1
|
Espinar L, Garcia-Cao M, Schmidt A, Kourtis S, Gañez Zapater A, Aranda-Vallejo C, Ghose R, Garcia-Lopez L, Sheraj I, Pardo-Lorente N, Bantulà M, Pascual-Reguant L, Darai E, Guirola M, Montero J, Sdelci S. Nuclear IMPDH2 controls the DNA damage response by modulating PARP1 activity. Nat Commun 2024; 15:9515. [PMID: 39532854 PMCID: PMC11557828 DOI: 10.1038/s41467-024-53877-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Nuclear metabolism and DNA damage response are intertwined processes, but the precise molecular links remain elusive. Here, we explore this crosstalk using triple-negative breast cancer (TNBC) as a model, a subtype often prone to DNA damage accumulation. We show that the de novo purine synthesis enzyme IMPDH2 is enriched on chromatin in TNBC compared to other subtypes. IMPDH2 chromatin localization is DNA damage dependent, and IMPDH2 repression leads to DNA damage accumulation. On chromatin, IMPDH2 interacts with and modulates PARP1 activity by controlling the nuclear availability of NAD+ to fine-tune the DNA damage response. However, when IMPDH2 is restricted to the nucleus, it depletes nuclear NAD+, leading to PARP1 cleavage and cell death. Our study identifies a non-canonical nuclear role for IMPDH2, acting as a convergence point of nuclear metabolism and DNA damage response.
Collapse
Affiliation(s)
- Lorena Espinar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Marta Garcia-Cao
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain.
| | - Alisa Schmidt
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Savvas Kourtis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Antoni Gañez Zapater
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Carla Aranda-Vallejo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Ritobrata Ghose
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Laura Garcia-Lopez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Ilir Sheraj
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Natalia Pardo-Lorente
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Marina Bantulà
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Laura Pascual-Reguant
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Evangelia Darai
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Maria Guirola
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Joan Montero
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Sara Sdelci
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
2
|
Fagali Franchi F, Dos Santos PH, Kubo Fontes P, Valencise Quaglio AE, Gomes Nunes S, Zoccal Mingoti G, de Souza Castilho AC. PAPP-A enhances the antioxidative effects of IGF-1 during bovine in vitro embryo production. Theriogenology 2024; 229:191-201. [PMID: 39197256 DOI: 10.1016/j.theriogenology.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024]
Abstract
We investigated whether exogenous pregnancy-associated plasma protein-A (PAPP-A) enhances the antioxidant role of insulin-like growth factor-1 (IGF-1) in bovine in vitro embryo production (IVP). We performed standard in vitro maturation (IVM) and in vitro culture (IVC) or added menadione to promote an oxidative stressed microenvironment and evaluated the antioxidant effect of IGF-1 alone or in combination with PAPP-A (IGF-1/PAPP-A). In IVM, the treatments did not affect oocyte nuclear development, total GSH content, cumulus cell gene expression, and blastocyst yield. Nevertheless, IGF-1/PAPP-A treatment prevented an increase in reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) levels. In IVC, the treatments did not affect the total GSH content on blastocysts and IVC media, but IGF-1 and IGF-1/PAPP-A treatments increased blastocyst yield compared to the menadione group. In addition, IGF-1/PAPP-A treatment had lower ROS levels and regulated genes related to embryonic quality compared to the control and menadione groups. Overall, we showed that PAPP-A could enhance the antioxidant role of IGF-1 during IVP in cattle by avoiding higher ROS levels in oocytes and blastocysts and modulating the transcriptional abundance of genes involved in oxidative protection and embryonic quality.
Collapse
Affiliation(s)
- Fernanda Fagali Franchi
- São Paulo State University (Unesp), Department of Pharmacology, Institute of Biosciences, Botucatu, São Paulo, Brazil; Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Science, University of Milan, Milan, Italy.
| | - Priscila Helena Dos Santos
- São Paulo State University (Unesp), Department of Pharmacology, Institute of Biosciences, Botucatu, São Paulo, Brazil.
| | - Patricia Kubo Fontes
- São Paulo State University (Unesp), Department of Pharmacology, Institute of Biosciences, Botucatu, São Paulo, Brazil.
| | - Ana Elisa Valencise Quaglio
- São Paulo State University (Unesp), Department of Pharmacology, Institute of Biosciences, Botucatu, São Paulo, Brazil.
| | - Sarah Gomes Nunes
- São Paulo State University (Unesp), Department of Pharmacology, Institute of Biosciences, Botucatu, São Paulo, Brazil.
| | - Gisele Zoccal Mingoti
- São Paulo State University (Unesp), School of Veterinary Medicine, Laboratory of Reproductive Physiology, Araçatuba, São Paulo, Brazil.
| | | |
Collapse
|
3
|
Maekawa S, Nishikawa I, Horiguchi G. Impaired inosine monophosphate dehydrogenase leads to plant-specific ribosomal stress responses in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2024; 137:1091-1104. [PMID: 39235732 DOI: 10.1007/s10265-024-01578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
Nucleotides are the building blocks of living organisms and their biosynthesis must be tightly regulated. Inosine monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme in GTP synthesis that is essential for biological activities, such as RNA synthesis. In animals, the suppression of IMPDH function causes ribosomal stress (also known as nucleolar stress), a disorder in ribosome biogenesis that results in cell proliferation defects and apoptosis. Despite its importance, plant IMPDH has not been analyzed in detail. Therefore, we analyzed the phenotypes of mutants of the two IMPDH genes in Arabidopsis thaliana and investigated their relationship with ribosomal stress. Double mutants of IMPDH1 and IMPDH2 were lethal, and only the impdh2 mutants showed growth defects and transient chlorophyll deficiency. These results suggested that IMPDH1 and IMPDH2 are redundant and essential, whereas IMPDH2 has a crucial role. In addition, the impdh2 mutants showed a reduction in nucleolus size and resistance to several translation inhibitors, which is a known response to ribosomal stress. Furthermore, the IMPDH1/impdh1 impdh2 mutants showed more severe growth defects and phenotypes such as reduced plastid rRNA levels and abnormal processing patterns than the impdh2 mutants. Finally, multiple mutations of impdh with as2, which has abnormal leaf polarity, caused the development of needle-like leaves because of the enhancement of the as2 phenotype, which is a typical effect observed in mutants of genes involved in ribosome biogenesis. These results indicated that IMPDH is closely related to ribosome biogenesis, and that mutations in the genes lead to not only known responses to ribosomal stress, but also plant-specific responses.
Collapse
Affiliation(s)
- Shugo Maekawa
- Institute of Natural Sciences, Senshu University, Higashimita 2-1-1, Tama, Kawasaki, Kanagawa, 214-8580, Japan.
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo, 171-8501, Japan.
| | - Ikuto Nishikawa
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo, 171-8501, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka City, Fukuoka, 812-8582, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo, 171-8501, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo, 171-8501, Japan
| |
Collapse
|
4
|
Ruan X, Xiong Y, Li X, Yang E, Wang J. Lower ratio of IMPDH1 to IMPDH2 sensitizes gliomas to chemotherapy. Cancer Gene Ther 2024; 31:1081-1089. [PMID: 38871858 DOI: 10.1038/s41417-024-00793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Gliomas are the most common primary tumors of the central nervous system, with approximately half of patients presenting with the most aggressive form of glioblastoma. Although several molecular markers for glioma have been identified, they are not sufficient to predict the prognosis due to the extensive genetic heterogeneity within glioma. Our study reveals that the ratio of IMPDH1 to IMPDH2 expression levels serves as a molecular indicator for glioma treatment prognosis. Patients with a higher IMPDH1/IMPDH2 ratio exhibit a worse prognosis, while those with a lower ratio display a more favorable prognosis. We further demonstrate that IMPDH1 plays a crucial role in maintaining cellular GTP/GDP levels following DNA damage compared to IMPDH2. In the absence of IMPDH1, cells experience an imbalance in the GTP/GDP ratio, impairing DNA damage repair capabilities and rendering them more sensitive to TMZ. This study not only introduces a novel prognostic indicator for glioma clinical diagnosis but also offers innovative insights for precise and stratified glioma treatment.
Collapse
Affiliation(s)
- Xiaoyu Ruan
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, 100191, Beijing, China
| | - Yundong Xiong
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, 100191, Beijing, China
| | - Xiaoman Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, 100191, Beijing, China.
| | - Ence Yang
- Department of Medical Bioinformatics, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, 100191, Beijing, China.
- Department of Gastrointestinal Translational Research, Peking University Cancer Hospital, 100142, Beijing, China.
| |
Collapse
|
5
|
Liu H, Xu G, Guo B, Liu F. Old role with new feature: T2SS ATPase as a cyclic-di-GMP receptor to regulate antibiotic production. Appl Environ Microbiol 2024; 90:e0041824. [PMID: 38624198 PMCID: PMC11107153 DOI: 10.1128/aem.00418-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a crucial signaling molecule found extensively in bacteria, involved in the regulation of various physiological and biochemical processes such as biofilm formation, motility, and pathogenicity through binding to downstream receptors. However, the structural dissimilarity of c-di-GMP receptor proteins has hindered the discovery of many such proteins. In this study, we identified LspE, a homologous protein of the type II secretion system (T2SS) ATPase GspE in Lysobacter enzymogenes, as a receptor protein for c-di-GMP. We identified the more conservative c-di-GMP binding amino acid residues as K358 and T359, which differ from the previous reports, indicating that GspE proteins may represent a class of c-di-GMP receptor proteins. Additionally, we found that LspE in L. enzymogenes also possesses a novel role in regulating the production of the antifungal antibiotic HSAF. Further investigations revealed the critical involvement of both ATPase activity and c-di-GMP binding in LspE-mediated regulation of HSAF (Heat-Stable Antifungal Factor) production, with c-di-GMP binding having no impact on LspE's ATPase activity. This suggests that the control of HSAF production by LspE encompasses two distinct processes: c-di-GMP binding and the inherent ATPase activity of LspE. Overall, our study unraveled a new function for the conventional protein GspE of the T2SS as a c-di-GMP receptor protein and shed light on its role in regulating antibiotic production.IMPORTANCEThe c-di-GMP signaling pathway in bacteria is highly intricate. The identification and functional characterization of novel receptor proteins have posed a significant challenge in c-di-GMP research. The type II secretion system (T2SS) is a well-studied secretion system in bacteria. In this study, our findings revealed the ATPase GspE protein of the T2SS as a class of c-di-GMP receptor protein. Notably, we discovered its novel function in regulating the production of antifungal antibiotic HSAF in Lysobacter enzymogenes. Given that GspE may be a conserved c-di-GMP receptor protein, it is worthwhile for researchers to reevaluate its functional roles and mechanisms across diverse bacterial species.
Collapse
Affiliation(s)
- Haofei Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Gaoge Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- School of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Baodian Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Fengquan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Harlacher E, Schulte C, Vondenhoff S, Schmitt-Kopplin P, Diederich P, Hemmers C, Moellmann J, Wollenhaupt J, Veltrop R, Biessen E, Lehrke M, Peters B, Schlieper G, Kuppe C, Floege J, Jankowski V, Marx N, Jankowski J, Noels H. Increased levels of a mycophenolic acid metabolite in patients with kidney failure negatively affect cardiomyocyte health. Front Cardiovasc Med 2024; 11:1346475. [PMID: 38510194 PMCID: PMC10951386 DOI: 10.3389/fcvm.2024.1346475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024] Open
Abstract
Chronic kidney disease (CKD) significantly increases cardiovascular risk and mortality, and the accumulation of uremic toxins in the circulation upon kidney failure contributes to this increased risk. We thus performed a screening for potential novel mediators of reduced cardiovascular health starting from dialysate obtained after hemodialysis of patients with CKD. The dialysate was gradually fractionated to increased purity using orthogonal chromatography steps, with each fraction screened for a potential negative impact on the metabolic activity of cardiomyocytes using a high-throughput MTT-assay, until ultimately a highly purified fraction with strong effects on cardiomyocyte health was retained. Mass spectrometry and nuclear magnetic resonance identified the metabolite mycophenolic acid-β-glucuronide (MPA-G) as a responsible substance. MPA-G is the main metabolite from the immunosuppressive agent MPA that is supplied in the form of mycophenolate mofetil (MMF) to patients in preparation for and after transplantation or for treatment of autoimmune and non-transplant kidney diseases. The adverse effect of MPA-G on cardiomyocytes was confirmed in vitro, reducing the overall metabolic activity and cellular respiration while increasing mitochondrial reactive oxygen species production in cardiomyocytes at concentrations detected in MMF-treated patients with failing kidney function. This study draws attention to the potential adverse effects of long-term high MMF dosing, specifically in patients with severely reduced kidney function already displaying a highly increased cardiovascular risk.
