de novo assembly in silico. Such repeats can also confuse processes in the cell in vivo. A well-studied example is ectopic (out-of-register, illegitimate) recombination associated with repeat pairs, which can lead to deletion of functionally important genes that are located between the repeats. Repeats that remain conserved over micro- or macroevolutionary timescales despite such risks may indicate functionally or structurally (e.g., for replication) important regions. This principle could form the basis of a mining strategy for accelerating discovery of function in genome sequences. We present here our screening of a sample of 11 fully sequenced fungal mitochondrial genomes by observing where exact k-mer repeats occurred several times; initial analyses motivated us to focus on 17-mers occurring more than three times. Based on the diverse repeats we observe, we propose that such screening may serve as an efficient expedient for gaining a rapid but representative first insight into the repeat landscapes of sparsely characterized mitochondrial chromosomes. Our matching of the flagged repeats to previously reported regions of interest supports the idea that systems of persisting, non-trivial repeats in genomes can often highlight features meriting further attention.
Collapse
Affiliation(s)
- Elizabeth Misas
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia; Institute of Biology, Universidad de Antioquia, Medellín, Colombia
| | - José Fernando Muñoz
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia; Institute of Biology, Universidad de Antioquia, Medellín, Colombia
| | - Juan Esteban Gallo
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia; Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Juan Guillermo McEwen
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia; School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Oliver Keatinge Clay
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia; School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
38
|
Yeast mitochondrial HMG proteins: DNA-binding properties of the most evolutionarily divergent component of mitochondrial nucleoids. Biosci Rep 2015; 36:e00288. [PMID: 26647378 PMCID: PMC4725248 DOI: 10.1042/bsr20150275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023] Open
Abstract
Comparative biochemical analysis of mtHMG proteins from distantly related yeast species revealed that they exhibit a preference for recombination/replication intermediates. We discuss how these biochemical characteristics relate to the role of mtHMG proteins in mtDNA compaction and evolution. Yeast mtDNA is compacted into nucleoprotein structures called mitochondrial nucleoids (mt-nucleoids). The principal mediators of nucleoid formation are mitochondrial high-mobility group (HMG)-box containing (mtHMG) proteins. Although these proteins are some of the fastest evolving components of mt-nucleoids, it is not known whether the divergence of mtHMG proteins on the level of their amino acid sequences is accompanied by diversification of their biochemical properties. In the present study we performed a comparative biochemical analysis of yeast mtHMG proteins from Saccharomyces cerevisiae (ScAbf2p), Yarrowia lipolytica (YlMhb1p) and Candida parapsilosis (CpGcf1p). We found that all three proteins exhibit relatively weak binding to intact dsDNA. In fact, ScAbf2p and YlMhb1p bind quantitatively to this substrate only at very high protein to DNA ratios and CpGcf1p shows only negligible binding to dsDNA. In contrast, the proteins exhibit much higher preference for recombination intermediates such as Holliday junctions (HJ) and replication forks (RF). Therefore, we hypothesize that the roles of the yeast mtHMG proteins in maintenance and compaction of mtDNA in vivo are in large part mediated by their binding to recombination/replication intermediates. We also speculate that the distinct biochemical properties of CpGcf1p may represent one of the prerequisites for frequent evolutionary tinkering with the form of the mitochondrial genome in the CTG-clade of hemiascomycetous yeast species.
