1
|
McColl KS, Ajay A, Wang H, Wildey GM, Yoon S, Grubb B, Kopp SR, Joseph PL, Saviana M, Romano G, Nana-Sinkam P, Peacock CD, Yun Z, Mneimneh W, Lam M, Miyagi M, Kao HY, Dowlati A. Identification of HEPACAM2 as a novel and specific marker of small cell carcinoma. Cancer 2024. [PMID: 39301750 DOI: 10.1002/cncr.35557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Small cell lung cancer (SCLC) is the most aggressive neuroendocrine lung cancer, with a dismal 5-year survival rate. No reliable biomarkers or imaging are available for early SCLC detection. In a search for a specific marker of SCLC, this study identified that hepatocyte cell adhesion molecule 2 (HEPACAM2), a member of the immunoglobulin-like superfamily, is highly and specifically expressed in SCLC. METHODS This study investigated HEPACAM2 expression in patients with SCLC via RNA sequencing and evaluated its relationship to progression-free survival (PFS) and overall survival (OS). Immunofluorescence microscopy was used to assess the cellular location of HEPACAM2 and to conduct in vitro and in vivo studies to understand its expression and functional significance. These findings were integrated with databases of patients with SCLC. RESULTS HEPACAM2 is highly expressed and specific to SCLC. HEPACAM2 levels are inversely correlated with PFS and OS in patients with SCLC and are expressed at all stages. Moreover, HEPACAM2 messenger RNA and its peptides can be detected in the secretomes in cell lines. Positively correlated with ASCL1 expression in SCLC tumors, HEPACAM2 is localized primarily to the plasma membrane and linked to extracellular matrix signaling and cellular migration. A loss of HEPACAM2 in SCLC cells attenuated ASCL1 and MYC expression. Consistent with clinical data, in vitro and in vivo studies suggested that HEPACAM2 promotes cancer cell growth. CONCLUSIONS With its remarkable specificity, high expression, presence in early disease, and extracellular secretion, HEPACAM2 could be a potential diagnostic cell surface biomarker for early SCLC detection. These findings warrant further investigation into its role in the pathobiology of SCLC.
Collapse
Affiliation(s)
- Karen S McColl
- Division of Hematology and Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Abhishek Ajay
- Division of Hematology and Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Institute of Computational Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Han Wang
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gary M Wildey
- Division of Hematology and Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Suzy Yoon
- Division of Hematology and Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brandon Grubb
- Division of Hematology and Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shelby R Kopp
- Division of Hematology and Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Peronne L Joseph
- Division of Hematology and Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michela Saviana
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Patrick Nana-Sinkam
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Craig D Peacock
- Division of Hematology and Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Zixi Yun
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Wadad Mneimneh
- Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Minh Lam
- Division of Hematology and Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hung-Ying Kao
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Afshin Dowlati
- Division of Hematology and Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Sagathia V, Patel C, Beladiya J, Patel S, Sheth D, Shah G. Tankyrase: a promising therapeutic target with pleiotropic action. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3363-3374. [PMID: 37338576 DOI: 10.1007/s00210-023-02576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Tankyrase 1 (TNKS1) and tankyrase 2 (TNKS2) enzymes belong to the poly (ADP-ribose) polymerase (PARP) family participates in process of poly-ADP-ribosylation of different target proteins which leads to ubiquitin-mediated proteasomal degradation. Tankyrases are also involved in the pathophysiology of many diseases, especially cancer. Their functions include cell cycle homeostasis (primarily in mitosis), telomere maintenance, Wnt signaling pathway regulation, and insulin signaling (particularly GLUT4 translocation). Studies have implicated that genetic changes, mutations in the tankyrase coding sequence, or up regulation and down regulation of tankyrase are reflected in the numerous disease conditions. Investigations are pursued to develop putative molecules that target tankyrase in various diseases such as cancer, obesity, osteoarthritis, fibrosis, cherubism, and diabetes, thereby providing a new therapeutic treatment option. In the present review, we described the structure and function of tankyrase along with its role in different disease conditions. Furthermore, we also presented cumulative experimental evidences of different drugs acting on tankyrase.
Collapse
Affiliation(s)
- Vrunda Sagathia
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Chirag Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India.
| | - Jayesh Beladiya
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Sandip Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Devang Sheth
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Gaurang Shah
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
3
|
Baldrighi M, Doreth C, Li Y, Zhao X, Warner E, Chenoweth H, Kishore K, Umrania Y, Minde DP, Thome S, Yu X, Lu Y, Knapton A, Harrison J, Clarke M, Latz E, de Cárcer G, Malumbres M, Ryffel B, Bryant C, Liu J, Lilley KS, Mallat Z, Li X. PLK1 inhibition dampens NLRP3 inflammasome-elicited response in inflammatory disease models. J Clin Invest 2023; 133:e162129. [PMID: 37698938 PMCID: PMC10617773 DOI: 10.1172/jci162129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Unabated activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome is linked with the pathogenesis of various inflammatory disorders. Polo-like kinase 1 (PLK1) has been widely studied for its role in mitosis. Here, using both pharmacological and genetic approaches, we demonstrate that PLK1 promoted NLRP3 inflammasome activation at cell interphase. Using an unbiased proximity-dependent biotin identification (Bio-ID) screen for the PLK1 interactome in macrophages, we show an enhanced proximal association of NLRP3 with PLK1 upon NLRP3 inflammasome activation. We further confirmed the interaction between PLK1 and NLRP3 and identified the interacting domains. Mechanistically, we show that PLK1 orchestrated the microtubule-organizing center (MTOC) structure and NLRP3 subcellular positioning upon inflammasome activation. Treatment with a selective PLK1 kinase inhibitor suppressed IL-1β production in in vivo inflammatory models, including LPS-induced endotoxemia and monosodium urate-induced peritonitis in mice. Our results uncover a role of PLK1 in regulating NLRP3 inflammasome activation during interphase and identify pharmacological inhibition of PLK1 as a potential therapeutic strategy for inflammatory diseases with excessive NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Marta Baldrighi
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christian Doreth
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaohui Zhao
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Emily Warner
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Hannah Chenoweth
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Yagnesh Umrania
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - David-Paul Minde
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Thome
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Xian Yu
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yuning Lu
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alice Knapton
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - James Harrison
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Murray Clarke
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Guillermo de Cárcer
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cell Cycle and Cancer Biomarkers Group, “Alberto Sols” Biomedical Research Institute (IIBM-CSIC), Madrid, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bernhard Ryffel
- UMR7355 INEM, Experimental and Molecular Immunology and Neurogenetics CNRS and Université d’Orleans, Orleans, France
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jinping Liu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kathryn S. Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Ziad Mallat
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Université Paris Cité, PARCC, INSERM, Paris, France
| | - Xuan Li
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Di Paola S, Matarese M, Barretta ML, Dathan N, Colanzi A, Corda D, Grimaldi G. PARP10 Mediates Mono-ADP-Ribosylation of Aurora-A Regulating G2/M Transition of the Cell Cycle. Cancers (Basel) 2022; 14:5210. [PMID: 36358629 PMCID: PMC9659153 DOI: 10.3390/cancers14215210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 08/13/2023] Open
Abstract
Intracellular mono-ADP-ribosyltransferases (mono-ARTs) catalyze the covalent attachment of a single ADP-ribose molecule to protein substrates, thus regulating their functions. PARP10 is a soluble mono-ART involved in the modulation of intracellular signaling, metabolism and apoptosis. PARP10 also participates in the regulation of the G1- and S-phase of the cell cycle. However, the role of this enzyme in G2/M progression is not defined. In this study, we found that genetic ablation, protein depletion and pharmacological inhibition of PARP10 cause a delay in the G2/M transition of the cell cycle. Moreover, we found that the mitotic kinase Aurora-A, a previously identified PARP10 substrate, is actively mono-ADP-ribosylated (MARylated) during G2/M transition in a PARP10-dependent manner. Notably, we showed that PARP10-mediated MARylation of Aurora-A enhances the activity of the kinase in vitro. Consistent with an impairment in the endogenous activity of Aurora-A, cells lacking PARP10 show a decreased localization of the kinase on the centrosomes and mitotic spindle during G2/M progression. Taken together, our data provide the first evidence of a direct role played by PARP10 in the progression of G2 and mitosis, an event that is strictly correlated to the endogenous MARylation of Aurora-A, thus proposing a novel mechanism for the modulation of Aurora-A kinase activity.
Collapse
Affiliation(s)
- Simone Di Paola
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Maria Matarese
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Maria Luisa Barretta
- National Research Council (CNR), Piazzale Aldo Moro, 700185 Rome, Italy
- Steril Farma Srl, Via L. Da Vinci 128, 80055 Portici, Italy
| | - Nina Dathan
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Antonino Colanzi
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Daniela Corda
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Giovanna Grimaldi
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| |
Collapse
|
5
|
Yu M, Yang Y, Sykes M, Wang S. Small-Molecule Inhibitors of Tankyrases as Prospective Therapeutics for Cancer. J Med Chem 2022; 65:5244-5273. [PMID: 35306814 DOI: 10.1021/acs.jmedchem.1c02139] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tankyrases are multifunctional poly(adenosine diphosphate-ribose) polymerases that regulate diverse biological processes including telomere maintenance and cellular signaling. These processes are often implicated in a number of human diseases, with cancer being the most prevalent example. Accordingly, tankyrase inhibitors have gained increasing attention as potential therapeutics. Since the discovery of XAV939 and IWR-1 as the first tankyrase inhibitors over two decades ago, tankyrase-targeted drug discovery has made significant progress. This review starts with an introduction of tankyrases, with emphasis placed on their cancer-related functions. Small-molecule inhibitors of tankyrases are subsequently delineated based on their distinct modes of binding to the enzymes. In addition to inhibitors that compete with oxidized nicotinamide adenine dinucleotide (NAD+) for binding to the catalytic domain of tankyrases, non-NAD+-competitive inhibitors are detailed. This is followed by a description of three clinically trialled tankyrase inhibitors. To conclude, some of challenges and prospects in developing tankyrase-targeted cancer therapies are discussed.