Collapse
Affiliation(s)
- Eva Harlacher
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- University Hospital RWTH Aachen, Aachen, Germany
| | - Corinna Schulte
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- University Hospital RWTH Aachen, Aachen, Germany
| | - Sonja Vondenhoff
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- University Hospital RWTH Aachen, Aachen, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
- Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Philippe Diederich
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Hemmers
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- University Hospital RWTH Aachen, Aachen, Germany
| | - Julia Moellmann
- Department of Internal Medicine I, Cardiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Julia Wollenhaupt
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- University Hospital RWTH Aachen, Aachen, Germany
| | - Rogier Veltrop
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- University Hospital RWTH Aachen, Aachen, Germany
| | - Erik Biessen
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, Cardiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Björn Peters
- Department of Nephrology, Skaraborg Hospital, Skövde, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Georg Schlieper
- Division of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Kuppe
- Division of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
| | - Jürgen Floege
- Department of Internal Medicine I, Cardiology, University Hospital RWTH Aachen, Aachen, Germany
- Division of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- University Hospital RWTH Aachen, Aachen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, Cardiology, University Hospital RWTH Aachen, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- University Hospital RWTH Aachen, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- University Hospital RWTH Aachen, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
7
|
Sun M, Dai P, Cao Z, Dong J. Purine metabolism in plant pathogenic fungi. Front Microbiol 2024; 15:1352354. [PMID: 38384269 PMCID: PMC10879430 DOI: 10.3389/fmicb.2024.1352354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
In eukaryotic cells, purine metabolism is the way to the production of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) and plays key roles in various biological processes. Purine metabolism mainly consists of de novo, salvage, and catabolic pathways, and some components of these pathways have been characterized in some plant pathogenic fungi, such as the rice blast fungus Magnaporthe oryzae and wheat head blight fungus Fusarium graminearum. The enzymatic steps of the de novo pathway are well-conserved in plant pathogenic fungi and play crucial roles in fungal growth and development. Blocking this pathway inhibits the formation of penetration structures and invasive growth, making it essential for plant infection by pathogenic fungi. The salvage pathway is likely indispensable but requires exogenous purines, implying that purine transporters are functional in these fungi. The catabolic pathway balances purine nucleotides and may have a conserved stage-specific role in pathogenic fungi. The significant difference of the catabolic pathway in planta and in vitro lead us to further explore and identify the key genes specifically regulating pathogenicity in purine metabolic pathway. In this review, we summarized recent advances in the studies of purine metabolism, focusing on the regulation of pathogenesis and growth in plant pathogenic fungi.
Collapse
Affiliation(s)
- Manli Sun
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | | | | | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
8
|
Woulfe J, Munoz DG, Gray DA, Jinnah HA, Ivanova A. Inosine monophosphate dehydrogenase intranuclear inclusions are markers of aging and neuronal stress in the human substantia nigra. Neurobiol Aging 2024; 134:43-56. [PMID: 37992544 DOI: 10.1016/j.neurobiolaging.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
We explored mechanisms involved in the age-dependent degeneration of human substantia nigra (SN) dopamine (DA) neurons. Owing to its important metabolic functions in post-mitotic neurons, we investigated the developmental and age-associated changes in the purine biosynthetic enzyme inosine monophosphate dehydrogenase (IMPDH). Tissue microarrays prepared from post-mortem samples of SN from 85 neurologically intact participants humans spanning the age spectrum were immunostained for IMPDH combined with other proteins. SN DA neurons contained two types of IMPDH structures: cytoplasmic IMPDH filaments and intranuclear IMPDH inclusions. The former were not age-restricted and may represent functional units involved in sustaining purine nucleotide supply in these highly metabolically active cells. The latter showed age-associated changes, including crystallization, features reminiscent of pathological inclusion bodies, and spatial associations with Marinesco bodies; structures previously associated with SN neuron dysfunction and death. We postulate dichotomous roles for these two subcellularly distinct IMPDH structures and propose a nucleus-based model for a novel mechanism of SN senescence that is independent of previously known neurodegeneration-associated proteins.
Collapse
Affiliation(s)
- John Woulfe
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - David G Munoz
- Li Ka Shing Knowledge Institute & Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine, St. Michael's Hospital, Unity Health, University of Toronto, Toronto, Ontario, Canada
| | - Douglas A Gray
- Center for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Hyder A Jinnah
- Departments of Neurology, Human Genetics & Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alyona Ivanova
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children and Neurosurgery Research Department, St. Michael's Hospital, Toronto Unity Health, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Hernández-Gómez A, Irisarri I, Fernández-Justel D, Peláez R, Jiménez A, Revuelta JL, Balsera M, Buey RM. GuaB3, an overlooked enzyme in cyanobacteria's toolbox that sheds light on IMP dehydrogenase evolution. Structure 2023; 31:1526-1534.e4. [PMID: 37875114 DOI: 10.1016/j.str.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023]
Abstract
IMP dehydrogenase and GMP reductase are enzymes from the same protein family with analogous structures and catalytic mechanisms that have gained attention because of their essential roles in nucleotide metabolism and as potential drug targets. This study focusses on GuaB3, a less-explored enzyme within this family. Phylogenetic analysis uncovers GuaB3's independent evolution from other members of the family and it predominantly occurs in Cyanobacteria. Within this group, GuaB3 functions as a unique IMP dehydrogenase, while its counterpart in Actinobacteria has a yet unknown function. Synechocystis sp. PCC6803 GuaB3 structures demonstrate differences in the active site compared to canonical IMP dehydrogenases, despite shared catalytic mechanisms. These findings highlight the essential role of GuaB3 in Cyanobacteria, provide insights into the diversity and evolution of the IMP dehydrogenase protein family, and reveal a distinctive characteristic in nucleotide metabolism, potentially aiding in combating harmful cyanobacterial blooms-a growing concern for humans and wildlife.
Collapse
Affiliation(s)
- Alejandro Hernández-Gómez
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Iker Irisarri
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - David Fernández-Justel
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Dpto. Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Alberto Jiménez
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - José Luis Revuelta
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Mónica Balsera
- Department Abiotic Stress, Instituto de Recursos Naturales y Agrobiología (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Rubén M Buey
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| |
Collapse
|
10
|
Norris V, Kayser C, Muskhelishvili G, Konto-Ghiorghi Y. The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation, and the generation of phenotypic heterogeneity in bacteria. FEMS Microbiol Rev 2023; 47:fuac049. [PMID: 36549664 DOI: 10.1093/femsre/fuac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.
Collapse
Affiliation(s)
- Vic Norris
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Clara Kayser
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - Yoan Konto-Ghiorghi
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| |
Collapse
|
11
|
Darekar S, Laín S. Asymmetric inheritance of cytoophidia could contribute to determine cell fate and plasticity: The onset of alternative differentiation patterns in daughter cells may rely on the acquisition of either CTPS or IMPDH cytoophidia: The onset of alternative differentiation patterns in daughter cells may rely on the acquisition of either CTPS or IMPDH cytoophidia. Bioessays 2022; 44:e2200128. [PMID: 36209393 DOI: 10.1002/bies.202200128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 09/21/2022] [Indexed: 12/20/2022]
Abstract
Two enzymes involved in the synthesis of pyrimidine and purine nucleotides, CTP synthase (CTPS) and IMP dehydrogenase (IMPDH), can assemble into a single or very few large filaments called rods and rings (RR) or cytoophidia. Most recently, asymmetric cytoplasmic distribution of organelles during cell division has been described as a decisive event in hematopoietic stem cell fate. We propose that cytoophidia, which could be considered as membrane-less organelles, may also be distributed asymmetrically during mammalian cell division as previously described for Schizosaccharomyces pombe. Furthermore, because each type of nucleotide intervenes in distinct processes (e.g., membrane synthesis, glycosylation, and G protein-signaling), alterations in the rate of synthesis of specific nucleotide types could influence cell differentiation in multiple ways. Therefore, we hypothesize that whether a daughter cell inherits or not CTPS or IMPDH filaments determines its fate and that this asymmetric inheritance, together with the dynamic nature of these structures enables plasticity in a cell population.
Collapse
Affiliation(s)
- Suhas Darekar
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Sonia Laín
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Liu J, Hong S, Yang J, Zhang X, Wang Y, Wang H, Peng J, Hong L. Targeting purine metabolism in ovarian cancer. J Ovarian Res 2022; 15:93. [PMID: 35964092 PMCID: PMC9375293 DOI: 10.1186/s13048-022-01022-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022] Open
Abstract
Purine, an abundant substrate in organisms, is a critical raw material for cell proliferation and an important factor for immune regulation. The purine de novo pathway and salvage pathway are tightly regulated by multiple enzymes, and dysfunction in these enzymes leads to excessive cell proliferation and immune imbalance that result in tumor progression. Maintaining the homeostasis of purine pools is an effective way to control cell growth and tumor evolution, and exploiting purine metabolism to suppress tumors suggests interesting directions for future research. In this review, we describe the process of purine metabolism and summarize the role and potential therapeutic effects of the major purine-metabolizing enzymes in ovarian cancer, including CD39, CD73, adenosine deaminase, adenylate kinase, hypoxanthine guanine phosphoribosyltransferase, inosine monophosphate dehydrogenase, purine nucleoside phosphorylase, dihydrofolate reductase and 5,10-methylenetetrahydrofolate reductase. Purinergic signaling is also described. We then provide an overview of the application of purine antimetabolites, comprising 6-thioguanine, 6-mercaptopurine, methotrexate, fludarabine and clopidogrel. Finally, we discuss the current challenges and future opportunities for targeting purine metabolism in the treatment-relevant cellular mechanisms of ovarian cancer.
Collapse
Affiliation(s)
- Jingchun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shasha Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiang Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyi Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haoyu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Peng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
13
|
Chang CC, Peng M, Zhong J, Zhang Z, Keppeke GD, Sung LY, Liu JL. Molecular crowding facilitates bundling of IMPDH polymers and cytoophidium formation. Cell Mol Life Sci 2022; 79:420. [PMID: 35833994 PMCID: PMC11072341 DOI: 10.1007/s00018-022-04448-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
The cytoophidium is a unique type of membraneless compartment comprising of filamentous protein polymers. Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step of de novo GTP biosynthesis and plays critical roles in active cell metabolism. However, the molecular regulation of cytoophidium formation is poorly understood. Here we show that human IMPDH2 polymers bundle up to form cytoophidium-like aggregates in vitro when macromolecular crowders are present. The self-association of IMPDH polymers is suggested to rely on electrostatic interactions. In cells, the increase of molecular crowding with hyperosmotic medium induces cytoophidia, while the decrease of that by the inhibition of RNA synthesis perturbs cytoophidium assembly. In addition to IMPDH, CTPS and PRPS cytoophidium could be also induced by hyperosmolality, suggesting a universal phenomenon of cytoophidium-forming proteins. Finally, our results indicate that the cytoophidium can prolong the half-life of IMPDH, which is proposed to be one of conserved functions of this subcellular compartment.