Collapse
|
39
|
Kolondra A, Labedzka-Dmoch K, Wenda JM, Drzewicka K, Golik P. The transcriptome of Candida albicans mitochondria and the evolution of organellar transcription units in yeasts. BMC Genomics 2015; 16:827. [PMID: 26487099 PMCID: PMC4618339 DOI: 10.1186/s12864-015-2078-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
Background Yeasts show remarkable variation in the organization of their mitochondrial genomes, yet there is little experimental data on organellar gene expression outside few model species. Candida albicans is interesting as a human pathogen, and as a representative of a clade that is distant from the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Unlike them, it encodes seven Complex I subunits in its mtDNA. No experimental data regarding organellar expression were available prior to this study. Methods We used high-throughput RNA sequencing and traditional RNA biology techniques to study the mitochondrial transcriptome of C. albicans strains BWP17 and SN148. Results The 14 protein-coding genes, two ribosomal RNA genes, and 24 tRNA genes are expressed as eight primary polycistronic transcription units. We also found transcriptional activity in the noncoding regions, and antisense transcripts that could be a part of a regulatory mechanism. The promoter sequence is a variant of the nonanucleotide identified in other yeast mtDNAs, but some of the active promoters show significant departures from the consensus. The primary transcripts are processed by a tRNA punctuation mechanism into the monocistronic and bicistronic mature RNAs. The steady state levels of various mature transcripts exhibit large differences that are a result of posttranscriptional regulation. Transcriptome analysis allowed to precisely annotate the positions of introns in the RNL (2), COB (2) and COX1 (4) genes, as well as to refine the annotation of tRNAs and rRNAs. Comparative study of the mitochondrial genome organization in various Candida species indicates that they undergo shuffling in blocks usually containing 2–3 genes, and that their arrangement in primary transcripts is not conserved. tRNA genes with their associated promoters, as well as GC-rich sequence elements play an important role in these evolutionary events. Conclusions The main evolutionary force shaping the mitochondrial genomes of yeasts is the frequent recombination, constantly breaking apart and joining genes into novel primary transcription units. The mitochondrial transcription units are constantly rearranged in evolution shaping the features of gene expression, such as the presence of secondary promoter sites that are inactive, or act as “booster” promoters, simplified transcriptional regulation and reliance on posttranscriptional mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2078-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam Kolondra
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Karolina Labedzka-Dmoch
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Joanna M Wenda
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Katarzyna Drzewicka
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Pawel Golik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland. .,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
40
|
Tremblay-Belzile S, Lepage É, Zampini É, Brisson N. Short-range inversions: rethinking organelle genome stability: template switching events during DNA replication destabilize organelle genomes. Bioessays 2015. [PMID: 26222836 DOI: 10.1002/bies.201500064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the organelles of plants and mammals, recent evidence suggests that genomic instability stems in large part from template switching events taking place during DNA replication. Although more than one mechanism may be responsible for this, some similarities exist between the different proposed models. These can be separated into two main categories, depending on whether they involve a single-strand-switching or a reciprocal-strand-switching event. Single-strand-switching events lead to intermediates containing Y junctions, whereas reciprocal-strand-switching creates Holliday junctions. Common features in all the described models include replication stress, fork stalling and the presence of inverted repeats, but no single element appears to be required in all cases. We review the field, and examine the ideas that several mechanisms may take place in any given genome, and that the presence of palindromes or inverted repeats in certain regions may favor specific rearrangements.
Collapse
Affiliation(s)
- Samuel Tremblay-Belzile
- Department of Biochemistry and Molecular Medicine, Universit, é, de Montréal, Montréal, Québec, Canada
| | - Étienne Lepage
- Department of Biochemistry and Molecular Medicine, Universit, é, de Montréal, Montréal, Québec, Canada
| | - Éric Zampini
- Department of Biochemistry and Molecular Medicine, Universit, é, de Montréal, Montréal, Québec, Canada
| | - Normand Brisson
- Department of Biochemistry and Molecular Medicine, Universit, é, de Montréal, Montréal, Québec, Canada
| |
Collapse
|
41
|
Sanchez-Sandoval E, Diaz-Quezada C, Velazquez G, Arroyo-Navarro LF, Almanza-Martinez N, Trasviña-Arenas CH, Brieba LG. Yeast mitochondrial RNA polymerase primes mitochondrial DNA polymerase at origins of replication and promoter sequences. Mitochondrion 2015; 24:22-31. [PMID: 26184436 DOI: 10.1016/j.mito.2015.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/15/2022]
Abstract
Three proteins phylogenetically grouped with proteins from the T7 replisome localize to yeast mitochondria: DNA polymerase γ (Mip1), mitochondrial RNA polymerase (Rpo41), and a single-stranded binding protein (Rim1). Human and T7 bacteriophage RNA polymerases synthesize primers for their corresponding DNA polymerases. In contrast, DNA replication in yeast mitochondria is explained by two models: a transcription-dependent model in which Rpo41 primes Mip1 and a model in which double stranded breaks create free 3' OHs that are extended by Mip1. Herein we found that Rpo41 transcribes RNAs that can be extended by Mip1 on single and double-stranded DNA. In contrast to human mitochondrial RNA polymerase, which primes DNA polymerase γ using transcripts from the light-strand and heavy-strand origins of replication, Rpo41 primes Mip1 at replication origins and promoter sequences in vitro. Our results suggest that in ori1, short transcripts serve as primers, whereas in ori5 an RNA transcript longer than 29 nucleotides is used as primer.