Collapse
Affiliation(s)
- Mingfeng Yu
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Yuchao Yang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Matthew Sykes
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Shudong Wang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
6
|
Boehi F, Manetsch P, Hottiger MO. Interplay between ADP-ribosyltransferases and essential cell signaling pathways controls cellular responses. Cell Discov 2021; 7:104. [PMID: 34725336 PMCID: PMC8560908 DOI: 10.1038/s41421-021-00323-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Signaling cascades provide integrative and interactive frameworks that allow the cell to respond to signals from its environment and/or from within the cell itself. The dynamic regulation of mammalian cell signaling pathways is often modulated by cascades of protein post-translational modifications (PTMs). ADP-ribosylation is a PTM that is catalyzed by ADP-ribosyltransferases and manifests as mono- (MARylation) or poly- (PARylation) ADP-ribosylation depending on the addition of one or multiple ADP-ribose units to protein substrates. ADP-ribosylation has recently emerged as an important cell regulator that impacts a plethora of cellular processes, including many intracellular signaling events. Here, we provide an overview of the interplay between the intracellular diphtheria toxin-like ADP-ribosyltransferase (ARTD) family members and five selected signaling pathways (including NF-κB, JAK/STAT, Wnt-β-catenin, MAPK, PI3K/AKT), which are frequently described to control or to be controlled by ADP-ribosyltransferases and how these interactions impact the cellular responses.
Collapse
Affiliation(s)
- Flurina Boehi
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Cancer Biology PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Patrick Manetsch
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Molecular Life Science PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Ma Y, Zhang P, Zhang Q, Wang X, Miao Q, Lyu X, Cui B, Ma H. Dihydroartemisinin suppresses proliferation, migration, the Wnt/β-catenin pathway and EMT via TNKS in gastric cancer. Oncol Lett 2021; 22:688. [PMID: 34457043 PMCID: PMC8358739 DOI: 10.3892/ol.2021.12949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is a common malignancy worldwide. However, the molecular mechanisms underlying this malignancy remain unclear and there are a lack of effective drugs. The present study aimed to investigate the antitumor effect of Dihydroartemisinin (DHA) or inhibition of Tankyrases (TNKS), and determine the underlying molecular mechanisms of gastric cancer. Immunohistochemistry and immunofluorescence analyses were performed to detect the expression levels of TNKS, epithelial-to-mesenchymal transition (EMT) and Wnt/β-catenin pathway-related proteins in gastric cancer tissues and adjacent normal tissues. The Cell Counting Kit-8 assay was performed to assess the viability of HGC-27 and AGS cells following treatment with different concentrations of HLY78 (a Wnt activator) or DHA. Following treatment with HLY78, DHA or small interfering (si)-TNKS1/si-TNKS2, colony formation and migratory abilities were assessed via the colony formation, wound healing and Transwell assays. Furthermore, western blot and immunofluorescence analyses were performed to detect the expression levels of TNKS, EMT- and Wnt/β-catenin-related proteins. The results demonstrated that the expression levels of TNKS, AXI2, β-catenin, N-cadherin and Vimentin were upregulated, whereas E-cadherin expression was downregulated in gastric cancer tissues compared with normal tissues. Furthermore, HLY78 and DHA suppressed the viability of HGC-27 and AGS cells, in a concentration-independent manner. Notably, TNKS knockdown or treatment with DHA suppressed colony formation, migration, TNKS expression, EMT and the Wnt/β-catenin pathway. Opposing effects were observed following treatment with HLY78, which were ameliorated following co-treatment with DHA. Taken together, these results suggest that DHA or inhibition of TNKS can suppress the proliferation and migration of gastric cancer cells, which is partly associated with inactivation of the Wnt/β-catenin pathway and EMT process.
Collapse
Affiliation(s)
- Yanmei Ma
- Department of Pathology, The First Hospital of Yulin, Yulin, Shaanxi 719000, P.R. China
| | - Peng Zhang
- Department of Pathology, The First Hospital of Yulin, Yulin, Shaanxi 719000, P.R. China
| | - Qilong Zhang
- Department of Geriatrics, The First Hospital of Yulin, Yulin, Shaanxi 719000, P.R. China
| | - Xiaofei Wang
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Qiong Miao
- Department of Orthopedics, The First Hospital of Yulin, Yulin, Shaanxi 719000, P.R. China
| | - Xiaolan Lyu
- Department of Pathology, The First Hospital of Yulin, Yulin, Shaanxi 719000, P.R. China
| | - Bo Cui
- Department of Pathology, The First Hospital of Yulin, Yulin, Shaanxi 719000, P.R. China
| | - Honghong Ma
- Department of Geriatrics, The First Hospital of Yulin, Yulin, Shaanxi 719000, P.R. China
| |
Collapse
|
8
|
Wang Y, Zheng K, Huang Y, Xiong H, Su J, Chen R, Zou Y. PARP inhibitors in gastric cancer: beacon of hope. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:211. [PMID: 34167572 PMCID: PMC8228511 DOI: 10.1186/s13046-021-02005-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
Defects in the DNA damage response (DDR) can lead to genome instability, producing mutations or aberrations that promote the development and progression of cancer. But it also confers such cells vulnerable to cell death when they inhibit DNA damage repair. Poly (ADP-ribose) polymerase (PARP) plays a central role in many cellular processes, including DNA repair, replication, and transcription. PARP induces the occurrence of poly (ADP-ribosylation) (PARylation) when DNA single strand breaks (SSB) occur. PARP and various proteins can interact directly or indirectly through PARylation to regulate DNA repair. Inhibitors that directly target PARP have been found to block the SSB repair pathway, triggering homologous recombination deficiency (HRD) cancers to form synthetic lethal concepts that represent an anticancer strategy. It has therefore been investigated in many cancer types for more effective anti-cancer strategies, including gastric cancer (GC). This review describes the antitumor mechanisms of PARP inhibitors (PARPis), and the preclinical and clinical progress of PARPis as monotherapy and combination therapy in GC.
Collapse
Affiliation(s)
- Yali Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Kun Zheng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Jinfang Su
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Rui Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Yanmei Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
9
|
Harrision D, Gravells P, Thompson R, Bryant HE. Poly(ADP-Ribose) Glycohydrolase (PARG) vs. Poly(ADP-Ribose) Polymerase (PARP) - Function in Genome Maintenance and Relevance of Inhibitors for Anti-cancer Therapy. Front Mol Biosci 2020; 7:191. [PMID: 33005627 PMCID: PMC7485115 DOI: 10.3389/fmolb.2020.00191] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that catalyze the addition of poly(ADP-ribose) (PAR) subunits onto themselves and other acceptor proteins. PARPs are known to function in a large range of cellular processes including DNA repair, DNA replication, transcription and modulation of chromatin structure. Inhibition of PARP holds great potential for therapy, especially in cancer. Several PARP1/2/3 inhibitors (PARPi) have had success in treating ovarian, breast and prostate tumors harboring defects in the homologous recombination (HR) DNA repair pathway, especially BRCA1/2 mutated tumors. However, treatment is limited to specific sub-groups of patients and resistance can occur, limiting the use of PARPi. Poly(ADP-ribose) glycohydrolase (PARG) reverses the action of PARP enzymes, hydrolysing the ribose-ribose bonds present in poly(ADP-ribose). Like PARPs, PARG is involved in DNA replication and repair and PARG depleted/inhibited cells show increased sensitivity to DNA damaging agents. They also display an accumulation of perturbed replication intermediates which can lead to synthetic lethality in certain contexts. In addition, PARG is thought to play an important role in preventing the accumulation of cytoplasmic PAR and therefore parthanatos, a caspase-independent PAR-mediated type of cell death. In contrast to PARP, the therapeutic potential of PARG has been largely ignored. However, several recent papers have demonstrated the exciting possibilities that inhibitors of this enzyme may have for cancer treatment, both as single agents and in combination with cytotoxic drugs and radiotherapy. This article discusses what is known about the functions of PARP and PARG and the potential future implications of pharmacological inhibition in anti-cancer therapy.
Collapse
Affiliation(s)
- Daniel Harrision
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Polly Gravells
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Ruth Thompson
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Helen E Bryant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
10
|
Eisemann T, Pascal JM. Poly(ADP-ribose) polymerase enzymes and the maintenance of genome integrity. Cell Mol Life Sci 2020; 77:19-33. [PMID: 31754726 PMCID: PMC11104942 DOI: 10.1007/s00018-019-03366-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 01/15/2023]
Abstract
DNA damage response (DDR) relies on swift and accurate signaling to rapidly identify DNA lesions and initiate repair. A critical DDR signaling and regulatory molecule is the posttranslational modification poly(ADP-ribose) (PAR). PAR is synthesized by a family of structurally and functionally diverse proteins called poly(ADP-ribose) polymerases (PARPs). Although PARPs share a conserved catalytic domain, unique regulatory domains of individual family members endow PARPs with unique properties and cellular functions. Family members PARP-1, PARP-2, and PARP-3 (DDR-PARPs) are catalytically activated in the presence of damaged DNA and act as damage sensors. Family members tankyrase-1 and closely related tankyrase-2 possess SAM and ankyrin repeat domains that regulate their diverse cellular functions. Recent studies have shown that the tankyrases share some overlapping functions with the DDR-PARPs, and even perform novel functions that help preserve genomic integrity. In this review, we briefly touch on DDR-PARP functions, and focus on the emerging roles of tankyrases in genome maintenance. Preservation of genomic integrity thus appears to be a common function of several PARP family members, depicting PAR as a multifaceted guardian of the genome.