Collapse
Affiliation(s)
- Chia-Chun Chang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Jiale Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ziheng Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Gerson Dierley Keppeke
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, SP, 04023-062, Brazil
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| |
Collapse
|
14
|
Fernández-Justel D, Marcos-Alcalde Í, Abascal F, Vidaña N, Gómez-Puertas P, Jiménez A, Revuelta JL, Buey RM. Diversity of mechanisms to control bacterial GTP homeostasis by the mutually exclusive binding of adenine and guanine nucleotides to IMP dehydrogenase. Protein Sci 2022; 31:e4314. [PMID: 35481629 PMCID: PMC9462843 DOI: 10.1002/pro.4314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023]
Abstract
IMP dehydrogenase(IMPDH) is an essential enzyme that catalyzes the rate‐limiting step in the guanine nucleotide pathway. In eukaryotic cells, GTP binding to the regulatory domain allosterically controls the activity of IMPDH by a mechanism that is fine‐tuned by post‐translational modifications and enzyme polymerization. Nonetheless, the mechanisms of regulation of IMPDH in bacterial cells remain unclear. Using biochemical, structural, and evolutionary analyses, we demonstrate that, in most bacterial phyla, (p)ppGpp compete with ATP to allosterically modulate IMPDH activity by binding to a, previously unrecognized, conserved high affinity pocket within the regulatory domain. This pocket was lost during the evolution of Proteobacteria, making their IMPDHs insensitive to these alarmones. Instead, most proteobacterial IMPDHs evolved to be directly modulated by the balance between ATP and GTP that compete for the same allosteric binding site. Altogether, we demonstrate that the activity of bacterial IMPDHs is allosterically modulated by a universally conserved nucleotide‐controlled conformational switch that has divergently evolved to adapt to the specific particularities of each organism. These results reconcile the reported data on the crosstalk between (p)ppGpp signaling and the guanine nucleotide biosynthetic pathway and reinforce the essential role of IMPDH allosteric regulation on bacterial GTP homeostasis. PDB Code(s): 7PJI and 7PMZ;
Collapse
Affiliation(s)
- David Fernández-Justel
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Íñigo Marcos-Alcalde
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain.,Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Nerea Vidaña
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Paulino Gómez-Puertas
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - José L Revuelta
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Rubén M Buey
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
15
|
Jia X, Liu Y, Cheng Y, Wang Y, Kang H, Ma Z, Chen K. Inosine monophosphate dehydrogenase type1 sustains tumor growth in hepatocellular carcinoma. J Clin Lab Anal 2022; 36:e24416. [PMID: 35403278 PMCID: PMC9102537 DOI: 10.1002/jcla.24416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 11/25/2022] Open
Abstract
Background Inosine monophosphate dehydrogenase (IMPDH) is the key enzyme in the biosynthesis of purine nucleotides. IMPDH1 and IMPDH2 are the two isoforms of IMPDH and they share 84% amino acid similarity and virtually indistinguishable catalytic activity. Although high expression of IMPDH2 has been reported in various cancers, the roles of IMPDH1 in hepatocellular carcinoma (HCC) are largely unknown. Methods The expression and the clinical relevance of IMPDH1 in 154 HCC patients were detected by immunohistochemistry analysis. The stable IMPDH1 knockdown HuH7 cells were established by lentiviral RNAi approach. The single cell proliferation was detected by colony‐forming unit assay. The tumor initiation and growth ability were measured by using xenograft tumor model in immunodeficient mice. The effect of IMPDH1 on cellular signaling pathways was analyzed by genome‐wide transcriptomic profiling. Results The expression of IMPDH1 is upregulated in tumor tissue compared with adjacent liver tissue, and higher expression of IMPDH1 is associated with better patient cumulative survival. In experimental models, loss of IMPDH1 in HCC cells inhibits the ability of single cell colony formation in vitro, and reduces the efficiency of tumor initiation and growth in immunodeficient mice. Consistently, loss of IMPDH1 results in distinct alterations of signaling pathways revealed by genome‐wide transcriptomic profiling. Conclusion IMPDH1 sustains HCC growth and progression.
Collapse
Affiliation(s)
- Xiaoyuan Jia
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou China
| | - Yao Liu
- Department of Oncology Baoji Hi‐Tech Hospital Baoji China
| | - Yan Cheng
- Gansu Tech Innovation Center of Animal Cell Biomedical Research Center Northwest Minzu University Lanzhou China
| | - Yin Wang
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou China
| | - Hui Kang
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou China
| | - Zhongren Ma
- Gansu Tech Innovation Center of Animal Cell Biomedical Research Center Northwest Minzu University Lanzhou China
| | - Kan Chen
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou China
- Shaoxing Biomedical Research Institute Co. LTD Zhejiang Sci‐Tech University Shaoxing China
| |
Collapse
|
16
|
Zaffagni M, Harris JM, Patop IL, Pamudurti NR, Nguyen S, Kadener S. SARS-CoV-2 Nsp14 mediates the effects of viral infection on the host cell transcriptome. eLife 2022; 11:71945. [PMID: 35293857 PMCID: PMC9054133 DOI: 10.7554/elife.71945] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
Viral infection involves complex set of events orchestrated by multiple viral proteins. To identify functions of SARS-CoV-2 proteins, we performed transcriptomic analyses of cells expressing individual viral proteins. Expression of Nsp14, a protein involved in viral RNA replication, provoked a dramatic remodeling of the transcriptome that strongly resembled that observed following SARS-CoV-2 infection. Moreover, Nsp14 expression altered the splicing of more than 1000 genes and resulted in a dramatic increase in the number of circRNAs, which are linked to innate immunity. These effects were independent of the Nsp14 exonuclease activity and required the N7-guanine-methyltransferase domain of the protein. Activation of the NFkB pathway and increased expression of CXCL8 occurred early upon Nsp14 expression. We identified IMPDH2, which catalyzes the rate-limiting step of guanine nucleotides biosynthesis, as a key mediator of these effects. Nsp14 expression caused an increase in GTP cellular levels, and the effect of Nsp14 was strongly decreased in the presence of IMPDH2 inhibitors. Together, our data demonstrate an unknown role for Nsp14 with implications for therapy. Viruses are parasites, relying on the cells they infect to make more of themselves. In doing so they change how an infected cell turns its genes on and off, forcing it to build new virus particles and turning off the immune surveillance that would allow the body to intervene. This is how SARS-CoV-2, the virus that causes COVID, survives with a genome that carries instructions to make just 29 proteins. One of these proteins, known as Nsp14, is involved in both virus reproduction and immune escape. Previous work has shown that it interacts with IMPDH2, the cellular enzyme that controls the production of the building blocks of the genetic code. The impact of this interaction is not clear. To find out more, Zaffagni et al. introduced 26 of the SARS-CoV-2 proteins into human cells one at a time. Nsp14 had the most dramatic effect, dialing around 4,000 genes up or down and changing how the cell interprets over 1,000 genes. Despite being just one protein, it mimicked the genetic changes seen during real SARS-CoV-2 infection. Blocking IMPDH2 partially reversed the effects, which suggests that the interaction of Nsp14 with the enzyme might be responsible for the effects of SARS-CoV-2 on the genes of the cell. Understanding how viral proteins affect cells can explain what happens during infection. This could lead to the discovery of new treatments designed to counteract the effects of the virus. Further work could investigate whether interfering with Nsp14 helps cells to overcome infection.
Collapse
Affiliation(s)
- Michela Zaffagni
- Department of Biology, Brandeis University, Waltham, United States
| | - Jenna M Harris
- Department of Biology, Brandeis University, Waltham, United States
| | - Ines L Patop
- Department of Biology, Brandeis University, Waltham, United States
| | | | - Sinead Nguyen
- Department of Biology, Brandeis University, Waltham, United States
| | | |
Collapse
|
17
|
IMPDH dysregulation in disease: a mini review. Biochem Soc Trans 2022; 50:71-82. [PMID: 35191957 PMCID: PMC9022972 DOI: 10.1042/bst20210446] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
Abstract
Inosine-5′-monophosphate dehydrogenase (IMPDH) is a highly conserved enzyme in purine metabolism that is tightly regulated on multiple levels. IMPDH has a critical role in purine biosynthesis, where it regulates flux at the branch point between adenine and guanine nucleotide synthesis, but it also has a role in transcription regulation and other moonlighting functions have been described. Vertebrates have two isoforms, IMPDH1 and IMPDH2, and point mutations in each are linked to human disease. Mutations in IMPDH2 in humans are associated with neurodevelopmental disease, but the effects of mutations at the enzyme level have not yet been characterized. Mutations in IMPDH1 lead to retinal degeneration in humans, and recent studies have characterized how they cause functional defects in regulation. IMPDH1 is expressed as two unique splice variants in the retina, a tissue with very high and specific demands for purine nucleotides. Recent studies have revealed functional differences among splice variants, demonstrating that retinal variants up-regulate guanine nucleotide synthesis by reducing sensitivity to feedback inhibition by downstream products. A better understanding of the role of IMPDH1 in the retina and the characterization of an animal disease model will be critical for determining the molecular mechanism of IMPDH1-associated blindness.
Collapse
|
18
|
Zaffagni M, Harris JM, Patop IL, Pamudurti NR, Nguyen S, Kadener S. SARS-CoV-2 Nsp14 mediates the effects of viral infection on the host cell transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.07.02.450964. [PMID: 35194610 PMCID: PMC8863146 DOI: 10.1101/2021.07.02.450964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Viral infection involves complex set of events orchestrated by multiple viral proteins. To identify functions of SARS-CoV-2 proteins, we performed transcriptomic analyses of cells expressing individual viral proteins. Expression of Nsp14, a protein involved in viral RNA replication, provoked a dramatic remodeling of the transcriptome that strongly resembled that observed following SARS-CoV-2 infection. Moreover, Nsp14 expression altered the splicing of more than 1,000 genes and resulted in a dramatic increase in the number of circRNAs, which are linked to innate immunity. These effects were independent of the Nsp14 exonuclease activity and required the N7-guanine-methyltransferase domain of the protein. Activation of the NFkB pathway and increased expression of CXCL8 occurred early upon Nsp14 expression. We identified IMPDH2, which catalyzes the rate-limiting step of guanine nucleotides biosynthesis, as a key mediator of these effects. Nsp14 expression caused an increase in GTP cellular levels, and the effect of Nsp14 was strongly decreased in presence of IMPDH2 inhibitors. Together, our data demonstrate an unknown role for Nsp14 with implications for therapy.
Collapse
|
19
|
Cleghorn WM, Burrell AL, Giarmarco MM, Brock DC, Wang Y, Chambers ZS, Du J, Kollman JM, Brockerhoff SE. A highly conserved zebrafish IMPDH retinal isoform produces the majority of guanine and forms dynamic protein filaments in photoreceptor cells. J Biol Chem 2022; 298:101441. [PMID: 34813793 PMCID: PMC8688572 DOI: 10.1016/j.jbc.2021.101441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/18/2022] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) is a key regulatory enzyme in the de novo synthesis of the purine base guanine. Dominant mutations in human IMPDH1 cause photoreceptor degeneration for reasons that are unknown. Here, we sought to provide some foundational information on Impdh1a in the zebrafish retina. We found that in zebrafish, gene subfunctionalization due to ancestral duplication resulted in a predominant retinal variant expressed exclusively in rod and cone photoreceptors. This variant is structurally and functionally similar to the human IMPDH1 retinal variant and shares a reduced sensitivity to GTP-mediated inhibition. We also demonstrated that Impdh1a forms prominent protein filaments in vitro and in vivo in both rod and cone photoreceptor cell bodies, synapses, and to a lesser degree, in outer segments. These filaments changed length and cellular distribution throughout the day consistent with diurnal changes in both mRNA and protein levels. The loss of Impdh1a resulted in a substantial reduction of guanine levels, although cellular morphology and cGMP levels remained normal. Our findings demonstrate a significant role for IMPDH1 in photoreceptor guanine production and provide fundamental new information on the details of this protein in the zebrafish retina.