Collapse
Affiliation(s)
- Eugenia Sanchez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Corina Diaz-Quezada
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Gilberto Velazquez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Luis F Arroyo-Navarro
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Norineli Almanza-Martinez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Carlos H Trasviña-Arenas
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
42
|
Freel KC, Friedrich A, Schacherer J. Mitochondrial genome evolution in yeasts: an all-encompassing view. FEMS Yeast Res 2015; 15:fov023. [PMID: 25969454 DOI: 10.1093/femsyr/fov023] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2015] [Indexed: 12/26/2022] Open
Abstract
Mitochondria are important organelles that harbor their own genomes encoding a key set of proteins that ensure respiration and provide the eukaryotic cell with energy. Recent advances in high-throughput sequencing technologies present a unique opportunity to explore mitochondrial (mt) genome evolution. The Saccharomycotina yeasts have proven to be the leading organisms for mt comparative and population genomics. In fact, the explosion of complete yeast mt genome sequences has allowed for a broader view of the mt diversity across this incredibly diverse subphylum, both within and between closely related species. Here, we summarize the present state of yeast mitogenomics, including the currently available data and what it reveals concerning the diversity of content, organization, structure and evolution of mt genomes.
Collapse
Affiliation(s)
- Kelle C Freel
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156 Strasbourg 67083, France
| | - Anne Friedrich
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156 Strasbourg 67083, France
| | - Joseph Schacherer
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156 Strasbourg 67083, France
| |
Collapse
|
43
|
Kaniak-Golik A, Skoneczna A. Mitochondria-nucleus network for genome stability. Free Radic Biol Med 2015; 82:73-104. [PMID: 25640729 DOI: 10.1016/j.freeradbiomed.2015.01.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/25/2014] [Accepted: 01/13/2015] [Indexed: 12/21/2022]
Abstract
The proper functioning of the cell depends on preserving the cellular genome. In yeast cells, a limited number of genes are located on mitochondrial DNA. Although the mechanisms underlying nuclear genome maintenance are well understood, much less is known about the mechanisms that ensure mitochondrial genome stability. Mitochondria influence the stability of the nuclear genome and vice versa. Little is known about the two-way communication and mutual influence of the nuclear and mitochondrial genomes. Although the mitochondrial genome replicates independent of the nuclear genome and is organized by a distinct set of mitochondrial nucleoid proteins, nearly all genome stability mechanisms responsible for maintaining the nuclear genome, such as mismatch repair, base excision repair, and double-strand break repair via homologous recombination or the nonhomologous end-joining pathway, also act to protect mitochondrial DNA. In addition to mitochondria-specific DNA polymerase γ, the polymerases α, η, ζ, and Rev1 have been found in this organelle. A nuclear genome instability phenotype results from a failure of various mitochondrial functions, such as an electron transport chain activity breakdown leading to a decrease in ATP production, a reduction in the mitochondrial membrane potential (ΔΨ), and a block in nucleotide and amino acid biosynthesis. The loss of ΔΨ inhibits the production of iron-sulfur prosthetic groups, which impairs the assembly of Fe-S proteins, including those that mediate DNA transactions; disturbs iron homeostasis; leads to oxidative stress; and perturbs wobble tRNA modification and ribosome assembly, thereby affecting translation and leading to proteotoxic stress. In this review, we present the current knowledge of the mechanisms that govern mitochondrial genome maintenance and demonstrate ways in which the impairment of mitochondrial function can affect nuclear genome stability.