Collapse
Affiliation(s)
- Travis Eisemann
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
11
|
Li N, Wang Y, Deng W, Lin SH. Poly (ADP-Ribose) Polymerases (PARPs) and PARP Inhibitor-Targeted Therapeutics. Anticancer Agents Med Chem 2019; 19:206-212. [PMID: 30417796 DOI: 10.2174/1871520618666181109164645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/05/2018] [Accepted: 06/21/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Poly-ADP-ribosylation, that is, adding ADP-ribose moieties to a protein, is a unique type of protein post-translational modification that regulates various cellular processes such as DNA repair, mitosis, transcription, and cell growth. Small-molecule inhibitors of poly-ADP-ribose polymerase 1 (PARP1) have been developed as anticancer agents because inhibition of PARP enzymes may be a synthetic lethal strategy for cancers with or BRCA2 mutations. However, there are still questions surrounding PARP inhibitors. METHODS/RESULTS Data were collected from Pubmed, Medline, through searching of these keywords: "PARP", "BRCA", "Synthetic lethal" and "Tankyrase inhibitors". We describe the current knowledge of PARP inhibition and its effects on DNA damage; mechanisms of resistance to PARP inhibitors; the evolution of PARP inhibitors; and the potential use of PARP5a/b (tankyrases) inhibitors in cancer treatment. CONCLUSION PARP inhibitors are already showing promise as therapeutic tools, especially in the management of BRCA-mutated breast and ovarian cancers but also in tumors with dysfunctional BRCA genes. Small-molecule tankyrase inhibitors are important for increasing our understanding of tankyrase biology.
Collapse
Affiliation(s)
- Nan Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Yifan Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.,The University of Texas, Graduate School of Biomedical Sciences, Houston, Texas 77030, United States
| | - Weiye Deng
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Steven H Lin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
12
|
Abstract
Mitosis ensures accurate segregation of duplicated DNA through tight regulation of chromosome condensation, bipolar spindle assembly, chromosome alignment in the metaphase plate, chromosome segregation and cytokinesis. Poly(ADP-ribose) polymerases (PARPs), in particular PARP1, PARP2, PARP3, PARP5a (TNKS1), as well as poly(ADP-ribose) glycohydrolase (PARG), regulate different mitotic functions, including centrosome function, mitotic spindle assembly, mitotic checkpoints, telomere length and telomere cohesion. PARP depletion or inhibition give rise to various mitotic defects such as centrosome amplification, multipolar spindles, chromosome misalignment, premature loss of cohesion, metaphase arrest, anaphase DNA bridges, lagging chromosomes, and micronuclei. As the mechanisms of PARP1/2 inhibitor-mediated cell death are being progressively elucidated, it is becoming clear that mitotic defects caused by PARP1/2 inhibition arise due to replication stress and DNA damage in S phase. As it stands, entrapment of inactive PARP1/2 on DNA phenocopies replication stress through accumulation of unresolved replication intermediates, double-stranded DNA breaks (DSBs) and incorrectly repaired DSBs, which can be transmitted from S phase to mitosis and instigate various mitotic defects, giving rise to both numerical and structural chromosomal aberrations. Cancer cells have increased levels of replication stress, which makes them particularly susceptible to a combination of agents that compromise replication fork stability. Indeed, combining PARP1/2 inhibitors with genetic deficiencies in DNA repair pathways, DNA-damaging agents, ATR and other cell cycle checkpoint inhibitors has yielded synergistic effects in killing cancer cells. Here I provide a comprehensive overview of the mitotic functions of PARPs and PARG, mitotic phenotypes induced by their depletion or inhibition, as well as the therapeutic relevance of targeting mitotic cells by directly interfering with mitotic functions or indirectly through replication stress.
Collapse
Affiliation(s)
- Dea Slade
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
13
|
Mascanzoni F, Ayala I, Colanzi A. Organelle Inheritance Control of Mitotic Entry and Progression: Implications for Tissue Homeostasis and Disease. Front Cell Dev Biol 2019; 7:133. [PMID: 31396510 PMCID: PMC6664238 DOI: 10.3389/fcell.2019.00133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
The Golgi complex (GC), in addition to its well-known role in membrane traffic, is also actively involved in the regulation of mitotic entry and progression. In particular, during the G2 phase of the cell cycle, the Golgi ribbon is unlinked into isolated stacks. Importantly, this ribbon cleavage is required for G2/M transition, indicating that a "Golgi mitotic checkpoint" controls the correct segregation of this organelle. Then, during mitosis, the isolated Golgi stacks are disassembled, and this process is required for spindle formation. Moreover, recent evidence indicates that also proper mitotic segregation of other organelles, such as mitochondria, endosomes, and peroxisomes, is required for correct mitotic progression and/or spindle formation. Collectively, these observations imply that in addition to the control of chromosomes segregation, which is required to preserve the genetic information, the cells actively monitor the disassembly and redistribution of subcellular organelles in mitosis. Here, we provide an overview of the major structural reorganization of the GC and other organelles during G2/M transition and of their regulatory mechanisms, focusing on novel findings that have shed light on the basic processes that link organelle inheritance to mitotic progression and spindle formation, and discussing their implications for tissue homeostasis and diseases.
Collapse
Affiliation(s)
| | | | - Antonino Colanzi
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
14
|
Hu K, Wu W, Li Y, Lin L, Chen D, Yan H, Xiao X, Chen H, Chen Z, Zhang Y, Xu S, Guo Y, Koeffler HP, Song E, Yin D. Poly(ADP-ribosyl)ation of BRD7 by PARP1 confers resistance to DNA-damaging chemotherapeutic agents. EMBO Rep 2019; 20:embr.201846166. [PMID: 30940648 DOI: 10.15252/embr.201846166] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 01/25/2019] [Accepted: 03/01/2019] [Indexed: 01/05/2023] Open
Abstract
The bromodomain-containing protein 7 (BRD7) is a tumour suppressor protein with critical roles in cell cycle transition and transcriptional regulation. Whether BRD7 is regulated by post-translational modifications remains poorly understood. Here, we find that chemotherapy-induced DNA damage leads to the rapid degradation of BRD7 in various cancer cell lines. PARP-1 binds and poly(ADP)ribosylates BRD7, which enhances its ubiquitination and degradation through the PAR-binding E3 ubiquitin ligase RNF146. Moreover, the PARP1 inhibitor Olaparib significantly enhances the sensitivity of BRD7-positive cancer cells to chemotherapeutic drugs, while it has little effect on cells with low BRD7 expression. Taken together, our findings show that PARP1 induces the degradation of BRD7 resulting in cancer cell resistance to DNA-damaging agents. BRD7 might thus serve as potential biomarker in clinical trial for the prediction of synergistic effects between chemotherapeutic drugs and PARP inhibitors.
Collapse
Affiliation(s)
- Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenjing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lehang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dong Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Interventional Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haiyan Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xing Xiao
- Department of Dermatology and Venerology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hengxing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhen Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuangbing Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yabin Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore.,Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California Los Angeles School of Medicine, Los Angeles, CA, USA
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China .,Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
15
|
Zheng D, Xie W, Li L, Jiang W, Zou Y, Chiang C, Shao G, Yan K. RXXPEG motif of MERIT40 is required to maintain spindle structure and function through its interaction with Tankyrase1. Cell Biol Int 2019; 43:174-181. [DOI: 10.1002/cbin.11086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/12/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Duo Zheng
- Shenzhen Longhua District Central Hospital; Shenzhen 518110 China
- Guangdong Key Laboratory for Genome Stability and Disease Prevention; Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Health Science Center; Shenzhen 518060 China
| | - Wangqing Xie
- Shenzhen Longhua District Central Hospital; Shenzhen 518110 China
- Guangdong Key Laboratory for Genome Stability and Disease Prevention; Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Health Science Center; Shenzhen 518060 China
| | - Li Li
- Department of Cell Biology; School of Basic Medical Sciences, Peking University; Beijing 100191 China
| | - Wenqi Jiang
- Guangdong Key Laboratory for Genome Stability and Disease Prevention; Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Health Science Center; Shenzhen 518060 China
| | - Yongdong Zou
- Guangdong Key Laboratory for Genome Stability and Disease Prevention; Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Health Science Center; Shenzhen 518060 China
| | - Chengyao Chiang
- Guangdong Key Laboratory for Genome Stability and Disease Prevention; Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Health Science Center; Shenzhen 518060 China
| | - Genze Shao
- Department of Cell Biology; School of Basic Medical Sciences, Peking University; Beijing 100191 China
| | - Kaowen Yan
- Institute for Translational Medicine; Qingdao University; Qingdao 266071 China
| |
Collapse
|
16
|
Okamoto K, Ohishi T, Kuroiwa M, Iemura SI, Natsume T, Seimiya H. MERIT40-dependent recruitment of tankyrase to damaged DNA and its implication for cell sensitivity to DNA-damaging anticancer drugs. Oncotarget 2018; 9:35844-35855. [PMID: 30533199 PMCID: PMC6254674 DOI: 10.18632/oncotarget.26312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Tankyrase, a member of the poly(ADP-ribose) polymerase (PARP) family, regulates various intracellular responses, such as telomere maintenance, Wnt/β-catenin signaling and cell cycle progression through its interactions with multiple target proteins. Tankyrase contains a long stretch of 24 ankyrin repeats that are further divided into five subdomains, called ANK repeat clusters (ARCs). Each ARC works as an independent ligand-binding unit, which implicates tankyrase as a platform for multiple protein-protein interactions. Furthermore, tankyrase distributes to various intracellular loci, suggesting potential distinct but yet unidentified physiological functions. To explore the novel functions of tankyrase, we performed liquid chromatography-mass spectrometry analysis and identified the BRE-BRCC36-MERIT40 complex, a regulator of homologous recombination, as tankyrase-binding proteins. Among the complex components, MERIT40 was directly associated with tankyrase via a tankyrase-binding consensus motif, as previously reported. In X-ray-irradiated non-small cell lung cancer cells, tankyrase localized to DNA double-stranded break sites in a MERIT40-dependent manner. MERIT40 knockdown increased the cell sensitivity to X-ray, whereas the wild-type, but not the tankyrase-unbound mutant, MERIT40 rescued the phenotype of the knockdown cells. Tankyrase inhibitors, such as G007-LK and XAV939, increased the cellular sensitivity to X-ray irradiation and anticancer drugs that induce DNA double-stranded breaks. These observations suggest that tankyrase plays a role in the DNA damage repair response and implicates a potential therapeutic utility of tankyrase inhibitors in combination treatments with DNA-damaging anticancer drugs.