Collapse
Affiliation(s)
- Whitney M Cleghorn
- Department of Biochemistry, University of Washington, Seattle, Washington, USA; Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | | | - Daniel C Brock
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry, West Virginia University, Morgantown, West Virginia, USA
| | - Zachary S Chambers
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry, West Virginia University, Morgantown, West Virginia, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Susan E Brockerhoff
- Department of Biochemistry, University of Washington, Seattle, Washington, USA; Department of Ophthalmology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
20
|
Ahangari N, Munoz DG, Coulombe J, Gray DA, Engle EC, Cheng L, Woulfe J. Nuclear IMPDH Filaments in Human Gliomas. J Neuropathol Exp Neurol 2021; 80:944-954. [PMID: 34498062 PMCID: PMC8560559 DOI: 10.1093/jnen/nlab090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The analysis of nuclear morphology plays an important role in glioma diagnosis and grading. We previously described intranuclear rods (rods) labeled with the SDL.3D10 monoclonal antibody against class III beta-tubulin (TUBB3) in human ependymomas. In a cohort of adult diffuse gliomas, we identified nuclear rods in 71.1% of IDH mutant lower-grade gliomas and 13.7% of IDH wild-type glioblastomas (GBMs). The presence of nuclear rods was associated with significantly longer postoperative survival in younger (≤65) GBM patients. Consistent with this, nuclear rods were mutually exclusive with Ki67 staining and their prevalence in cell nuclei inversely correlated with the Ki67 proliferation index. In addition, rod-containing nuclei showed a relative depletion of lamin B1, suggesting a possible association with senescence. To gain insight into their functional significance, we addressed their antigenic properties. Using a TUBB3-null mouse model, we demonstrate that the SDL.3D10 antibody does not bind TUBB3 in rods but recognizes an unknown antigen. In the present study, we show that rods show immunoreactivity for the nucleotide synthesizing enzymes inosine monophosphate dehydrogenase (IMPDH) and cytidine triphosphate synthetase. By analogy with the IMPDH filaments that have been described previously, we postulate that rods regulate the activity of nucleotide-synthesizing enzymes in the nucleus by sequestration, with important implications for glioma behavior.
Collapse
Affiliation(s)
- Narges Ahangari
- From the Department of Pathology, St. Michael's Hospital, Toronto, Ontario, Canada
| | - David G Munoz
- From the Department of Pathology, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Josee Coulombe
- Center for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Douglas A Gray
- Center for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Elizabeth C Engle
- Departments of Neurology and Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Long Cheng
- Departments of Neurology and Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - John Woulfe
- Center for Cancer Therapeutics and Neurosciences, Ottawa Hospital Research Institute and Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
You HJ, You BC, Kim JK, Park JM, Song BS, Myung JK. Characterization of Proteins Regulated by Androgen and Protein Kinase a Signaling in VCaP Prostate Cancer Cells. Biomedicines 2021; 9:biomedicines9101404. [PMID: 34680521 PMCID: PMC8533394 DOI: 10.3390/biomedicines9101404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/25/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Androgen signaling via the androgen receptor (AR) is involved in normal prostate development and prostate cancer progression. In addition to androgen binding, a variety of protein kinases, including cyclic AMP-dependent protein kinase A (PKA), can activate the AR. Although hormone deprivation, especially that of androgen, continues to be an important strategy for treating prostate cancer patients, the disease ultimately progresses to castration-resistant prostate cancer (CRPC), despite a continuous hormone-deprived environment. To date, it remains unclear which pathways in this progression are active and targetable. Here, we performed a proteomic analysis of VCaP cells stimulated with androgen or forskolin to identify proteins specific for androgen-induced and androgen-bypassing signaling, respectively. Patterns of differentially expressed proteins were quantified, and eight proteins showing significant changes in expression were identified. Functional information, including a Gene Ontology analysis, revealed that most of these proteins are involved in metabolic processes and are associated with cancer. The mRNA and protein expression of selected proteins was validated, and functional correlations of identified proteins with signaling in VCaP cells were assessed by measuring metabolites related to each enzyme. These analyses offered new clues regarding effector molecules involved in prostate cancer development, insights that are supported by the demonstration of increased expression levels of the eight identified proteins in prostate cancer patients and assessments of the progression-free interval. Taken together, our findings show that aberrant levels of eight proteins reflect molecular changes that are significantly regulated by androgen and/or PKA signaling pathways, suggesting possible molecular mechanisms of CRPC.
Collapse
Affiliation(s)
- Hye-Jin You
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (H.-J.Y.); (B.-C.Y.)
- Department of Cancer Biomedical Science, National Cancer Center-Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (J.-M.P.); (B.-S.S.)
| | - Byong-Chul You
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (H.-J.Y.); (B.-C.Y.)
- Department of Cancer Biomedical Science, National Cancer Center-Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (J.-M.P.); (B.-S.S.)
| | - Jong-Kwang Kim
- Research Core Center, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea;
| | - Jae-Min Park
- Department of Cancer Biomedical Science, National Cancer Center-Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (J.-M.P.); (B.-S.S.)
| | - Bo-Seul Song
- Department of Cancer Biomedical Science, National Cancer Center-Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (J.-M.P.); (B.-S.S.)
| | - Jae-Kyung Myung
- Department of Cancer Biomedical Science, National Cancer Center-Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (J.-M.P.); (B.-S.S.)
- Correspondence: ; Tel.: +82-31-920-2746
| |
Collapse
|
22
|
Pan C, Li B, Simon MC. Moonlighting functions of metabolic enzymes and metabolites in cancer. Mol Cell 2021; 81:3760-3774. [PMID: 34547237 DOI: 10.1016/j.molcel.2021.08.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022]
Abstract
The growing field of tumor metabolism has greatly expanded our knowledge of metabolic reprogramming in cancer. Apart from their established roles, various metabolic enzymes and metabolites harbor non-canonical ("moonlighting") functions to support malignant transformation. In this article, we intend to review the current understanding of moonlighting functions of metabolic enzymes and related metabolites broadly existing in cancer cells by dissecting each major metabolic pathway and its regulation of cellular behaviors. Understanding these non-canonical functions may broaden the horizon of the cancer metabolism field and uncover novel therapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Chaoyun Pan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510080, China; Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Díaz-Rullo J, Rodríguez-Valdecantos G, Torres-Rojas F, Cid L, Vargas IT, González B, González-Pastor JE. Mining for Perchlorate Resistance Genes in Microorganisms From Sediments of a Hypersaline Pond in Atacama Desert, Chile. Front Microbiol 2021; 12:723874. [PMID: 34367123 PMCID: PMC8343002 DOI: 10.3389/fmicb.2021.723874] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 11/15/2022] Open
Abstract
Perchlorate is an oxidative pollutant toxic to most of terrestrial life by promoting denaturation of macromolecules, oxidative stress, and DNA damage. However, several microorganisms, especially hyperhalophiles, are able to tolerate high levels of this compound. Furthermore, relatively high quantities of perchlorate salts were detected on the Martian surface, and due to its strong hygroscopicity and its ability to substantially decrease the freezing point of water, perchlorate is thought to increase the availability of liquid brine water in hyper-arid and cold environments, such as the Martian regolith. Therefore, perchlorate has been proposed as a compound worth studying to better understanding the habitability of the Martian surface. In the present work, to study the molecular mechanisms of perchlorate resistance, a functional metagenomic approach was used, and for that, a small-insert library was constructed with DNA isolated from microorganisms exposed to perchlorate in sediments of a hypersaline pond in the Atacama Desert, Chile (Salar de Maricunga), one of the regions with the highest levels of perchlorate on Earth. The metagenomic library was hosted in Escherichia coli DH10B strain and exposed to sodium perchlorate. This technique allowed the identification of nine perchlorate-resistant clones and their environmental DNA fragments were sequenced. A total of seventeen ORFs were predicted, individually cloned, and nine of them increased perchlorate resistance when expressed in E. coli DH10B cells. These genes encoded hypothetical conserved proteins of unknown functions and proteins similar to other not previously reported to be involved in perchlorate resistance that were related to different cellular processes such as RNA processing, tRNA modification, DNA protection and repair, metabolism, and protein degradation. Furthermore, these genes also conferred resistance to UV-radiation, 4-nitroquinoline-N-oxide (4-NQO) and/or hydrogen peroxide (H2O2), other stress conditions that induce oxidative stress, and damage in proteins and nucleic acids. Therefore, the novel genes identified will help us to better understand the molecular strategies of microorganisms to survive in the presence of perchlorate and may be used in Mars exploration for creating perchlorate-resistance strains interesting for developing Bioregenerative Life Support Systems (BLSS) based on in situ resource utilization (ISRU).
Collapse
Affiliation(s)
- Jorge Díaz-Rullo
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Polytechnic School, University of Alcalá, Alcalá de Henares, Spain
| | - Gustavo Rodríguez-Valdecantos
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Faculty of Biological Sciences, Pontifical Catholic University of Chile, Santiago, Chile
| | - Felipe Torres-Rojas
- Department of Hydraulic and Environmental Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Cid
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Faculty of Biological Sciences, Pontifical Catholic University of Chile, Santiago, Chile
| | - Ignacio T. Vargas
- Department of Hydraulic and Environmental Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Desarrollo Urbano Sustentable (CEDEUS), Santiago, Chile
| | - Bernardo González
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Faculty of Biological Sciences, Pontifical Catholic University of Chile, Santiago, Chile
| | | |
Collapse
|
24
|
Muskhelishvili G, Sobetzko P, Mehandziska S, Travers A. Composition of Transcription Machinery and Its Crosstalk with Nucleoid-Associated Proteins and Global Transcription Factors. Biomolecules 2021; 11:biom11070924. [PMID: 34206477 PMCID: PMC8301835 DOI: 10.3390/biom11070924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022] Open
Abstract
The coordination of bacterial genomic transcription involves an intricate network of interdependent genes encoding nucleoid-associated proteins (NAPs), DNA topoisomerases, RNA polymerase subunits and modulators of transcription machinery. The central element of this homeostatic regulatory system, integrating the information on cellular physiological state and producing a corresponding transcriptional response, is the multi-subunit RNA polymerase (RNAP) holoenzyme. In this review article, we argue that recent observations revealing DNA topoisomerases and metabolic enzymes associated with RNAP supramolecular complex support the notion of structural coupling between transcription machinery, DNA topology and cellular metabolism as a fundamental device coordinating the spatiotemporal genomic transcription. We analyse the impacts of various combinations of RNAP holoenzymes and global transcriptional regulators such as abundant NAPs, on genomic transcription from this viewpoint, monitoring the spatiotemporal patterns of couplons—overlapping subsets of the regulons of NAPs and RNAP sigma factors. We show that the temporal expression of regulons is by and large, correlated with that of cognate regulatory genes, whereas both the spatial organization and temporal expression of couplons is distinctly impacted by the regulons of NAPs and sigma factors. We propose that the coordination of the growth phase-dependent concentration gradients of global regulators with chromosome configurational dynamics determines the spatiotemporal patterns of genomic expression.
Collapse
Affiliation(s)
- Georgi Muskhelishvili
- School of Natural Sciences, Agricultural University of Georgia, David Aghmashenebeli Alley 24, Tbilisi 0159, Georgia
- Correspondence:
| | - Patrick Sobetzko
- Department of Chromosome Biology, Philipps-Universität Marburg, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, 35043 Marburg, Germany;
| | - Sanja Mehandziska
- School of Engineering and Science, Campus Ring 1, Jacobs University Bremen, 28759 Bremen, Germany;
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
25
|
Zhang F, Yuan X, Sun H, Yin X, Gao Y, Zhang M, Jia Z, Yu M, Ying S, Xia H, Ju L, Xiao Y, Tao H, Lou J, Zhu L. A nontoxic dose of chrysotile can malignantly transform Met-5A cells, in which microRNA-28 has inhibitory effects. J Appl Toxicol 2021; 41:1879-1892. [PMID: 33890321 DOI: 10.1002/jat.4174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 11/11/2022]
Abstract
Chrysotile, which is classified as a class I carcinogen by the International Agency for Research on Cancer (IARC), has extensive application in the industry and can lead to lung or other cancers. However, whether chrysotile causes malignant mesothelioma and its molecular mechanism remain debatable. Thus, this study aimed to demonstrate the mesothelioma-inducing potential of chrysotile at the mesothelial cellular level and the function of microRNA-28 in malignantly transformed mesothelial MeT-5A cells. MeT-5A cells malignantly transformed by a nontoxic dose of chrysotile were named Asb-T, and miR-28 expression was downregulated in Asb-T cells. Restoration of miR-28 expression inhibited the proliferation, migration and invasion of Asb-T cells. We verified that IMPDH is a putative target of miR-28. The expression of IMPDH was significantly higher in Asb-T MeT-5A cells than in control cells, whereas the opposite trend was observed with miR-28 overexpression. Additionally, inhibition of IMPDH had similar effects as miR-28 overexpression. After miR-28 was elevated or IMPDH was inhibited, Ras activation was reduced, and its downstream pathways (the Erk and Akt signalling pathways) were inhibited. Surprisingly, the content of miR-28 in the blood of mesothelioma patients was higher than that in control subjects. Overall, nontoxic doses of chrysotile can cause malignant transformation of MeT-5A cells. Moreover, miR-28 inhibits the proliferation, migration and invasion of Asb-T MeT-5A cells, negatively regulates the expression of IMPDH through the Ras signalling pathway and may be an important therapeutic target.