Collapse
Affiliation(s)
- Aneta Kaniak-Golik
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland.
| |
Collapse
|
44
|
Role for RNA:DNA hybrids in origin-independent replication priming in a eukaryotic system. Proc Natl Acad Sci U S A 2015; 112:5779-84. [PMID: 25902524 DOI: 10.1073/pnas.1501769112] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA replication initiates at defined replication origins along eukaryotic chromosomes, ensuring complete genome duplication within a single S-phase. A key feature of replication origins is their ability to control the onset of DNA synthesis mediated by DNA polymerase-α and its intrinsic RNA primase activity. Here, we describe a novel origin-independent replication process that is mediated by transcription. RNA polymerase I transcription constraints lead to persistent RNA:DNA hybrids (R-loops) that prime replication in the ribosomal DNA locus. Our results suggest that eukaryotic genomes have developed tools to prevent R-loop-mediated replication events that potentially contribute to copy number variation, particularly relevant to carcinogenesis.
Collapse
|
45
|
Lodi T, Dallabona C, Nolli C, Goffrini P, Donnini C, Baruffini E. DNA polymerase γ and disease: what we have learned from yeast. Front Genet 2015; 6:106. [PMID: 25852747 PMCID: PMC4362329 DOI: 10.3389/fgene.2015.00106] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/02/2015] [Indexed: 11/16/2022] Open
Abstract
Mip1 is the Saccharomyces cerevisiae DNA polymerase γ (Pol γ), which is responsible for the replication of mitochondrial DNA (mtDNA). It belongs to the family A of the DNA polymerases and it is orthologs to human POLGA. In humans, mutations in POLG(1) cause many mitochondrial pathologies, such as progressive external ophthalmoplegia (PEO), Alpers' syndrome, and ataxia-neuropathy syndrome, all of which present instability of mtDNA, which results in impaired mitochondrial function in several tissues with variable degrees of severity. In this review, we summarize the genetic and biochemical knowledge published on yeast mitochondrial DNA polymerase from 1989, when the MIP1 gene was first cloned, up until now. The role of yeast is particularly emphasized in (i) validating the pathological mutations found in human POLG and modeled in MIP1, (ii) determining the molecular defects caused by these mutations and (iii) finding the correlation between mutations/polymorphisms in POLGA and mtDNA toxicity induced by specific drugs. We also describe recent findings regarding the discovery of molecules able to rescue the phenotypic defects caused by pathological mutations in Mip1, and the construction of a model system in which the human Pol γ holoenzyme is expressed in yeast and complements the loss of Mip1.