Collapse
Affiliation(s)
- Keiji Okamoto
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Tomokazu Ohishi
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan.,Current address: Institute of Microbial Chemistry (BIKAKEN), Numazu, Shizuoka, Japan
| | - Mika Kuroiwa
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan.,Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Koto-ku, Tokyo, Japan
| | - Shun-Ichiro Iemura
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan.,Current address: Translational Research Center, Fukushima Medical University, Fukushima, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan.,Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Koto-ku, Tokyo, Japan
| |
Collapse
|
17
|
Kim MK. Novel insight into the function of tankyrase. Oncol Lett 2018; 16:6895-6902. [PMID: 30546421 PMCID: PMC6256358 DOI: 10.3892/ol.2018.9551] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/31/2018] [Indexed: 01/14/2023] Open
Abstract
Tankyrases are multifunctional poly(ADP-ribose) polymerases that regulate a variety of cellular processes, including Wnt signaling, telomere maintenance and mitosis regulation. Tankyrases interact with target proteins and regulate their interactions and stability through poly(ADP-ribosyl) ation. In addition to their roles in telomere maintenance and regulation of mitosis, tankyrase proteins regulate tumor suppressors, including AXIN, phosphatase and tensin homolog and angiomotin. Therefore, tankyrases may be effective targets for cancer treatment. Tankyrase inhibitors could affect a variety of carcinogenic pathways that promote uncontrolled proliferation, including Wnt, AKT, yes-associated protein, telomere maintenance and mitosis regulation. Recently, novel aspects of the function and mechanism of tankyrases have been reported, and a number of tankyrase inhibitors have been identified. A combination of conventional chemotherapy agents with tankyrase inhibitors may have synergistic anticancer effects. Therefore, it is expected that more advanced and improved tankyrase inhibitors will be developed, enabling novel therapeutic strategies against cancer and other tankyrase-associated diseases. The present review discusses tankyrase function and the role of tankyrase inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Mi Kyung Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
18
|
Feng Y, Li Z, Lv L, Du A, Lin Z, Ye X, Lin Y, Lin X. Tankyrase regulates apoptosis by activating JNK signaling in Drosophila. Biochem Biophys Res Commun 2018; 503:2234-2239. [PMID: 29953853 DOI: 10.1016/j.bbrc.2018.06.143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 11/24/2022]
Abstract
Programmed cell death (PCD), or apoptosis, plays essential roles in various cellular and developmental processes, and dysregulation of apoptosis causes many diseases. Thus, regulation of apoptotic process is very important. Drosophila tankyrase (DTNKS) is an evolutionarily conserved protein with poly(ADP-ribose) polymerase activity. In mammalian cells, tankyrases (TNKSs) have been reported to regulate cell death. To determine whether DTNKS plays function in inducing apoptosis in in vivo development, we used Drosophila as a model system and generated transgenic flies expressing DTNKS. We show that ectopic expression of DTNKS promotes caspase-dependent apoptosis and knockdown of DTNKS by RNAi dramatically alleviates apoptotic defect caused by ectopic expression of pro-apoptotic protein hid or rpr in the adult eye. Moreover, our result shows that ectopic expression of DTNKS triggers the activation of c-Jun N-terminal kinase (JNK) signaling, which is required for DTNKS-mediated apoptosis. Taken together, our finding identifies the role of DTNKS in regulating apoptosis by activating JNK signaling in Drosophila.
Collapse
Affiliation(s)
- Ying Feng
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Zhenzhen Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Lixiu Lv
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Anle Du
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Zhiqing Lin
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Xiaolei Ye
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Yi Lin
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Xinhua Lin
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
19
|
DaRosa PA, Klevit RE, Xu W. Structural basis for tankyrase-RNF146 interaction reveals noncanonical tankyrase-binding motifs. Protein Sci 2018; 27:1057-1067. [PMID: 29604130 DOI: 10.1002/pro.3413] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 01/31/2023]
Abstract
Poly(ADP-ribosyl)ation (PARylation) catalyzed by the tankyrase enzymes (Tankyrase-1 and -2; a.k.a. PARP-5a and -5b) is involved in mitosis, telomere length regulation, GLUT-4 vesicle transport, and cell growth and differentiation. Together with the E3 ubiquitin ligase RNF146 (a.k.a. Iduna), tankyrases regulate the cellular levels of several important proteins including Axin, 3BP2, and angiomotins, which are key regulators of Wnt, Src and Hippo signaling, respectively. These tankyrase substrates are first PARylated and then ubiquitylated by RNF146, which is allosterically activated by binding to PAR polymer. Each tankyrase substrate is recognized by a tankyrase-binding motif (TBM). Here we show that RNF146 binds directly to tankyrases via motifs in its C-terminal region. Four of these RNF146 motifs represent novel, extended TBMs, that have one or two additional amino acids between the most conserved Arg and Gly residues. The individual RNF146 motifs display weak binding, but together mediate a strong multivalent interaction with the substrate-binding region of TNKS, forming a robust one-to-one complex. A crystal structure of the first RNF146 noncanonical TBM in complex with the second ankyrin repeat domain of TNKS shows how an extended motif can be accommodated in a peptide-binding groove on tankyrases. Overall, our work demonstrates the existence of a new class of extended TBMs that exist in previously uncharacterized tankyrase-binding proteins including those of IF4A1 and NELFE.
Collapse
Affiliation(s)
- Paul A DaRosa
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195.,Department of Biological Structure, University of Washington, Seattle, Washington, 98195
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, Washington, 98195
| |
Collapse
|
20
|
Li X, Han H, Zhou MT, Yang B, Ta AP, Li N, Chen J, Wang W. Proteomic Analysis of the Human Tankyrase Protein Interaction Network Reveals Its Role in Pexophagy. Cell Rep 2018; 20:737-749. [PMID: 28723574 DOI: 10.1016/j.celrep.2017.06.077] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/12/2017] [Accepted: 06/23/2017] [Indexed: 11/26/2022] Open
Abstract
Tankyrase 1 (TNKS) and tankyrase 2 (TNKS2) belong to the poly(ADP-ribose) polymerase family of proteins, which use nicotinamide adenine dinucleotide to modify substrate proteins with ADP-ribose modifications. Emerging evidence has revealed the pathological relevance of TNKS and TNKS2, and identified these two enzymes as potential drug targets. However, the cellular functions and regulatory mechanisms of TNKS/2 are still largely unknown. Through a proteomic analysis, we defined the protein-protein interaction network for human TNKS/2 and revealed more than 100 high-confidence interacting proteins with numerous biological functions in this network. Finally, through functional validation, we uncovered a role for TNKS/2 in peroxisome homeostasis and determined that this function is independent of TNKS enzyme activities. Our proteomic study of the TNKS/2 protein interaction network provides a rich resource for further exploration of tankyrase functions in numerous cellular processes.
Collapse
Affiliation(s)
- Xu Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Han
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Mao-Tian Zhou
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bing Yang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Albert Paul Ta
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Nan Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
21
|
Abstract
Since a report of some 50 years ago describing refractory anemia associated with group C monosomy, monosomy 7 (-7) and interstitial deletions of chromosome 7 (del(7q)) have been established as one of the most frequent chromosomal aberrations found in essentially all types of myeloid tumors regardless of patient age and disease etiology. In the last century, researchers sought recessive myeloid tumor-suppressor genes by attempting to determine commonly deleted regions (CDRs) in del(7q) patients. However, these efforts were not successful. Today, tumor suppressors located in 7q are believed to act in a haploinsufficient fashion, and powerful new technologies such as microarray comparative genomic hybridization and high-throughput sequencing allow comprehensive searches throughout the genes encoded on 7q. Among those proposed as promising candidates, 4 have been validated by gene targeting in mouse models. SAMD9 (sterile α motif domain 9) and SAMD9L (SAMD9-like) encode related endosomal proteins, mutations of which cause hereditary diseases with strong propensity to infantile myelodysplastic syndrome (MDS) harboring monosomy 7. Because MDS develops in SAMD9L-deficient mice over their lifetime, SAMD9/SAMD9L are likely responsible for sporadic MDS with -7/del(7q) as the sole anomaly. EZH2 (enhancer of zeste homolog 2) and MLL3 (mixed lineage leukemia 3) encode histone-modifying enzymes; loss-of-function mutations of these are detected in some myeloid tumors at high frequencies. In contrast to SAMD9/SAMD9L, loss of EZH2 or MLL3 likely contributes to myeloid tumorigenesis in cooperation with additional specific gene alterations such as of TET2 or genes involved in the p53/Ras pathway, respectively. Distinctive roles with different significance of the loss of multiple responsible genes render the complex nature of myeloid tumors carrying -7/del(7q).
Collapse
|
22
|
Fernández-Vega I, Santos-Juanes J, Camacho-Urkaray E, Lorente-Gea L, García B, Gutiérrez-Corres FB, Quirós LM, Guerra-Merino I, Aguirre JJ. Miki (Mitotic Kinetics Regulator) Immunoexpression in Normal Liver, Cirrhotic Areas and Hepatocellular Carcinomas: a Preliminary Study with Clinical Relevance. Pathol Oncol Res 2018; 26:167-173. [PMID: 29435733 DOI: 10.1007/s12253-018-0387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 02/05/2018] [Indexed: 10/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary malignant tumor in the liver. One of the main features of cancer survival is the generalized loss of growth control exhibited by cancer cells, and Miki is a protein related to the immunoglobulin superfamily that plays an important role in mitosis. We aim to study protein expression levels of Miki in non-tumoral liver and 20 HCCs recruited from a Pathology Department. Clinical information was also obtained. A tissue microarray was performed, and immunohistochemical techniques applied to study protein expression levels of Miki. In normal liver, Miki was weakly expressed, showing nuclear staining in the hepatocytes. Cirrhotic areas and HCCs showed a variety of staining patterns. Most HCC samples showed positive expression, with three different staining patterns being discernible: nuclear, cytoplasmic and mixed. Statistical analysis showed a significant association between grade of differentiation, Ki-67 proliferative index, survival rates and staining patterns. This study has revealed the positive expression of Miki in normal liver, cirrhotic areas and HCCs. Three different staining patterns of Miki expression with clinical relevance were noted in HCCs.