Collapse
Affiliation(s)
- Fangfang Zhang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Xiuyuan Yuan
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Hongjing Sun
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianhong Yin
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanan Gao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Min Zhang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Zhenyu Jia
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Min Yu
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Shibo Ying
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Hailing Xia
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Li Ju
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Yun Xiao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - He Tao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Jianlin Lou
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Lijin Zhu
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
26
|
Wang J, Wu Y, Li Y, Wang Y, Shen F, Zhou J, Chen Y. Guanosine monophosphate synthase upregulation mediates cervical cancer progression by inhibiting the apoptosis of cervical cancer cells via the Stat3/P53 pathway. Int J Oncol 2021; 58:3. [PMID: 33649833 PMCID: PMC7891820 DOI: 10.3892/ijo.2021.5183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Guanosine monophosphate synthase (GMPS) participates in chromatin and gene regulation in multiple types of organisms, and is highly expressed in a variety of human malignancies. The purpose of the present study was to explore the expression of GMPS and its role in cervical cancer (CC), and to provide ideas for improving the clinical efficacy of CC treatment. In the present study, immunohistochemistry, reverse transcription-quantitative PCR analysis, Cell Counting Kit-8 assay, 5-ethynyl-2′-deoxyuridine assay, flow cytometry, western blotting and immunofluorescence assays were conducted to detect the expression of GMPS in normal cervical tissues, CC tissues, para-cancerous tissues and CC cell lines. Moreover, the present study detected the effect of GMPS knockdown on CC cell proliferation, clonal formation ability, aging and apoptosis, as well as on the expression levels of apoptosis-related proteins in tumor cells. The present results demonstrated that the expression level of GMPS in CC was significantly higher compared with that of adjacent tissues; the expression rate of GMPS in CC was 57.36%. GMPS expression was found to successively and gradually increase from that in normal cervical tissues, to that in cervical intraepithelial neoplasia and CC tissues. The abnormal expression of GMPS was positively associated with the degree of CC differentiation and the depth of early invasion. Small interfering (si) RNA knockdown of GMPS inhibited proliferation and colony formation, and promoted aging and apoptosis of CC cells. Furthermore, subcutaneous injection of GMPS-knockdown tumor cells in nude mice resulted in a decrease in the proliferative ability of the tumor. The animal experimental results showed that the tumor growth rate of the short hairpin (sh) RNA-GMPS group was significantly slower than that of the HeLa sh-negative control group. It was identified that GMPS may inhibit CC cell senescence and apoptosis via the Stat3/P53 molecular pathway. Collectively, the present results suggested that GMPS may be a marker of unfavorable prognosis of CC, and it may also be a potential therapeutic target for CC.
Collapse
Affiliation(s)
- Juan Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yuhong Wu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yan Li
- Department of Gynecology and Obstetrics, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Yamei Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Fangrong Shen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jinhua Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Youguo Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
27
|
Xu D, Shao F, Bian X, Meng Y, Liang T, Lu Z. The Evolving Landscape of Noncanonical Functions of Metabolic Enzymes in Cancer and Other Pathologies. Cell Metab 2021; 33:33-50. [PMID: 33406403 DOI: 10.1016/j.cmet.2020.12.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Key pathological, including oncogenic, signaling pathways regulate the canonical functions of metabolic enzymes that serve the cellular metabolic needs. Importantly, these signaling pathways also confer a large number of metabolic enzymes to have noncanonical or nonmetabolic functions that are referred to as "moonlighting" functions. In this review, we highlight how aberrantly regulated metabolic enzymes with such activities play critical roles in the governing of a wide spectrum of instrumental cellular activities, including gene expression, cell-cycle progression, DNA repair, cell proliferation, survival, apoptosis, and tumor microenvironment remodeling, thereby promoting the pathologic progression of disease, including cancer.
Collapse
Affiliation(s)
- Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Fei Shao
- The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, Shandong 266003, China
| | - Xueli Bian
- The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, Shandong 266003, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Zhejiang University Cancer Center, Hangzhou 310029, China.
| |
Collapse
|
28
|
Yousefi H, Mashouri L, Okpechi SC, Alahari N, Alahari SK. Repurposing existing drugs for the treatment of COVID-19/SARS-CoV-2 infection: A review describing drug mechanisms of action. Biochem Pharmacol 2021; 183:114296. [PMID: 33191206 PMCID: PMC7581400 DOI: 10.1016/j.bcp.2020.114296] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023]
Abstract
The outbreak of a novel coronavirus (SARS-CoV-2) has caused a major public health concern across the globe. SARS-CoV-2 is the seventh coronavirus that is known to cause human disease. As of September 2020, SARS-CoV-2 has been reported in 213 countries and more than 31 million cases have been confirmed, with an estimated mortality rate of ∼3%. Unfortunately, a drug or vaccine is yet to be discovered to treat COVID-19. Thus, repurposing of existing cancer drugs will be a novel approach in treating COVID-19 patients. These drugs target viral replication cycle, viral entry and translocation to the nucleus. Some can enhance innate antiviral immune response as well. Hence this review focuses on comprehensive list of 22 drugs that work against COVID-19 infection. These drugs include fingolimod, colchicine, N4-hydroxycytidine, remdesivir, methylprednisone, oseltamivir, icatibant, perphanizine, viracept, emetine, homoharringtonine, aloxistatin, ribavirin, valrubicin, famotidine, almitrine, amprenavir, hesperidin, biorobin, cromolyn sodium, and antibodies- tocilzumab and sarilumab. Also, we provide a list of 31 drugs that are predicted to function against SARS-CoV-2 infection. In summary, we provide succinct overview of various therapeutic modalities. Among these 53 drugs, based on various clinical trials and literature, remdesivir, nelfinavir, methylpredinosolone, colchicine, famotidine and emetine may be used for COVID-19. SIGNIFICANCE: It is of utmost important priority to develop novel therapies for COVID-19. Since the effect of SARS-CoV-2 is so severe, slowing the spread of diseases will help the health care system, especially the number of visits to Intensive Care Unit (ICU) of any country. Several clinical trials are in works around the globe. Moreover, NCI developed a recent and robust response to COVID-19 pandemic. One of the NCI's goals is to screen cancer related drugs for identification of new therapies for COVID-19. https://www.cancer.gov/news-events/cancer-currents-blog/2020/covid-19-cancer-nci-response?cid=eb_govdel.
Collapse
Affiliation(s)
- Hassan Yousefi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA
| | - Ladan Mashouri
- Department of Medical Sciences, University of Arkansas, Little Rock, AK, USA
| | - Samuel C Okpechi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA
| | - Nikhilesh Alahari
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA; Stanley Scott Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
29
|
Xu H, Ma H, Zha L, Li Q, Yang G, Pan H, Fei X, Xu X, Xing C, Zhang L. IMPDH2 promotes cell proliferation and epithelial-mesenchymal transition of non-small cell lung cancer by activating the Wnt/β-catenin signaling pathway. Oncol Lett 2020; 20:219. [PMID: 32963625 DOI: 10.3892/ol.2020.12082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Inosine 5'-monophosphate dehydrogenase type II (IMPDH2) is an important enzyme involved in the biosynthesis of guanine nucleotides. Therefore, the present study aimed to investigate the potential and molecular mechanism of IMPDH2 in non-small cell lung cancer (NSCLC). Reverse transcription-quantitative PCR and immunohistochemistry were used to detect IMPDH2 expression levels in NSCLC tissues and cells. A Cell Counting Kit-8 assay, colony formation assay, flow cytometry, wound healing, Transwell assay, western blotting and immunofluorescence analyses were utilized to identify the effects of upregulated IMPDH2 levels on NSCLC cells. The expression levels of IMPDH2 have been discovered to be upregulated in several types of human cancer; however, the biological and clinical value of IMPDH2 in NSCLC remains unclear. The results of the present study revealed that the expression levels of IMPDH2 were significantly upregulated in NSCLC tissues. Furthermore, the genetic knockdown of IMPDH2 significantly hindered the proliferation, apoptosis, invasion, migration and epithelial-mesenchymal transition of NSCLC cells, whereas the overexpression of IMPDH2 achieved the opposite results. In addition, the results of the present study demonstrated that the inhibition of IMPDH2 inhibited the Wnt/β-catenin signaling pathway by decreasing the expression levels of Wnt3a and β-catenin, while increasing the expression levels of phosphorylated glycogen synthase kinase-3β in NSCLC cells. These findings of the present study indicated that IMPDH2 may promote NSCLC progression by activating the Wnt/β-catenin signaling pathway, which suggested that IMPDH2 may be a novel therapeutic target for patients with NSCLC.
Collapse
Affiliation(s)
- Hao Xu
- Department of Respiratory, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Hongda Ma
- Department of Respiratory, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Lifen Zha
- Department of Respiratory, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Qian Li
- Department of Respiratory, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Guanghui Yang
- Department of Respiratory, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Huiming Pan
- Department of Respiratory, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Xiangping Fei
- Department of Respiratory, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Xingxiang Xu
- Department of Respiratory, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Chen Xing
- Department of Respiratory, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Ladi Zhang
- Department of Respiratory, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| |
Collapse
|
30
|
Calise SJ, Chan EKL. Anti-rods/rings autoantibody and IMPDH filaments: an update after fifteen years of discovery. Autoimmun Rev 2020; 19:102643. [PMID: 32805424 DOI: 10.1016/j.autrev.2020.102643] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
Autoantibodies to unknown subcellular rod and ring-shaped structures were first discovered in sera from hepatitis C patients in 2005. Early studies showed a strong association between these anti-rods/rings antibodies (anti-RR) and the standard of care interferon-α plus ribavirin combination therapy (IFN/RBV), suggesting that anti-RR are drug-induced autoantibodies. In the context of hepatitis C, anti-RR have been linked with relapse from or lack of response to IFN/RBV in some patient cohorts. However, examples of anti-RR in other diseases and healthy individuals have also been reported over the years, although anti-RR remains a rare autoantibody response in general. The advent of new direct-acting antiviral drugs for chronic hepatitis C and studies of anti-RR from different parts of the world are also beginning to change the perception of anti-RR. The nucleotide biosynthetic enzyme inosine monophosphate dehydrogenase (IMPDH) has been identified as the major autoantigen recognized by anti-RR. Coincidentally, the assembly of IMPDH into micron-scale rod and ring-shaped structures was discovered around the same time as anti-RR. Knowledge of the fundamental biological properties and cellular functions of these structures, referred to as "IMPDH filaments" by cell biologists, has advanced in parallel to anti-RR antibodies. Recent studies have revealed that IMPDH filament assembly is a mechanism to prevent feedback inhibition of IMPDH and is therefore important for the increased nucleotide production required in hyperproliferating cells, like activated T cells. Fifteen years later, we review the history and current knowledge in both the anti-RR autoantibody and IMPDH filament fields. TAKE-HOME MESSAGE: Anti-rods/rings are recognized as an example of a drug-induced autoantibody in hepatitis C patients treated with interferon and ribavirin, although new studies suggest anti-rods/rings may be detected in other contexts and may depend on unknown environmental or genetic factors in different populations. Recent data suggest that the assembly of IMPDH into rod and ring structures, the targets of anti-rods/rings autoantibody, is a mechanism for hyperproliferating cells, like activated T cells, to maintain increased guanine nucleotide levels to support rapid cell division.