Collapse
Affiliation(s)
- Tiziana Lodi
- Department of Life Sciences, University of Parma Parma, Italy
| | | | - Cecilia Nolli
- Department of Life Sciences, University of Parma Parma, Italy
| | - Paola Goffrini
- Department of Life Sciences, University of Parma Parma, Italy
| | - Claudia Donnini
- Department of Life Sciences, University of Parma Parma, Italy
| | | |
Collapse
|
46
|
Clausen AR, Lujan SA, Burkholder AB, Orebaugh CD, Williams JS, Clausen MF, Malc EP, Mieczkowski PA, Fargo DC, Smith DJ, Kunkel TA. Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation. Nat Struct Mol Biol 2015; 22:185-91. [PMID: 25622295 PMCID: PMC4351163 DOI: 10.1038/nsmb.2957] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/18/2014] [Indexed: 12/12/2022]
Abstract
Ribonucleotides are frequently incorporated into DNA during replication in eukaryotes. Here we map genome-wide distribution of these ribonucleotides as markers of replication enzymology in budding yeast, using a new 5' DNA end-mapping method, hydrolytic end sequencing (HydEn-seq). HydEn-seq of DNA from ribonucleotide excision repair-deficient strains reveals replicase- and strand-specific patterns of ribonucleotides in the nuclear genome. These patterns support the roles of DNA polymerases α and δ in lagging-strand replication and of DNA polymerase ɛ in leading-strand replication. They identify replication origins, termination zones and variations in ribonucleotide incorporation frequency across the genome that exceed three orders of magnitude. HydEn-seq also reveals strand-specific 5' DNA ends at mitochondrial replication origins, thus suggesting unidirectional replication of a circular genome. Given the conservation of enzymes that incorporate and process ribonucleotides in DNA, HydEn-seq can be used to track replication enzymology in other organisms.
Collapse
Affiliation(s)
- Anders R Clausen
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| | - Scott A Lujan
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| | - Adam B Burkholder
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Clinton D Orebaugh
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| | - Jessica S Williams
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| | - Maryam F Clausen
- Department of Genetics, High Throughput Sequencing Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ewa P Malc
- Department of Genetics, High Throughput Sequencing Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Piotr A Mieczkowski
- Department of Genetics, High Throughput Sequencing Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David C Fargo
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Duncan J Smith
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, USA
| | - Thomas A Kunkel
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| |
Collapse
|
47
|
Integrity of the yeast mitochondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion. Proc Natl Acad Sci U S A 2015; 112:E947-56. [PMID: 25730886 DOI: 10.1073/pnas.1501737112] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is essential for mitochondrial and cellular function. In Saccharomyces cerevisiae, mtDNA is organized in nucleoprotein structures termed nucleoids, which are distributed throughout the mitochondrial network and are faithfully inherited during the cell cycle. How the cell distributes and inherits mtDNA is incompletely understood although an involvement of mitochondrial fission and fusion has been suggested. We developed a LacO-LacI system to noninvasively image mtDNA dynamics in living cells. Using this system, we found that nucleoids are nonrandomly spaced within the mitochondrial network and observed the spatiotemporal events involved in mtDNA inheritance. Surprisingly, cells deficient in mitochondrial fusion and fission distributed and inherited mtDNA normally, pointing to alternative pathways involved in these processes. We identified such a mechanism, where we observed fission-independent, but F-actin-dependent, tip generation that was linked to the positioning of mtDNA to the newly generated tip. Although mitochondrial fusion and fission were dispensable for mtDNA distribution and inheritance, we show through a combination of genetics and next-generation sequencing that their absence leads to an accumulation of mitochondrial genomes harboring deleterious structural variations that cluster at the origins of mtDNA replication, thus revealing crucial roles for mitochondrial fusion and fission in maintaining the integrity of the mitochondrial genome.
Collapse
|
48
|
Lewis SC, Joers P, Willcox S, Griffith JD, Jacobs HT, Hyman BC. A rolling circle replication mechanism produces multimeric lariats of mitochondrial DNA in Caenorhabditis elegans. PLoS Genet 2015; 11:e1004985. [PMID: 25693201 PMCID: PMC4334201 DOI: 10.1371/journal.pgen.1004985] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/05/2015] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial DNA (mtDNA) encodes respiratory complex subunits essential to almost all eukaryotes; hence respiratory competence requires faithful duplication of this molecule. However, the mechanism(s) of its synthesis remain hotly debated. Here we have developed Caenorhabditis elegans as a convenient animal model for the study of metazoan mtDNA synthesis. We demonstrate that C. elegans mtDNA replicates exclusively by a phage-like mechanism, in which multimeric molecules are synthesized from a circular template. In contrast to previous mammalian studies, we found that mtDNA synthesis in the C. elegans gonad produces branched-circular lariat structures with multimeric DNA tails; we were able to detect multimers up to four mtDNA genome unit lengths. Further, we did not detect elongation from a displacement-loop or analogue of 7S DNA, suggesting a clear difference from human mtDNA in regard to the site(s) of replication initiation. We also identified cruciform mtDNA species that are sensitive to cleavage by the resolvase RusA; we suggest these four-way junctions may have a role in concatemer-to-monomer resolution. Overall these results indicate that mtDNA synthesis in C. elegans does not conform to any previously documented metazoan mtDNA replication mechanism, but instead are strongly suggestive of rolling circle replication, as employed by bacteriophages. As several components of the metazoan mitochondrial DNA replisome are likely phage-derived, these findings raise the possibility that the rolling circle mtDNA replication mechanism may be ancestral among metazoans.