Collapse
Affiliation(s)
- Iván Fernández-Vega
- Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Vitoria-Gasteiz, Spain. .,Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain. .,Instituto Universitario Fernández-Vega, Oviedo, Spain. .,Service of Anatomic Pathology, Hospital Universitario de Araba-Txagorritxu, C/Jose Atxotegui s/n, E-01009, Vitoria-Gasteiz, Alava, Spain.
| | - Jorge Santos-Juanes
- Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Emma Camacho-Urkaray
- Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Vitoria-Gasteiz, Spain
| | - Laura Lorente-Gea
- Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Vitoria-Gasteiz, Spain
| | | | | | - Luis M Quirós
- Instituto Universitario Fernández-Vega, Oviedo, Spain.,Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | - Isabel Guerra-Merino
- Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Vitoria-Gasteiz, Spain
| | - José Javier Aguirre
- Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Vitoria-Gasteiz, Spain
| |
Collapse
|
23
|
Lüscher B, Bütepage M, Eckei L, Krieg S, Verheugd P, Shilton BH. ADP-Ribosylation, a Multifaceted Posttranslational Modification Involved in the Control of Cell Physiology in Health and Disease. Chem Rev 2017; 118:1092-1136. [PMID: 29172462 DOI: 10.1021/acs.chemrev.7b00122] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Posttranslational modifications (PTMs) regulate protein functions and interactions. ADP-ribosylation is a PTM, in which ADP-ribosyltransferases use nicotinamide adenine dinucleotide (NAD+) to modify target proteins with ADP-ribose. This modification can occur as mono- or poly-ADP-ribosylation. The latter involves the synthesis of long ADP-ribose chains that have specific properties due to the nature of the polymer. ADP-Ribosylation is reversed by hydrolases that cleave the glycosidic bonds either between ADP-ribose units or between the protein proximal ADP-ribose and a given amino acid side chain. Here we discuss the properties of the different enzymes associated with ADP-ribosylation and the consequences of this PTM on substrates. Furthermore, the different domains that interpret either mono- or poly-ADP-ribosylation and the implications for cellular processes are described.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Laura Eckei
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Patricia Verheugd
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Brian H Shilton
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany.,Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario , Medical Sciences Building Room 332, London, Ontario Canada N6A 5C1
| |
Collapse
|
24
|
Gravells P, Neale J, Grant E, Nathubhai A, Smith KM, James DI, Bryant HE. Radiosensitization with an inhibitor of poly(ADP-ribose) glycohydrolase: A comparison with the PARP1/2/3 inhibitor olaparib. DNA Repair (Amst) 2017; 61:25-36. [PMID: 29179156 PMCID: PMC5765821 DOI: 10.1016/j.dnarep.2017.11.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/12/2022]
Abstract
PARG and PARP inhibition both radiosensitize. PARP and PARG inhibition both alter the DNA damage response following irradiation (IR). PARP and PARG inhibition both alter homologous recombination following IR. Only PARG inhibition induces rapid activation of non-homologous end-joining post-IR. Only inhibition of PARG causes accumulation of cells in metaphase post-IR.
Upon DNA binding the poly(ADP-ribose) polymerase family of enzymes (PARPs) add multiple ADP-ribose subunits to themselves and other acceptor proteins. Inhibitors of PARPs have become an exciting and real prospect for monotherapy and as sensitizers to ionising radiation (IR). The action of PARPs are reversed by poly(ADP-ribose) glycohydrolase (PARG). Until recently studies of PARG have been limited by the lack of an inhibitor. Here, a first in class, specific, and cell permeable PARG inhibitor, PDD00017273, is shown to radiosensitize. Further, PDD00017273 is compared with the PARP1/2/3 inhibitor olaparib. Both olaparib and PDD00017273 altered the repair of IR-induced DNA damage, resulting in delayed resolution of RAD51 foci compared with control cells. However, only PARG inhibition induced a rapid increase in IR-induced activation of PRKDC (DNA-PK) and perturbed mitotic progression. This suggests that PARG has additional functions in the cell compared with inhibition of PARP1/2/3, likely via reversal of tankyrase activity and/or that inhibiting the removal of poly(ADP-ribose) (PAR) has a different consequence to inhibiting PAR addition. Overall, our data are consistent with previous genetic findings, reveal new insights into the function of PAR metabolism following IR and demonstrate for the first time the therapeutic potential of PARG inhibitors as radiosensitizing agents.
Collapse
Affiliation(s)
- Polly Gravells
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - James Neale
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - Emma Grant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - Amit Nathubhai
- Drug and Target Discovery, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, Somerset, BA2 7AY, United Kingdom
| | - Kate M Smith
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Dominic I James
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Helen E Bryant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom.
| |
Collapse
|
25
|
Ayala I, Colanzi A. Mitotic inheritance of the Golgi complex and its role in cell division. Biol Cell 2017; 109:364-374. [PMID: 28799169 DOI: 10.1111/boc.201700032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 12/30/2022]
Abstract
The Golgi apparatus plays essential roles in the processing and sorting of proteins and lipids, but it can also act as a signalling hub and a microtubule-nucleation centre. The Golgi complex (GC) of mammalian cells is composed of stacks connected by tubular bridges to form a continuous membranous system. In spite of this structural complexity, the GC is highly dynamic, and this feature becomes particularly evident during mitosis, when the GC undergoes a multi-step disassembly process that allows its correct partitioning and inheritance by daughter cells. Strikingly, different steps of Golgi disassembly control mitotic entry and progression, indicating that cells actively monitor Golgi integrity during cell division. Here, we summarise the basic mechanisms and the molecular players that are involved in Golgi disassembly, focussing in particular on recent studies that have revealed the fundamental signalling pathways that connect Golgi inheritance to mitotic entry and progression.
Collapse
Affiliation(s)
- Inmaculada Ayala
- Institute of Protein Biochemistry, National Research Council, Naples, 80131, Italy
| | - Antonino Colanzi
- Institute of Protein Biochemistry, National Research Council, Naples, 80131, Italy
| |
Collapse
|
26
|
Nounamo B, Li Y, O'Byrne P, Kearney AM, Khan A, Liu J. An interaction domain in human SAMD9 is essential for myxoma virus host-range determinant M062 antagonism of host anti-viral function. Virology 2017; 503:94-102. [PMID: 28157624 DOI: 10.1016/j.virol.2017.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 11/26/2022]
Abstract
In humans, deleterious mutations in the sterile α motif domain protein 9 (SAMD9) gene are associated with cancer, inflammation, weakening of the immune response, and developmental arrest. However, the biological function of SAMD9 and its sequence-structure relationships remain to be characterized. Previously, we found that an essential host range factor, M062 protein from myxoma virus (MYXV), antagonized the function of human SAMD9. In this study, we examine the interaction between M062 and human SAMD9 to identify regions that are critical to SAMD9 function. We also characterize the in vitro kinetics of the interaction. In an infection assay, exogenous expression of SAMD9 N-terminus leads to a potent inhibition of wild-type MYXV infection. We reason that this effect is due to the sequestration of viral M062 by the exogenously expressed N-terminal SAMD9 region. Our studies reveal the first molecular insight into viral M062-dependent mechanisms that suppress human SAMD9-associated antiviral function.
Collapse
Affiliation(s)
- Bernice Nounamo
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yibo Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Peter O'Byrne
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Aoife M Kearney
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Amir Khan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; The Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
27
|
Abstract
Here, we review how DNA damage affects the centrosome and how centrosomes communicate with the DNA damage response (DDR) apparatus. We discuss how several proteins of the DDR are found at centrosomes, including the ATM, ATR, CHK1 and CHK2 kinases, the BRCA1 ubiquitin ligase complex and several members of the poly(ADP-ribose) polymerase family. Stereotypical centrosome organisation, in which two centriole barrels are orthogonally arranged in a roughly toroidal pericentriolar material (PCM), is strongly affected by exposure to DNA-damaging agents. We describe the genetic dependencies and mechanisms for how the centrioles lose their close association, and the PCM both expands and distorts after DNA damage. Another consequence of genotoxic stress is that centrosomes undergo duplication outside the normal cell cycle stage, meaning that centrosome amplification is commonly seen after DNA damage. We discuss several potential mechanisms for how centrosome numbers become dysregulated after DNA damage and explore the links between the DDR and the PLK1- and separase-dependent mechanisms that drive centriole separation and reduplication. We also describe how centrosome components, such as centrin2, are directly involved in responding to DNA damage. This review outlines current questions on the involvement of centrosomes in the DDR.
Collapse
Affiliation(s)
- Lisa I Mullee
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Biosciences Building, Dangan, Galway, Ireland
| | - Ciaran G Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Biosciences Building, Dangan, Galway, Ireland.
| |
Collapse
|
28
|
DaRosa PA, Ovchinnikov S, Xu W, Klevit RE. Structural insights into SAM domain-mediated tankyrase oligomerization. Protein Sci 2016; 25:1744-52. [PMID: 27328430 DOI: 10.1002/pro.2968] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/16/2016] [Indexed: 12/28/2022]
Abstract
Tankyrase 1 (TNKS1; a.k.a. ARTD5) and tankyrase 2 (TNKS2; a.k.a ARTD6) are highly homologous poly(ADP-ribose) polymerases (PARPs) that function in a wide variety of cellular processes including Wnt signaling, Src signaling, Akt signaling, Glut4 vesicle translocation, telomere length regulation, and centriole and spindle pole maturation. Tankyrase proteins include a sterile alpha motif (SAM) domain that undergoes oligomerization in vitro and in vivo. However, the SAM domains of TNKS1 and TNKS2 have not been structurally characterized and the mode of oligomerization is not yet defined. Here we model the SAM domain-mediated oligomerization of tankyrase. The structural model, supported by mutagenesis and NMR analysis, demonstrates a helical, homotypic head-to-tail polymer that facilitates TNKS self-association. Furthermore, we show that TNKS1 and TNKS2 can form (TNKS1 SAM-TNKS2 SAM) hetero-oligomeric structures mediated by their SAM domains. Though wild-type tankyrase proteins have very low solubility, model-based mutations of the SAM oligomerization interface residues allowed us to obtain soluble TNKS proteins. These structural insights will be invaluable for the functional and biophysical characterization of TNKS1/2, including the role of TNKS oligomerization in protein poly(ADP-ribosyl)ation (PARylation) and PARylation-dependent ubiquitylation.