Collapse
Affiliation(s)
- S John Calise
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610-0424, USA.
| | - Edward K L Chan
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610-0424, USA.
| |
Collapse
|
31
|
Chong YC, Toh TB, Chan Z, Lin QXX, Thng DKH, Hooi L, Ding Z, Shuen T, Toh HC, Dan YY, Bonney GK, Zhou L, Chow P, Wang Y, Benoukraf T, Chow EKH, Han W. Targeted Inhibition of Purine Metabolism Is Effective in Suppressing Hepatocellular Carcinoma Progression. Hepatol Commun 2020; 4:1362-1381. [PMID: 32923839 PMCID: PMC7471427 DOI: 10.1002/hep4.1559] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor‐specific metabolic rewiring, acquired to confer a proliferative and survival advantage over nontransformed cells, represents a renewed focus in cancer therapy development. Hepatocellular carcinoma (HCC), a malignancy that has hitherto been resistant to compounds targeting oncogenic signaling pathways, represents a candidate cancer to investigate the efficacy of selectively antagonizing such adaptive metabolic reprogramming. To this end, we sought to characterize metabolic changes in HCC necessary for tumorigenesis. We analyzed gene expression profiles in three independent large‐scale patient cohorts who had HCC. We identified a commonly deregulated purine metabolic signature in tumors with the extent of purine biosynthetic enzyme up‐regulation correlated with tumor grade and a predictor of clinical outcome. The functional significance of enhanced purine metabolism as a hallmark in human HCC was then validated using a combination of HCC cell lines, patient‐derived xenograft (PDX) organoids, and mouse models. Targeted ablation of purine biosynthesis by knockdown of the rate‐limiting enzyme inosine‐5′‐monophosphate dehydrogenase (IMPDH) or using the drug mycophenolate mofetil (MMF) reduced HCC proliferation in vitro and decreased the tumor burden in vivo. In comparing the sensitivities of PDX tumor organoids to MMF therapy, we found that HCC tumors defined by high levels of IMPDH and guanosine nucleosides were most susceptible to treatment. Mechanistically, a phosphoinositide 3‐kinase (PI3K)–E2F transcription factor 1 (E2F1) axis coordinated purine biosynthetic enzyme expression, deregulation of which altered the activity of mitogen‐activated protein kinase/RAS signaling. Simultaneously abolishing PI3K signaling and IMPDH activity with clinically approved inhibitors resulted in greatest efficacy in reducing tumor growth in a PDX mouse model. Conclusion: Enhanced purine metabolic activity regulated by PI3K pathway‐dependent activation of E2F1 promotes HCC carcinogenesis, suggesting the potential for targeting purine metabolic reprogramming as a precision therapeutic strategy for patients with HCC.
Collapse
Affiliation(s)
- Yong Chun Chong
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research Singapore Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health National University of Singapore Singapore Singapore.,Cancer Science Institute of Singapore National University of Singapore Singapore Singapore
| | - Zhiling Chan
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research Singapore Singapore
| | - Quy Xiao Xuan Lin
- Cancer Science Institute of Singapore National University of Singapore Singapore Singapore
| | - Dexter Kai Hao Thng
- Cancer Science Institute of Singapore National University of Singapore Singapore Singapore
| | - Lissa Hooi
- Cancer Science Institute of Singapore National University of Singapore Singapore Singapore
| | - Zhaobing Ding
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research Singapore Singapore
| | - Timothy Shuen
- Division of Medical Oncology National Cancer Center Singapore Singapore Singapore
| | - Han Chong Toh
- Division of Medical Oncology National Cancer Center Singapore Singapore Singapore
| | - Yock Young Dan
- Division of Gastroenterology and Hepatology National University Health System Singapore Singapore
| | - Glenn Kunnath Bonney
- Division of Hepatobiliary and Liver Transplantation Surgery National University Health System Singapore Singapore
| | - Lei Zhou
- Department of Medicine National University of Singapore Singapore Singapore
| | - Pierce Chow
- Department of Hepatopancreatobiliary and Transplant Surgery Singapore General Hospital Singapore Singapore
| | - Yulan Wang
- Singapore Phenome Center Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
| | - Touati Benoukraf
- Cancer Science Institute of Singapore National University of Singapore Singapore Singapore.,Discipline of Genetics Faculty of Medicine Memorial University of Newfoundland St. John's Canada
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore National University of Singapore Singapore Singapore
| | - Weiping Han
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research Singapore Singapore
| |
Collapse
|
32
|
The functional impact of the C/N-terminal extensions of the mouse retinal IMPDH1 isoforms: a kinetic evaluation. Mol Cell Biochem 2019; 465:155-164. [PMID: 31838626 DOI: 10.1007/s11010-019-03675-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
Mutations in the retinal inosine monophosphate dehydrogenase1 (IMPDH1) gene is believed to be one cause of retinitis pigmentosa (RP). The main structural difference between the mutation-susceptible retinal isoforms with canonical one resides in the C- and N-terminal extensions. There are limited studies on the structure and function of terminal peptide extensions of the IMPDH1 retinal isoforms. Using recombinant murine IMPDH1 (mH1), we evaluated the kinetics of the retinal isoforms along with inhibition by some of the purine nucleotides. Molecular modeling tools were also applied to study the probable effect(s) of the terminal peptide tails on the function of the retinal isoforms. Molecular dynamic simulations indicated the possible impact of the end-terminal segments on the enzyme function through interactions with the enzyme's finger domain, affecting its critical pseudo barrel structure. The higher experimentally-determined Km and Ki values of the retinal mIMPDH1 (546) and mIMPDH1 (603) relative to that of the canonical isoform, mIMPDH1 (514), might clearly be due to these interactions. Furthermore and despite of the canonical isoform, the retinal isoforms of mH1 exhibited no NAD+ substrate inhibition. The resent data would certainly provide the ground for future evaluation of the physiological significance of these variations.
Collapse
|
33
|
Park CK, Horton NC. Structures, functions, and mechanisms of filament forming enzymes: a renaissance of enzyme filamentation. Biophys Rev 2019; 11:927-994. [PMID: 31734826 PMCID: PMC6874960 DOI: 10.1007/s12551-019-00602-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Filament formation by non-cytoskeletal enzymes has been known for decades, yet only relatively recently has its wide-spread role in enzyme regulation and biology come to be appreciated. This comprehensive review summarizes what is known for each enzyme confirmed to form filamentous structures in vitro, and for the many that are known only to form large self-assemblies within cells. For some enzymes, studies describing both the in vitro filamentous structures and cellular self-assembly formation are also known and described. Special attention is paid to the detailed structures of each type of enzyme filament, as well as the roles the structures play in enzyme regulation and in biology. Where it is known or hypothesized, the advantages conferred by enzyme filamentation are reviewed. Finally, the similarities, differences, and comparison to the SgrAI endonuclease system are also highlighted.
Collapse
Affiliation(s)
- Chad K. Park
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| | - Nancy C. Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
34
|
Camici M, Garcia-Gil M, Pesi R, Allegrini S, Tozzi MG. Purine-Metabolising Enzymes and Apoptosis in Cancer. Cancers (Basel) 2019; 11:cancers11091354. [PMID: 31547393 PMCID: PMC6769685 DOI: 10.3390/cancers11091354] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 12/17/2022] Open
Abstract
The enzymes of both de novo and salvage pathways for purine nucleotide synthesis are regulated to meet the demand of nucleic acid precursors during proliferation. Among them, the salvage pathway enzymes seem to play the key role in replenishing the purine pool in dividing and tumour cells that require a greater amount of nucleotides. An imbalance in the purine pools is fundamental not only for preventing cell proliferation, but also, in many cases, to promote apoptosis. It is known that tumour cells harbour several mutations that might lead to defective apoptosis-inducing pathways, and this is probably at the basis of the initial expansion of the population of neoplastic cells. Therefore, knowledge of the molecular mechanisms that lead to apoptosis of tumoural cells is key to predicting the possible success of a drug treatment and planning more effective and focused therapies. In this review, we describe how the modulation of enzymes involved in purine metabolism in tumour cells may affect the apoptotic programme. The enzymes discussed are: ectosolic and cytosolic 5'-nucleotidases, purine nucleoside phosphorylase, adenosine deaminase, hypoxanthine-guanine phosphoribosyltransferase, and inosine-5'-monophosphate dehydrogenase, as well as recently described enzymes particularly expressed in tumour cells, such as deoxynucleoside triphosphate triphosphohydrolase and 7,8-dihydro-8-oxoguanine triphosphatase.
Collapse
Affiliation(s)
- Marcella Camici
- Dipartimento di Biologia, Unità di Biochimica, Via S. Zeno 51, 56127 Pisa, Italy.
| | - Mercedes Garcia-Gil
- Dipartimento di Biologia, Unità di Fisiologia Generale, Via S. Zeno 31, 56127 Pisa, Italy
| | - Rossana Pesi
- Dipartimento di Biologia, Unità di Biochimica, Via S. Zeno 51, 56127 Pisa, Italy
| | - Simone Allegrini
- Dipartimento di Biologia, Unità di Biochimica, Via S. Zeno 51, 56127 Pisa, Italy
| | - Maria Grazia Tozzi
- Dipartimento di Biologia, Unità di Biochimica, Via S. Zeno 51, 56127 Pisa, Italy
| |
Collapse
|
35
|
Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat Rev Mol Cell Biol 2019; 19:563-578. [PMID: 29930302 DOI: 10.1038/s41580-018-0029-7] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Metabolism and gene expression, which are two fundamental biological processes that are essential to all living organisms, reciprocally regulate each other to maintain homeostasis and regulate cell growth, survival and differentiation. Metabolism feeds into the regulation of gene expression via metabolic enzymes and metabolites, which can modulate chromatin directly or indirectly - through regulation of the activity of chromatin trans-acting proteins, including histone-modifying enzymes, chromatin-remodelling complexes and transcription regulators. Deregulation of these metabolic activities has been implicated in human diseases, prominently including cancer.
Collapse
|
36
|
Matsumoto T, Jimi S, Migita K, Terada K, Mori M, Takamatsu Y, Suzumiya J, Hara S. FF-10501 induces caspase-8-mediated apoptotic and endoplasmic reticulum stress-mediated necrotic cell death in hematological malignant cells. Int J Hematol 2019; 110:606-617. [PMID: 31407254 DOI: 10.1007/s12185-019-02722-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 02/08/2023]
Abstract
FF-10501 is a novel inhibitor of inosine monophosphate dehydrogenase (IMPDH). Clinical trials of FF-10501 for myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are currently being conducted in the United States. Although it has been shown that FF-10501 induces apoptosis in hematological malignant cells, the intracellular mechanisms of this effect have not been characterized. We conducted an in vitro study to elucidate the mechanisms of FF-10501-induced cell death using 12 hematological malignant cell lines derived from myeloid and lymphoid malignancies. FF-10501 suppressed the growth of each cell line in a dose-dependent manner. However, the clinically relevant dose (40 μM) of FF-10501 induced cell death in three cell lines (MOLM-13, OCI-AML3, and MOLT-3). Investigation of the cell death mechanism suggested that FF-10501 induces both apoptotic and necrotic cell death. FF-10501-induced apoptosis was mediated by caspase-8 activation followed by activation of the mitochondrial pathway in MOLM-13 and MOLT-3 cells. FF-10501 induced necrotic cell death via endoplasmic reticulum stress in OCI-AML3 cells. The present study is the first to identify intracellular pathways involved in FF-10501-induced cell death.