Collapse
Affiliation(s)
- Samantha C. Lewis
- Department of Biology and Interdepartmental Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, California, United States of America
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Priit Joers
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
- Estonian Biocentre, Tartu, Estonia
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Howard T. Jacobs
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
- Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland
| | - Bradley C. Hyman
- Department of Biology and Interdepartmental Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
49
|
Koh KD, Balachander S, Hesselberth JR, Storici F. Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA. Nat Methods 2015; 12:251-7, 3 p following 257. [PMID: 25622106 DOI: 10.1038/nmeth.3259] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023]
Abstract
Abundant ribonucleotide incorporation in DNA during replication and repair has profound consequences for genome stability, but the global distribution of ribonucleotide incorporation is unknown. We developed ribose-seq, a method for capturing unique products generated by alkaline cleavage of DNA at embedded ribonucleotides. High-throughput sequencing of these fragments in DNA from the yeast Saccharomyces cerevisiae revealed widespread ribonucleotide distribution, with a strong preference for cytidine and guanosine, and identified hotspots of ribonucleotide incorporation in nuclear and mitochondrial DNA. Ribonucleotides were primarily incorporated on the newly synthesized leading strand of nuclear DNA and were present upstream of (G+C)-rich tracts in the mitochondrial genome. Ribose-seq is a powerful tool for the systematic profiling of ribonucleotide incorporation in genomic DNA.
Collapse
Affiliation(s)
- Kyung Duk Koh
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sathya Balachander
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical School, Aurora, Colorado, USA
| | - Francesca Storici
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
50
|
Sedman T, Gaidutšik I, Villemson K, Hou Y, Sedman J. Double-stranded DNA-dependent ATPase Irc3p is directly involved in mitochondrial genome maintenance. Nucleic Acids Res 2014; 42:13214-27. [PMID: 25389272 PMCID: PMC4245962 DOI: 10.1093/nar/gku1148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nucleic acid-dependent ATPases are involved in nearly all aspects of DNA and RNA metabolism. Previous studies have described a number of mitochondrial helicases. However, double-stranded DNA-dependent ATPases, including translocases or enzymes remodeling DNA-protein complexes, have not been identified in mitochondria of the yeast Saccharomyces cerevisae. Here, we demonstrate that Irc3p is a mitochondrial double-stranded DNA-dependent ATPase of the Superfamily II. In contrast to the other mitochondrial Superfamily II enzymes Mss116p, Suv3p and Mrh4p, which are RNA helicases, Irc3p has a direct role in mitochondrial DNA (mtDNA) maintenance. Specific Irc3p-dependent mtDNA metabolic intermediates can be detected, including high levels of double-stranded DNA breaks that accumulate in irc3Δ mutants. irc3Δ-related topology changes in rho- mtDNA can be reversed by the deletion of mitochondrial RNA polymerase RPO41, suggesting that Irc3p counterbalances adverse effects of transcription on mitochondrial genome stability.
Collapse
Affiliation(s)
- Tiina Sedman
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| | - Ilja Gaidutšik
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| | - Karin Villemson
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| | - YingJian Hou
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| | - Juhan Sedman
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| |
Collapse
|