Collapse
Affiliation(s)
- Paul A DaRosa
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195.,Department of Biological Structure, University of Washington, Seattle, Washington, 98195
| | - Sergey Ovchinnikov
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington, 98195
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, Washington, 98195
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195
| |
Collapse
|
29
|
Lupo B, Vialard J, Sassi F, Angibaud P, Puliafito A, Pupo E, Lanzetti L, Comoglio PM, Bertotti A, Trusolino L. Tankyrase inhibition impairs directional migration and invasion of lung cancer cells by affecting microtubule dynamics and polarity signals. BMC Biol 2016; 14:5. [PMID: 26787475 PMCID: PMC4719581 DOI: 10.1186/s12915-016-0226-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Tankyrases are poly(adenosine diphosphate)-ribose polymerases that contribute to biological processes as diverse as modulation of Wnt signaling, telomere maintenance, vesicle trafficking, and microtubule-dependent spindle pole assembly during mitosis. At interphase, polarized reshaping of the microtubule network fosters oriented cell migration. This is attained by association of adenomatous polyposis coli with the plus end of microtubules at the cortex of cell membrane protrusions and microtubule-based centrosome reorientation towards the migrating front. RESULTS Here we report a new function for tankyrases, namely, regulation of directional cell locomotion. Using a panel of lung cancer cell lines as a model system, we found that abrogation of tankyrase activity by two different, structurally unrelated small-molecule inhibitors (one introduced and characterized here for the first time) or by RNA interference-based genetic silencing weakened cell migration, invasion, and directional movement induced by the motogenic cytokine hepatocyte growth factor. Mechanistically, the anti-invasive outcome of tankyrase inhibition could be ascribed to sequential deterioration of the distinct events that govern cell directional sensing. In particular, tankyrase blockade negatively impacted (1) microtubule dynamic instability; (2) adenomatous polyposis coli plasma membrane targeting; and (3) centrosome reorientation. CONCLUSIONS Collectively, these findings uncover an unanticipated role for tankyrases in influencing at multiple levels the interphase dynamics of the microtubule network and the subcellular distribution of related polarity signals. These results encourage the further exploration of tankyrase inhibitors as therapeutic tools to oppose dissemination and metastasis of cancer cells.
Collapse
Affiliation(s)
- Barbara Lupo
- Department of Oncology, University of Torino Medical School, 10060, Candiolo, Torino, Italy.,Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute - FPO IRCCS, Strada Provinciale 142, km 3.95, 10060, Candiolo, Torino, Italy
| | - Jorge Vialard
- Janssen Research & Development, a Division of Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Francesco Sassi
- Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute - FPO IRCCS, Strada Provinciale 142, km 3.95, 10060, Candiolo, Torino, Italy
| | - Patrick Angibaud
- Janssen Research & Development, a Division of Janssen-Cilag, 27106, Val-de-Reuil, Cedex, France
| | - Alberto Puliafito
- Laboratory of Cell Migration, Candiolo Cancer Institute - FPO IRCCS, 10060, Candiolo, Torino, Italy
| | - Emanuela Pupo
- Laboratory of Membrane Trafficking, Candiolo Cancer Institute - FPO IRCCS, 10060, Candiolo, Torino, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, 10060, Candiolo, Torino, Italy.,Laboratory of Membrane Trafficking, Candiolo Cancer Institute - FPO IRCCS, 10060, Candiolo, Torino, Italy
| | - Paolo M Comoglio
- Department of Oncology, University of Torino Medical School, 10060, Candiolo, Torino, Italy.,Experimental Clinical Molecular Oncology, Candiolo Cancer Institute - FPO IRCCS, 10060, Candiolo, Torino, Italy
| | - Andrea Bertotti
- Department of Oncology, University of Torino Medical School, 10060, Candiolo, Torino, Italy. .,Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute - FPO IRCCS, Strada Provinciale 142, km 3.95, 10060, Candiolo, Torino, Italy. .,Istituto Nazionale di Biostrutture e Biosistemi, INBB, 00136, Rome, Italy.
| | - Livio Trusolino
- Department of Oncology, University of Torino Medical School, 10060, Candiolo, Torino, Italy. .,Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute - FPO IRCCS, Strada Provinciale 142, km 3.95, 10060, Candiolo, Torino, Italy.
| |
Collapse
|
30
|
Haikarainen T, Waaler J, Ignatev A, Nkizinkiko Y, Venkannagari H, Obaji E, Krauss S, Lehtiö L. Development and structural analysis of adenosine site binding tankyrase inhibitors. Bioorg Med Chem Lett 2016; 26:328-333. [DOI: 10.1016/j.bmcl.2015.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023]
|
31
|
Valente C, Colanzi A. Mechanisms and Regulation of the Mitotic Inheritance of the Golgi Complex. Front Cell Dev Biol 2015; 3:79. [PMID: 26734607 PMCID: PMC4679863 DOI: 10.3389/fcell.2015.00079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/27/2015] [Indexed: 11/13/2022] Open
Abstract
In mammalian cells, the Golgi complex is structured in the form of a continuous membranous system composed of stacks connected by tubular bridges: the "Golgi ribbon." At the onset of mitosis, the Golgi complex undergoes a multi-step fragmentation process that is required for its correct partition into the dividing cells. Importantly, inhibition of Golgi disassembly results in cell-cycle arrest at the G2 stage, which indicates that accurate inheritance of the Golgi complex is monitored by a "Golgi mitotic checkpoint." Moreover, mitotic Golgi disassembly correlates with the release of a set of Golgi-localized proteins that acquire specific functions during mitosis, such as mitotic spindle formation and regulation of the spindle checkpoint. Most of these events are regulated by small GTPases of the Arf and Rab families. Here, we review recent studies that are revealing the fundamental mechanisms, the molecular players, and the biological significance of mitotic inheritance of the Golgi complex in mammalian cells. We also briefly comment on how Golgi partitioning is coordinated with mitotic progression.
Collapse
Affiliation(s)
- Carmen Valente
- Institute of Protein Biochemistry, National Research Council Naples, Italy
| | - Antonino Colanzi
- Institute of Protein Biochemistry, National Research Council Naples, Italy
| |
Collapse
|
32
|
Teloni F, Altmeyer M. Readers of poly(ADP-ribose): designed to be fit for purpose. Nucleic Acids Res 2015; 44:993-1006. [PMID: 26673700 PMCID: PMC4756826 DOI: 10.1093/nar/gkv1383] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/26/2015] [Indexed: 01/14/2023] Open
Abstract
Post-translational modifications (PTMs) regulate many aspects of protein function and are indispensable for the spatio-temporal regulation of cellular processes. The proteome-wide identification of PTM targets has made significant progress in recent years, as has the characterization of their writers, readers, modifiers and erasers. One of the most elusive PTMs is poly(ADP-ribosyl)ation (PARylation), a nucleic acid-like PTM involved in chromatin dynamics, genome stability maintenance, transcription, cell metabolism and development. In this article, we provide an overview on our current understanding of the writers of this modification and their targets, as well as the enzymes that degrade and thereby modify and erase poly(ADP-ribose) (PAR). Since many cellular functions of PARylation are exerted through dynamic interactions of PAR-binding proteins with PAR, we discuss the readers of this modification and provide a synthesis of recent findings, which suggest that multiple structurally highly diverse reader modules, ranging from completely folded PAR-binding domains to intrinsically disordered sequence stretches, evolved as PAR effectors to carry out specific cellular functions.
Collapse
Affiliation(s)
- Federico Teloni
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Matthias Altmeyer
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
33
|
Wang W, Li N, Li X, Tran MK, Han X, Chen J. Tankyrase Inhibitors Target YAP by Stabilizing Angiomotin Family Proteins. Cell Rep 2015; 13:524-532. [PMID: 26456820 DOI: 10.1016/j.celrep.2015.09.014] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/20/2015] [Accepted: 09/03/2015] [Indexed: 10/22/2022] Open
Abstract
As the key effector in the Hippo pathway, YAP was identified as an oncoprotein whose expression is elevated in various human cancers. However, the development of potentially therapeutic compounds targeting YAP has been slow and limited. Here, we find that tankyrase inhibitors suppress YAP activity. This effect is mediated by anigomotin (AMOT) family proteins. Tankyrases associate with AMOT family proteins and promote their degradation through E3 ligase RNF146. By antagonizing tankyrase activity, tankyrase inhibitors stabilize AMOT family proteins, thereby suppressing YAP oncogenic functions. Together, our studies not only demonstrate the tankyrase-RNF146-AMOT axis as an upstream pathway regulating YAP but also reveal a therapeutic opportunity in targeting YAP for cancer treatment.
Collapse
Affiliation(s)
- Wenqi Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | - Nan Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Xu Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - My Kim Tran
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Xin Han
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Haikarainen T, Krauss S, Lehtio L. Tankyrases: structure, function and therapeutic implications in cancer. Curr Pharm Des 2015; 20:6472-88. [PMID: 24975604 PMCID: PMC4262938 DOI: 10.2174/1381612820666140630101525] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/26/2014] [Indexed: 12/22/2022]
Abstract
Several cellular signaling pathways are regulated by ADP-ribosylation, a posttranslational modification catalyzed by members of the ARTD superfamily. Tankyrases are distinguishable from the rest of this family by their unique domain organization, notably the sterile alpha motif responsible for oligomerization and ankyrin repeats mediating protein-protein interactions. Tankyrases are involved in various cellular functions, such as telomere homeostasis, Wnt/β-catenin signaling, glucose metabolism, and cell cycle progression. In these processes, Tankyrases regulate the interactions and stability of target proteins by poly (ADP-ribosyl)ation. Modified proteins are subsequently recognized by the E3 ubiquitin ligase RNF146, poly-ubiquitinated and predominantly guided to 26S proteasomal degradation. Several small molecule inhibitors have been described for Tankyrases; they compete with the co-substrate NAD+ for binding to the ARTD catalytic domain. The recent, highly potent and selective inhibitors possess several properties of lead compounds and can be used for proof-of-concept studies in cancer and other Tankyrase linked diseases.