Collapse
Affiliation(s)
- Taichi Matsumoto
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jounan, Fukuoka, 814-0180, Japan.
| | - Shiro Jimi
- Central Laboratory of Pathology and Morphology, Department of Medicine, Fukuoka University, Fukuoka, Japan
| | - Keisuke Migita
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jounan, Fukuoka, 814-0180, Japan
| | - Kazuki Terada
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yasushi Takamatsu
- Division of Medical Oncology, Hematology, and Infectious Diseases, Department of Medicine, Fukuoka University, Fukuoka, Japan
| | - Junji Suzumiya
- Department of Oncology/Hematology, Shimane University Hospital, Shimane, Japan
| | - Shuuji Hara
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jounan, Fukuoka, 814-0180, Japan
| |
Collapse
|
37
|
Oleuropein-Induced Apoptosis Is Mediated by Mitochondrial Glyoxalase 2 in NSCLC A549 Cells: A Mechanistic Inside and a Possible Novel Nonenzymatic Role for an Ancient Enzyme. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8576961. [PMID: 31428230 PMCID: PMC6679873 DOI: 10.1155/2019/8576961] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 01/21/2023]
Abstract
Oleuropein (OP) is a bioactive compound derived from plants of the genus Oleaceae exhibiting antitumor properties in several human cancers, including non-small-cell lung cancer (NSCLC). Recent evidence suggests that OP has proapoptotic effects on NSCLC cells via the mitochondrial apoptotic pathway. However, the exact molecular mechanisms behind the apoptogenic action of OP in NSCLC are still largely unknown. Glyoxalase 2 (Glo2) is an ancient enzyme belonging to the glyoxalase system involved in the detoxification of glycolysis-derived methylglyoxal. However, emerging evidence suggests that Glo2 may have also nonenzymatic roles in some malignant cells. In the present study, we evaluated whether and how Glo2 participated in the proapoptotic effects of OP in NSCLC A549 cells. Our results indicate that OP is able to induce apoptosis in A549 cells through the upregulation of mitochondrial Glo2 (mGlo2), mediated by the superoxide anion and Akt signaling pathway. Moreover, our data shows that the proapoptotic role of mGlo2, observed following OP exposure, occurs via the interaction of mGlo2 with the proapoptotic Bax protein. Conversely, OP does not alter the behavior of nonmalignant human BEAS-2B cells or mGlo2 expression, thus suggesting a specific anticancer role for this bioactive compound in NSCLC. Our data identify a novel pathway through which OP exerts a proapoptotic effect in NSCLC and suggest, for the first time, a novel, nonenzymatic antiapoptotic role for this ancient enzyme in NSCLC.
Collapse
|
38
|
Genome Editing as a Treatment for the Most Prevalent Causative Genes of Autosomal Dominant Retinitis Pigmentosa. Int J Mol Sci 2019; 20:ijms20102542. [PMID: 31126147 PMCID: PMC6567127 DOI: 10.3390/ijms20102542] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
: Inherited retinal dystrophies (IRDs) are a clinically and genetically heterogeneous group of diseases with more than 250 causative genes. The most common form is retinitis pigmentosa. IRDs lead to vision impairment for which there is no universal cure. Encouragingly, a first gene supplementation therapy has been approved for an autosomal recessive IRD. However, for autosomal dominant IRDs, gene supplementation therapy is not always pertinent because haploinsufficiency is not the only cause. Disease-causing mechanisms are often gain-of-function or dominant-negative, which usually require alternative therapeutic approaches. In such cases, genome-editing technology has raised hopes for treatment. Genome editing could be used to i) invalidate both alleles, followed by supplementation of the wild type gene, ii) specifically invalidate the mutant allele, with or without gene supplementation, or iii) to correct the mutant allele. We review here the most prevalent genes causing autosomal dominant retinitis pigmentosa and the most appropriate genome-editing strategy that could be used to target their different causative mutations.
Collapse
|
39
|
Hesketh A, Oliver SG. High-energy guanine nucleotides as a signal capable of linking growth to cellular energy status via the control of gene transcription. Curr Genet 2019; 65:893-897. [PMID: 30937517 PMCID: PMC6620469 DOI: 10.1007/s00294-019-00963-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022]
Abstract
This mini-review considers the idea that guanylate nucleotide energy charge acts as an integrative signal for the regulation of gene expression in eukaryotic cells and discusses possible routes for that signal's transduction. Gene expression is intimately linked with cell nutrition and diverse signaling systems serve to coordinate the synthesis of proteins required for growth and proliferation with the prevailing cellular nutritional status. Using short pathways for the inducible and futile consumption of ATP or GTP in engineered cells of Saccharomyces cerevisiae, we have recently shown that GTP levels can also play a role in determining how genes act to respond to changes in cellular energy supply. This review aims to interpret the importance of GTP as an integrative signal in the context of an increasing body of evidence indicating the spatio-temporal complexity of cellular de novo purine nucleotide biosynthesis.
Collapse
Affiliation(s)
- Andy Hesketh
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK
| | - Stephen G Oliver
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| |
Collapse
|
40
|
Keppeke GD, Chang CC, Peng M, Chen LY, Lin WC, Pai LM, Andrade LEC, Sung LY, Liu JL. IMP/GTP balance modulates cytoophidium assembly and IMPDH activity. Cell Div 2018; 13:5. [PMID: 29946345 PMCID: PMC6004095 DOI: 10.1186/s13008-018-0038-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Background Inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme in de novo GTP biosynthesis, plays an important role in cell metabolism and proliferation. It has been demonstrated that IMPDH can aggregate into a macrostructure, termed the cytoophidium, in mammalian cells under a variety of conditions. However, the regulation and function of the cytoophidium are still elusive. Results In this study, we report that spontaneous filamentation of IMPDH is correlated with rapid cell proliferation. Intracellular IMP accumulation promoted cytoophidium assembly, whereas elevated GTP level triggered disassociation of aggregates. By using IMPDH2 CBS domain mutant cell models, which are unable to form the cytoophidium, we have determined that the cytoophidium is of the utmost importance for maintaining the GTP pool and normal cell proliferation in the condition that higher IMPDH activity is required. Conclusions Together, our results suggest a novel mechanism whereby cytoophidium assembly upregulates IMPDH activity and mediates guanine nucleotide homeostasis. Electronic supplementary material The online version of this article (10.1186/s13008-018-0038-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gerson Dierley Keppeke
- 1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT UK
| | - Chia Chun Chang
- 1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT UK.,2Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC
| | - Min Peng
- 2Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC
| | - Li-Yu Chen
- 1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT UK
| | - Wei-Cheng Lin
- 3Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, 333 Taiwan, ROC
| | - Li-Mei Pai
- 3Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, 333 Taiwan, ROC.,4Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Tao-Yuan, 333 Taiwan, ROC.,5Department of Biochemistry, College of Medicine, Chang Gung University, Tao-Yuan, 333 Taiwan, ROC
| | - Luis Eduardo Coelho Andrade
- 6Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, SP 04023-062 Brazil
| | - Li-Ying Sung
- 2Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC.,7Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan, ROC
| | - Ji-Long Liu
- 1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT UK.,8School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| |
Collapse
|
41
|
Chacko S, Boshoff HIM, Singh V, Ferraris DM, Gollapalli DR, Zhang M, Lawson AP, Pepi MJ, Joachimiak A, Rizzi M, Mizrahi V, Cuny GD, Hedstrom L. Expanding Benzoxazole-Based Inosine 5'-Monophosphate Dehydrogenase (IMPDH) Inhibitor Structure-Activity As Potential Antituberculosis Agents. J Med Chem 2018; 61:4739-4756. [PMID: 29746130 DOI: 10.1021/acs.jmedchem.7b01839] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
New drugs and molecular targets are urgently needed to address the emergence and spread of drug-resistant tuberculosis. Mycobacterium tuberculosis ( Mtb) inosine 5'-monophosphate dehydrogenase 2 ( MtbIMPDH2) is a promising yet controversial potential target. The inhibition of MtbIMPDH2 blocks the biosynthesis of guanine nucleotides, but high concentrations of guanine can potentially rescue the bacteria. Herein we describe an expansion of the structure-activity relationship (SAR) for the benzoxazole series of MtbIMPDH2 inhibitors and demonstrate that minimum inhibitory concentrations (MIC) of ≤1 μM can be achieved. The antibacterial activity of the most promising compound, 17b (Q151), is derived from the inhibition of MtbIMPDH2 as demonstrated by conditional knockdown and resistant strains. Importantly, guanine does not change the MIC of 17b, alleviating the concern that guanine salvage can protect Mtb in vivo. These findings suggest that MtbIMPDH2 is a vulnerable target for tuberculosis.
Collapse
Affiliation(s)
| | - Helena I M Boshoff
- Tuberculosis Research Section , National Institute of Allergy and Infectious Diseases , Bethesda , Maryland 20892 , United States
| | - Vinayak Singh
- Department of Drug Discovery and Development & Institute of Infectious Disease and Molecular Medicine , H3D Drug Discovery and Development Centre, University of Cape Town , Rondebosch , Cape Town 7701 , South Africa
| | - Davide M Ferraris
- Dipartimento di Scienze del Farmaco , Universitá del Piemonte Orientale , Via Bovio 6 , 28100 Novara , Italy
| | | | | | | | | | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases and Department of Biochemistry and Molecular Biology , University of Chicago , Chicago , Illinois 60557 , United States.,Structural Biology Center, Biosciences , Argonne National Laboratory , 9700 S. Cass Avenue, Argonne , Illinois 60439 , United States
| | - Menico Rizzi
- Dipartimento di Scienze del Farmaco , Universitá del Piemonte Orientale , Via Bovio 6 , 28100 Novara , Italy
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology , University of Cape Town , Anzio Road , Observatory 7925 , South Africa
| | - Gregory D Cuny
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy , University of Houston , Health Building 2, 4849 Calhoun Road , Houston , Texas 77204 , United States
| | | |
Collapse
|
42
|
Snaebjornsson MT, Schulze A. Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways. Exp Mol Med 2018; 50:1-16. [PMID: 29657328 PMCID: PMC5938058 DOI: 10.1038/s12276-018-0065-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/25/2022] Open
Abstract
The metabolic rewiring that occurs during cell transformation is a hallmark of cancer. It is diverse in different cancers as it reflects different combinations of oncogenic drivers, tumor suppressors, and the microenvironment. Metabolic rewiring is essential to cancer as it enables uncontrolled proliferation and adaptation to the fluctuating availability of nutrients and oxygen caused by poor access to the vasculature due to tumor growth and a foreign microenvironment encountered during metastasis. Increasing evidence now indicates that the metabolic state in cancer cells also plays a causal role in tumor growth and metastasis, for example through the action of oncometabolites, which modulate cell signaling and epigenetic pathways to promote malignancy. In addition to altering the metabolic state in cancer cells, some multifunctional enzymes possess non-metabolic functions that also contribute to cell transformation. Some multifunctional enzymes that are highly expressed in cancer, such as pyruvate kinase M2 (PKM2), have non-canonical functions that are co-opted by oncogenic signaling to drive proliferation and inhibit apoptosis. Other multifunctional enzymes that are frequently downregulated in cancer, such as fructose-bisphosphatase 1 (FBP1), are tumor suppressors, directly opposing mitogenic signaling via their non-canonical functions. In some cases, the enzymatic and non-canonical roles of these enzymes are functionally linked, making the modulation of non-metabolic cellular processes dependent on the metabolic state of the cell.
Collapse
Affiliation(s)
- Marteinn T Snaebjornsson
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, Josef-Schneider Strasse 6, 97080, Würzburg, Germany
| | - Almut Schulze
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany. .,Comprehensive Cancer Center Mainfranken, Josef-Schneider Strasse 6, 97080, Würzburg, Germany.
| |
Collapse
|
43
|
Sociale M, Wulf AL, Breiden B, Klee K, Thielisch M, Eckardt F, Sellin J, Bülow MH, Löbbert S, Weinstock N, Voelzmann A, Schultze J, Sandhoff K, Bauer R. Ceramide Synthase Schlank Is a Transcriptional Regulator Adapting Gene Expression to Energy Requirements. Cell Rep 2018; 22:967-978. [DOI: 10.1016/j.celrep.2017.12.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/10/2017] [Accepted: 12/25/2017] [Indexed: 10/18/2022] Open
|
44
|
Pua KH, Stiles DT, Sowa ME, Verdine GL. IMPDH2 Is an Intracellular Target of the Cyclophilin A and Sanglifehrin A Complex. Cell Rep 2017; 18:432-442. [PMID: 28076787 DOI: 10.1016/j.celrep.2016.12.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/21/2016] [Accepted: 12/10/2016] [Indexed: 11/16/2022] Open
Abstract
Natural products have demonstrated utility in the clinic and can also act as probes to understand complex cellular pathways. Sanglifehrin A (SFA) is a mixed polyketide and non-ribosomal peptide synthase natural product with sub-nano-molar affinity for its receptor cyclophilin A (PPIA). It has been shown to behave in vitro as an immune suppressant. Here, we identify inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) as an intracellular target of the PPIA-SFA binary complex. The formation of this ternary complex does not inhibit the enzymatic activity of IMPDH2. Rather, ternary complex formation modulates cell growth through interaction with the cystathionine-β-synthase (CBS) domain of IMPDH2. We further demonstrate that the SFA complex is highly isoform selective for IMPDH2 (versus IMPDH1). This work reveals a role for the CBS domains of IMPDH2 in cellular proliferation, suggesting a more complex role than previously suspected for IMPDH2 in T cell activation and proliferation.
Collapse
Affiliation(s)
- Khian Hong Pua
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Warp Drive Bio, Cambridge, MA 02139, USA
| | - Dylan T Stiles
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Warp Drive Bio, Cambridge, MA 02139, USA
| | - Mathew E Sowa
- Warp Drive Bio, Cambridge, MA 02139, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gregory L Verdine
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Warp Drive Bio, Cambridge, MA 02139, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
45
|
Antognelli C, Ferri I, Bellezza G, Siccu P, Love HD, Talesa VN, Sidoni A. Glyoxalase 2 drives tumorigenesis in human prostate cells in a mechanism involving androgen receptor and p53-p21 axis. Mol Carcinog 2017; 56:2112-2126. [PMID: 28470764 DOI: 10.1002/mc.22668] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/26/2017] [Accepted: 05/01/2017] [Indexed: 12/20/2022]
Abstract
Glyoxalase 2 (Glo2), a metabolic enzyme, is overexpressed in some human cancers which suggests this enzyme may play a role in human tumorigenesis. In prostate cancer (PCa), the role of Glo2 has been scarcely investigated and there are no studies addressing a causative involvement of this protein in this neoplasia. Here, we examined the immunohistochemical profile of Glo2 in human PCa and benign adjacent tissues and investigated Glo2 involvement in PCa development in human prostate cell lines. PCa and matched adjacent normal tissues were obtained from paraffin sections of primary PCa from 20 patients who had undergone radical prostatectomy. Histopathological diagnosis was confirmed for each sample. Glo2 expression analysis was performed by immunohistochemistry in prostate tissues, and by qRT-PCR and immunoblotting in prostate cell lines. The causative and mechanistic role of Glo2 in prostate tumorigenesis was demonstrated by Glo2 ectopic expression/silencing and employing specific activators/inhibitors. Our results showed that Glo2 was selectively expressed in PCa but not in the luminal compartment of the adjacent benign epithelium consistently in all the examined 20 cases. Glo2 expression in PCa was dependent on androgen receptor (AR) and was aimed at stimulating cell proliferation and eluding apoptosis through a mechanism involving the p53-p21 axis. Glo2 was intensely expressed in the basal cells of benign glands but was not involved in PCa genesis. Our results demonstrate for the first time that Glo2 drives prostate tumorigenesis and suggest that it may represent a novel adjuvant marker in the pathological diagnosis of early PCa.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Division of Biosciences and Medical Embryology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ivana Ferri
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Guido Bellezza
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paola Siccu
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Harold D Love
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vincenzo N Talesa
- Division of Biosciences and Medical Embryology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Angelo Sidoni
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
46
|
Anthony SA, Burrell AL, Johnson MC, Duong-Ly KC, Kuo YM, Simonet JC, Michener P, Andrews A, Kollman JM, Peterson JR. Reconstituted IMPDH polymers accommodate both catalytically active and inactive conformations. Mol Biol Cell 2017; 28:mbc.E17-04-0263. [PMID: 28794265 PMCID: PMC5620369 DOI: 10.1091/mbc.e17-04-0263] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 01/01/2023] Open
Abstract
Several metabolic enzymes undergo reversible polymerization into macromolecular assemblies. The function of these assemblies is often unclear but in some cases they regulate enzyme activity and metabolic homeostasis. The guanine nucleotide biosynthetic enzyme inosine monophosphate dehydrogenase (IMPDH) forms octamers that polymerize into helical chains. In mammalian cells, IMPDH filaments can associate into micron-length assemblies. Polymerization and enzyme activity are regulated in part by binding of purine nucleotides to an allosteric regulatory domain. ATP promotes octamer polymerization, whereas GTP promotes a compact, inactive conformation whose ability to polymerize is unknown. Also unclear is whether polymerization directly alters IMPDH catalytic activity. To address this, we identified point mutants of human IMPDH2 that either prevent or promote polymerization. Unexpectedly, we found that polymerized and non-assembled forms of recombinant IMPDH have comparable catalytic activity, substrate affinity, and GTP sensitivity and validated this finding in cells. Electron microscopy revealed that substrates and allosteric nucleotides shift the equilibrium between active and inactive conformations in both the octamer and the filament. Unlike other metabolic filaments, which selectively stabilize active or inactive conformations, recombinant IMPDH filaments accommodate multiple states. These conformational states are finely tuned by substrate availability and purine balance, while polymerization may allow cooperative transitions between states.
Collapse
Affiliation(s)
- Sajitha A Anthony
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, 1959 NE Pacific Street, Box 357350, Seattle, WA 98195
| | - Matthew C Johnson
- Department of Biochemistry, University of Washington, 1959 NE Pacific Street, Box 357350, Seattle, WA 98195
| | - Krisna C Duong-Ly
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Yin-Ming Kuo
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Jacqueline C Simonet
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Peter Michener
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102
| | - Andrew Andrews
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, 1959 NE Pacific Street, Box 357350, Seattle, WA 98195
| | - Jeffrey R Peterson
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| |
Collapse
|
47
|
Ichii M, Oritani K, Murase M, Komatsu K, Yamazaki M, Kyoden R, Kito N, Nozaki Y, Saito M, Iwamura H, Kanakura Y. Molecular targeting of inosine-5'-monophosphate dehydrogenase by FF-10501 promotes erythropoiesis via ROS/MAPK pathway. Leuk Lymphoma 2017; 59:448-459. [PMID: 28730859 DOI: 10.1080/10428194.2017.1339878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the major symptoms of myelodysplastic syndromes (MDS) is severe cytopenia. Despite cytokine therapies, such as erythropoiesis-stimulating agents, many patients still require blood transfusions, and the development of new therapeutic approaches is needed. In this work, we studied the effects of the inosine-5'-monophosphate (IMP) dehydrogenase (IMPDH) inhibitor FF-10501 on erythropoiesis of human hematopoietic cells. Differentiation of K562 chronic myeloid leukemia cells to an erythroid lineage was promoted by FF-10501 in a dose-dependent manner. Interestingly, we found that metabolic conversion of IMP to hypoxanthine leads to elevation of reactive oxygen species (ROS). The differentiative effects of FF-10501 were abolished by the ROS scavenger dimethylthiourea or the p38 MAPK inhibitor SB203580. Furthermore, FF-10501 promoted erythropoiesis from CD34+ hematopoietic stem/progenitor cells, accompanied with ROS accumulation, while high-dose FF-10501 mainly showed cytotoxic effects. These findings denote the potential of IMPDH inhibition therapy with FF-10501 in amelioration of anemia in MDS patients.
Collapse
Affiliation(s)
- Michiko Ichii
- a Department of Hematology and Oncology , Osaka University Graduate School of Medicine , Suita, Osaka , Japan
| | - Kenji Oritani
- a Department of Hematology and Oncology , Osaka University Graduate School of Medicine , Suita, Osaka , Japan
| | - Motohiko Murase
- b Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters , Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation , Kanagawa , Japan
| | - Kensuke Komatsu
- b Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters , Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation , Kanagawa , Japan
| | - Mao Yamazaki
- b Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters , Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation , Kanagawa , Japan
| | - Rie Kyoden
- b Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters , Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation , Kanagawa , Japan
| | - Nobuko Kito
- b Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters , Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation , Kanagawa , Japan
| | - Yusuke Nozaki
- b Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters , Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation , Kanagawa , Japan
| | - Motoki Saito
- b Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters , Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation , Kanagawa , Japan
| | - Hiroyuki Iwamura
- c Pharmaceutical Products Division , FUJIFILM Corporation , Minato-ku , Tokyo , Japan
| | - Yuzuru Kanakura
- a Department of Hematology and Oncology , Osaka University Graduate School of Medicine , Suita, Osaka , Japan
| |
Collapse
|
48
|
Abstract
In this review, van der Knapp and Verrijzer discuss the current understanding of the molecular mechanisms connecting metabolism to gene expression and their implications for development and disease. To make the appropriate developmental decisions or maintain homeostasis, cells and organisms must coordinate the expression of their genome and metabolic state. However, the molecular mechanisms that relay environmental cues such as nutrient availability to the appropriate gene expression response remain poorly understood. There is a growing awareness that central components of intermediary metabolism are cofactors or cosubstrates of chromatin-modifying enzymes. As such, their concentrations constitute a potential regulatory interface between the metabolic and chromatin states. In addition, there is increasing evidence for a direct involvement of classic metabolic enzymes in gene expression control. These dual-function proteins may provide a direct link between metabolic programing and the control of gene expression. Here, we discuss our current understanding of the molecular mechanisms connecting metabolism to gene expression and their implications for development and disease.
Collapse
Affiliation(s)
- Jan A van der Knaap
- Department of Biochemistry, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands
| |
Collapse
|
49
|
A nucleotide-controlled conformational switch modulates the activity of eukaryotic IMP dehydrogenases. Sci Rep 2017; 7:2648. [PMID: 28572600 PMCID: PMC5454003 DOI: 10.1038/s41598-017-02805-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/19/2017] [Indexed: 12/31/2022] Open
Abstract
Inosine-5′-monophosphate dehydrogenase (IMPDH) is an essential enzyme for nucleotide metabolism and cell proliferation. Despite IMPDH is the target of drugs with antiviral, immunosuppressive and antitumor activities, its physiological mechanisms of regulation remain largely unknown. Using the enzyme from the industrial fungus Ashbya gossypii, we demonstrate that the binding of adenine and guanine nucleotides to the canonical nucleotide binding sites of the regulatory Bateman domain induces different enzyme conformations with significantly distinct catalytic activities. Thereby, the comparison of their high-resolution structures defines the mechanistic and structural details of a nucleotide-controlled conformational switch that allosterically modulates the catalytic activity of eukaryotic IMPDHs. Remarkably, retinopathy-associated mutations lie within the mechanical hinges of the conformational change, highlighting its physiological relevance. Our results expand the mechanistic repertoire of Bateman domains and pave the road to new approaches targeting IMPDHs.
Collapse
|
50
|
Löffler M, Carrey EA, Zameitat E. Orotate (orotic acid): An essential and versatile molecule. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 35:566-577. [PMID: 27906623 DOI: 10.1080/15257770.2016.1147580] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Orotate (OA) is well-known as a precursor in biosynthesis of pyrimidines; in mammals it is released from the mitochondrial dihydroorotate dehydrogenase (DHODH) for conversion to UMP by the cytoplasmic UMP synthase enzyme. OA is also a normal part of the diet, being found in milk and dairy products, and it is converted to uridine for use in the pyrimidine salvage pathway predominantly in liver, kidney and erythrocytes. Early research into nutrition identified orotate as "vitamin B13," and its use as a complex with organic cations or metal ions was promulgated in body-building, and in assisting therapies of metabolic syndromes. It has recently been established that the amelioration of gout by dairy products arises from the competition of orotate and urate at the hURAT1 transporter. The orotic aciduria that arises in children with defective UMP synthase can be rescued by oral uridine therapy, since UMP is the end-product and also a feedback inhibitor of the de novo pathway. In contrast, Miller (dysmorphology) syndrome is connected with defects in DHODH, and hence in the supply of OA, and cannot be helped by uridine. Other models of dysmorphisms are connected with enzymes early in the pyrimidine de novo pathway. We conclude that the OA molecule is itself required for the regulation of genes that are important in the development of cells, tissues and organisms.
Collapse
Affiliation(s)
- M Löffler
- a Institute of Physiological Chemistry, Faculty of Medicine, Philipps University Marburg , Marburg , Germany
| | - E A Carrey
- b Institute of Child Health, University College London , GB
| | | |
Collapse
|