Collapse
Affiliation(s)
| | | | - Lari Lehtio
- SFI-CAST Biomedical Innovation Center, Unit for Cell Signaling, Oslo University Hospital, Forskningsparken, Gaustadalleen 21, 0349, Oslo, Norway.
| |
Collapse
|
35
|
Disruption of Wnt/β-Catenin Signaling and Telomeric Shortening Are Inextricable Consequences of Tankyrase Inhibition in Human Cells. Mol Cell Biol 2015; 35:2425-35. [PMID: 25939383 DOI: 10.1128/mcb.00392-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/28/2015] [Indexed: 01/05/2023] Open
Abstract
Maintenance of chromosomal ends (telomeres) directly contributes to cancer cell immortalization. The telomere protection enzymes belonging to the tankyrase (Tnks) subfamily of poly(ADP-ribose) polymerases (PARPs) have recently been shown to also control transcriptional response to secreted Wnt signaling molecules. Whereas Tnks inhibitors are currently being developed as therapeutic agents for targeting Wnt-related cancers and as modulators of Wnt signaling in tissue-engineering agendas, their impact on telomere length maintenance remains unclear. Here, we leveraged a collection of Wnt pathway inhibitors with previously unassigned mechanisms of action to identify novel pharmacophores supporting Tnks inhibition. A multifaceted experimental approach that included structural, biochemical, and cell biological analyses revealed two distinct chemotypes with selectivity for Tnks enzymes. Using these reagents, we revealed that Tnks inhibition rapidly induces DNA damage at telomeres and telomeric shortening upon long-term chemical exposure in cultured cells. On the other hand, inhibitors of the Wnt acyltransferase Porcupine (Porcn) elicited neither effect. Thus, Tnks inhibitors impact telomere length maintenance independently of their affects on Wnt/β-catenin signaling. We discuss the implications of these findings for anticancer and regenerative medicine agendas dependent upon chemical inhibitors of Wnt/β-catenin signaling.
Collapse
|
36
|
Ohta S, Wood L, Toramoto I, Yagyu KI, Fukagawa T, Earnshaw WC. CENP-32 is required to maintain centrosomal dominance in bipolar spindle assembly. Mol Biol Cell 2015; 26:1225-37. [PMID: 25657325 PMCID: PMC4454171 DOI: 10.1091/mbc.e14-09-1366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
CENP-32 depletion releases centrosomes from spindles after initiating spindle assembly. The free centrosomes do not interfere with the structure or function of the bipolar anastral spindle. The asters appear to be able to interact with the surface of the spindle but are unable to incorporate into it. Centrosomes nucleate spindle formation, direct spindle pole positioning, and are important for proper chromosome segregation during mitosis in most animal cells. We previously reported that centromere protein 32 (CENP-32) is required for centrosome association with spindle poles during metaphase. In this study, we show that CENP-32 depletion seems to release centrosomes from bipolar spindles whose assembly they had previously initiated. Remarkably, the resulting anastral spindles function normally, aligning the chromosomes to a metaphase plate and entering anaphase without detectable interference from the free centrosomes, which appear to behave as free asters in these cells. The free asters, which contain reduced but significant levels of CDK5RAP2, show weak interactions with spindle microtubules but do not seem to make productive attachments to kinetochores. Thus CENP-32 appears to be required for centrosomes to integrate into a fully functional spindle that not only nucleates astral microtubules, but also is able to nucleate and bind to kinetochore and central spindle microtubules. Additional data suggest that NuMA tethers microtubules at the anastral spindle poles and that augmin is required for centrosome detachment after CENP-32 depletion, possibly due to an imbalance of forces within the spindle.
Collapse
Affiliation(s)
- Shinya Ohta
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Laura Wood
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Iyo Toramoto
- Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Ken-Ichi Yagyu
- Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Tatsuo Fukagawa
- Department of Molecular Genetics, National Institute of Genetics and the Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
37
|
Li N, Zhang Y, Han X, Liang K, Wang J, Feng L, Wang W, Songyang Z, Lin C, Yang L, Yu Y, Chen J. Poly-ADP ribosylation of PTEN by tankyrases promotes PTEN degradation and tumor growth. Genes Dev 2014; 29:157-70. [PMID: 25547115 PMCID: PMC4298135 DOI: 10.1101/gad.251785.114] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PTEN [phosphatidylinositol (3,4,5)-trisphosphate phosphatase and tensin homolog deleted from chromosome 10], a phosphatase and critical tumor suppressor, is regulated by numerous post-translational modifications, including phosphorylation, ubiquitination, acetylation, and SUMOylation, which affect PTEN localization and protein stability. Here we report ADP-ribosylation as a new post-translational modification of PTEN. We identified PTEN as a novel substrate of tankyrases, which are members of the poly(ADP-ribose) polymerases (PARPs). We showed that tankyrases interact with and ribosylate PTEN, which promotes the recognition of PTEN by a PAR-binding E3 ubiquitin ligase, RNF146, leading to PTEN ubiquitination and degradation. Double knockdown of tankyrase1/2 stabilized PTEN, resulting in the subsequent down-regulation of AKT phosphorylation and thus suppressed cell proliferation and glycolysis in vitro and tumor growth in vivo. Furthermore, tankyrases were up-regulated and negatively correlated with PTEN expression in human colon carcinomas. Together, our study revealed a new regulation of PTEN and highlighted a role for tankyrases in the PTEN-AKT pathway that can be explored further for cancer treatment.
Collapse
Affiliation(s)
- Nan Li
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yajie Zhang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Xin Han
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ke Liang
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jiadong Wang
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lin Feng
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wenqi Wang
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Verna and Marrs Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA;
| |
Collapse
|
38
|
Kma L, Sharan RN. Dimethylnitrosamine-Induced Reduction in the Level of Poly-ADP-Ribosylation of Histone Proteins of Blood Lymphocytes - a Sensitive and Reliable Biomarker for Early Detection of Cancer. Asian Pac J Cancer Prev 2014; 15:6429-36. [DOI: 10.7314/apjcp.2014.15.15.6429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
39
|
Vyas S, Matic I, Uchima L, Rood J, Zaja R, Hay RT, Ahel I, Chang P. Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun 2014; 5:4426. [PMID: 25043379 DOI: 10.1038/ncomms5426] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/17/2014] [Indexed: 12/11/2022] Open
Abstract
The poly(adenosine diphosphate (ADP)-ribose) polymerase (PARP) protein family generates ADP-ribose (ADPr) modifications onto target proteins using NAD(+) as substrate. Based on the composition of three NAD(+) coordinating amino acids, the H-Y-E motif, each PARP is predicted to generate either poly(ADPr) (PAR) or mono(ADPr) (MAR). However, the reaction product of each PARP has not been clearly defined, and is an important priority since PAR and MAR function via distinct mechanisms. Here we show that the majority of PARPs generate MAR, not PAR, and demonstrate that the H-Y-E motif is not the sole indicator of PARP activity. We identify automodification sites on seven PARPs, and demonstrate that MAR and PAR generating PARPs modify similar amino acids, suggesting that the sequence and structural constraints limiting PARPs to MAR synthesis do not limit their ability to modify canonical amino-acid targets. In addition, we identify cysteine as a novel amino-acid target for ADP-ribosylation on PARPs.
Collapse
Affiliation(s)
- Sejal Vyas
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ivan Matic
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Sir James Black Centre, Dow Street, Dundee DD1 5EH, UK
| | - Lilen Uchima
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jenny Rood
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Roko Zaja
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.,Division for Marine and Environmental Research, Rudjer Boskovic Institute, Zagreb 10002, Croatia
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Sir James Black Centre, Dow Street, Dundee DD1 5EH, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Paul Chang
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
40
|
Lupo B, Trusolino L. Inhibition of poly(ADP-ribosyl)ation in cancer: old and new paradigms revisited. Biochim Biophys Acta Rev Cancer 2014; 1846:201-15. [PMID: 25026313 DOI: 10.1016/j.bbcan.2014.07.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/02/2014] [Accepted: 07/08/2014] [Indexed: 01/31/2023]
Abstract
Inhibitors of poly(ADP-ribose) polymerases actualized the biological concept of synthetic lethality in the clinical practice, yielding a paradigmatic example of translational medicine. The profound sensitivity of tumors with germline BRCA mutations to PARP1/2 blockade owes to inherent defects of the BRCA-dependent homologous recombination machinery, which are unleashed by interruption of PARP DNA repair activity and lead to DNA damage overload and cell death. Conversely, aspirant BRCA-like tumors harboring somatic DNA repair dysfunctions (a vast entity of genetic and epigenetic defects known as "BRCAness") not always align with the familial counterpart and appear not to be equally sensitive to PARP inhibition. The acquisition of secondary resistance in initially responsive patients and the lack of standardized biomarkers to identify "BRCAness" pose serious threats to the clinical advance of PARP inhibitors; a feeling is also emerging that a BRCA-centered perspective might have missed the influence of additional, not negligible and DNA repair-independent PARP contributions onto therapy outcome. While regulatory approval for PARP1/2 inhibitors is still pending, novel therapeutic opportunities are sprouting from different branches of the PARP family, although they remain immature for clinical extrapolation. This review is an endeavor to provide a comprehensive appraisal of the multifaceted biology of PARPs and their evolving impact on cancer therapeutics.
Collapse
Affiliation(s)
- Barbara Lupo
- Department of Oncology, University of Torino Medical School, 10060 Candiolo, Torino, Italy; Laboratory of Molecular Pharmacology, Candiolo Cancer Institute, FPO IRCCS, 10060 Candiolo, Torino, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino Medical School, 10060 Candiolo, Torino, Italy; Laboratory of Molecular Pharmacology, Candiolo Cancer Institute, FPO IRCCS, 10060 Candiolo, Torino, Italy.
| |
Collapse
|
41
|
Honda H, Nagamachi A, Inaba T. -7/7q- syndrome in myeloid-lineage hematopoietic malignancies: attempts to understand this complex disease entity. Oncogene 2014; 34:2413-25. [PMID: 24998854 DOI: 10.1038/onc.2014.196] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/27/2014] [Accepted: 06/03/2014] [Indexed: 01/19/2023]
Abstract
The recurrence of chromosomal abnormalities in a specific subtype of cancer strongly suggests that dysregulated gene expression in the corresponding region has a critical role in disease pathogenesis. -7/7q-, defined as the entire loss of chromosome 7 and partial deletion of its long arm, is among the most frequently observed chromosomal aberrations in myeloid-lineage hematopoietic malignancies such as myelodysplastic syndrome and acute myeloid leukemia, particularly in patients treated with cytotoxic agents and/or irradiation. Tremendous efforts have been made to clarify the molecular mechanisms underlying the disease development, and several possible candidate genes have been cloned. However, the study is still underway, and the entire nature of this syndrome is not completely understood. In this review, we focus on the attempts to identify commonly deleted regions in patients with -7/7q-; isolate the candidate genes responsible for disease development, cooperative genes and the factors affecting disease prognosis; and determine effective and potent therapeutic approaches. We also refer to the possibility that the accumulation of multiple gene haploinsufficiency, rather than the loss of a single tumor suppressor gene, may contribute to the development of diseases with large chromosomal deletions such as -7/7q-.
Collapse
Affiliation(s)
- H Honda
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - A Nagamachi
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - T Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
42
|
Feng Y, Li X, Ray L, Song H, Qu J, Lin S, Lin X. The Drosophila tankyrase regulates Wg signaling depending on the concentration of Daxin. Cell Signal 2014; 26:1717-24. [PMID: 24768997 DOI: 10.1016/j.cellsig.2014.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 04/19/2014] [Indexed: 02/04/2023]
Abstract
The canonical Wnt signaling pathway plays critical roles during development and homeostasis. Dysregulation of this pathway can lead to many human diseases, including cancers. A key process in this pathway consists of regulation of β-catenin concentration through an Axin-recruited destruction complex. Previous studies have demonstrated a role for tankyrase (TNKS), a protein with poly(ADP-ribose) polymerase, in the regulation of Axin levels in human cells. However, the role of TNKS in development is still unclear. Here, we have generated a Drosophila tankyrase (DTNKS) mutant and provided compelling evidence that DTNKS is involved in the degradation of Drosophila Axin (Daxin). We show that Daxin physically interacts with DTNKS, and its protein levels are elevated in the absence of DTNKS in the eye discs. In S2 cells, DTNKS suppressed the levels of Daxin. Surprisingly, we found that Daxin in turn down-regulated DTNKS protein level. In vivo study showed that DTNKS regulated Wg signaling and wing patterning at a high Daxin protein level, but not at a normal level. Taken together, our findings identified a conserved role of DTNKS in regulating Daxin levels, and thereby Wg/Wnt signaling during development.
Collapse
Affiliation(s)
- Ying Feng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xue Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lorraine Ray
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Haiyun Song
- Laboratory of Food Safety, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shuyong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Xinhua Lin
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
43
|
Schoumacher M, Hurov KE, Lehár J, Yan-Neale Y, Mishina Y, Sonkin D, Korn JM, Flemming D, Jones MD, Antonakos B, Cooke VG, Steiger J, Ledell J, Stump MD, Sellers WR, Danial NN, Shao W. Inhibiting Tankyrases sensitizes KRAS-mutant cancer cells to MEK inhibitors via FGFR2 feedback signaling. Cancer Res 2014; 74:3294-305. [PMID: 24747911 DOI: 10.1158/0008-5472.can-14-0138-t] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tankyrases (TNKS) play roles in Wnt signaling, telomere homeostasis, and mitosis, offering attractive targets for anticancer treatment. Using unbiased combination screening in a large panel of cancer cell lines, we have identified a strong synergy between TNKS and MEK inhibitors (MEKi) in KRAS-mutant cancer cells. Our study uncovers a novel function of TNKS in the relief of a feedback loop induced by MEK inhibition on FGFR2 signaling pathway. Moreover, dual inhibition of TNKS and MEK leads to more robust apoptosis and antitumor activity both in vitro and in vivo than effects observed by previously reported MEKi combinations. Altogether, our results show how a novel combination of TNKS and MEK inhibitors can be highly effective in targeting KRAS-mutant cancers by suppressing a newly discovered resistance mechanism.
Collapse
Affiliation(s)
- Marie Schoumacher
- Authors' Affiliations: Oncology Department, Novartis Institutes for BioMedical Research; Zalicus Inc., Cambridge; and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kristen E Hurov
- Authors' Affiliations: Oncology Department, Novartis Institutes for BioMedical Research; Zalicus Inc., Cambridge; and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joseph Lehár
- Authors' Affiliations: Oncology Department, Novartis Institutes for BioMedical Research; Zalicus Inc., Cambridge; and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yan Yan-Neale
- Authors' Affiliations: Oncology Department, Novartis Institutes for BioMedical Research; Zalicus Inc., Cambridge; and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yuji Mishina
- Authors' Affiliations: Oncology Department, Novartis Institutes for BioMedical Research; Zalicus Inc., Cambridge; and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Dmitriy Sonkin
- Authors' Affiliations: Oncology Department, Novartis Institutes for BioMedical Research; Zalicus Inc., Cambridge; and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joshua M Korn
- Authors' Affiliations: Oncology Department, Novartis Institutes for BioMedical Research; Zalicus Inc., Cambridge; and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Daisy Flemming
- Authors' Affiliations: Oncology Department, Novartis Institutes for BioMedical Research; Zalicus Inc., Cambridge; and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael D Jones
- Authors' Affiliations: Oncology Department, Novartis Institutes for BioMedical Research; Zalicus Inc., Cambridge; and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Brandon Antonakos
- Authors' Affiliations: Oncology Department, Novartis Institutes for BioMedical Research; Zalicus Inc., Cambridge; and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Vesselina G Cooke
- Authors' Affiliations: Oncology Department, Novartis Institutes for BioMedical Research; Zalicus Inc., Cambridge; and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Janine Steiger
- Authors' Affiliations: Oncology Department, Novartis Institutes for BioMedical Research; Zalicus Inc., Cambridge; and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jebediah Ledell
- Authors' Affiliations: Oncology Department, Novartis Institutes for BioMedical Research; Zalicus Inc., Cambridge; and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mark D Stump
- Authors' Affiliations: Oncology Department, Novartis Institutes for BioMedical Research; Zalicus Inc., Cambridge; and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - William R Sellers
- Authors' Affiliations: Oncology Department, Novartis Institutes for BioMedical Research; Zalicus Inc., Cambridge; and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nika N Danial
- Authors' Affiliations: Oncology Department, Novartis Institutes for BioMedical Research; Zalicus Inc., Cambridge; and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wenlin Shao
- Authors' Affiliations: Oncology Department, Novartis Institutes for BioMedical Research; Zalicus Inc., Cambridge; and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
44
|
Kimura H, Miki Y, Nakanishi A. Centrosomes at M phase act as a scaffold for the accumulation of intracellular ubiquitinated proteins. Cell Cycle 2014; 13:1928-37. [PMID: 24743317 DOI: 10.4161/cc.28896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Centrosome size varies considerably during the cell cycle; it is greatest during metaphase, partly because of pericentriolar matrix recruitment and an increase in microtubule-organizing activity. However, the mechanism of centrosome maturation during M phase is poorly defined. In the present study, we identified and quantified centrosomal proteins during S and M phases using stable isotope labeling by amino acids in cell culture (SILAC) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). We identified 991 proteins, of which 310 and 325 proteins were upregulated during S and M phases, respectively. Ubiquitinated proteins containing K48- and K63-linked polyubiquitin chains accumulated in the centrosomes during M phase, although 26S proteasome activity in the centrosomes did not markedly differ between S and M phases. Conversely, cytoplasmic dynein, which transports ubiquitinated proteins to the centrosomes, increased 2-fold in the centrosomes during M phase relative to S phase. Furthermore, PYR-41, a ubiquitin E1 inhibitor, reduced centrosome size during metaphase, causing increased aneuploidy. RNA interference suppression of Ecm29, which inhibits proteasome activity, decreased the accumulation of ubiquitinated proteins in the centrosomes. These results show that accumulation of ubiquitinated proteins promotes centrosome maturation during M phase and further suggest a novel function of centrosomes as a scaffold temporarily gathering intracellular ubiquitinated proteins.
Collapse
Affiliation(s)
- Hitomi Kimura
- Department of Molecular Genetics; Medical Research Institute; Tokyo Medical and Dental University (TMDU); Bunkyo-ku, Tokyo, Japan
| | - Yoshio Miki
- Department of Molecular Genetics; Medical Research Institute; Tokyo Medical and Dental University (TMDU); Bunkyo-ku, Tokyo, Japan; Department of Genetic Diagnosis; The Cancer Institute; Japanese Foundation for Cancer Research; Koto-ku, Tokyo, Japan
| | - Akira Nakanishi
- Department of Molecular Genetics; Medical Research Institute; Tokyo Medical and Dental University (TMDU); Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
45
|
Abstract
ADP-ribosylation is a type of posttranslational modification catalyzed by members of the poly(ADP-ribose) (PAR) polymerase superfamily. ADP-ribosylation is initiated by PARPs, recognized by PAR binding proteins, and removed by PARG and other ADP-ribose hydrolases. These three groups of proteins work together to regulate the cellular and molecular response of PAR signaling, which is critical for a wide range of cellular and physiological functions.
Collapse
Affiliation(s)
- Nan Li
- Department of Experimental Radiation Oncology, Unit 66, The University of Texas MD Anderson Cancer Center, Houston, TX 77030,
USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, Unit 66, The University of Texas MD Anderson Cancer Center, Houston, TX 77030,
USA
| |
Collapse
|
46
|
Nagamachi A, Matsui H, Asou H, Ozaki Y, Aki D, Kanai A, Takubo K, Suda T, Nakamura T, Wolff L, Honda H, Inaba T. Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking human diseases with monosomy 7. Cancer Cell 2013; 24:305-17. [PMID: 24029230 DOI: 10.1016/j.ccr.2013.08.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/25/2012] [Accepted: 08/15/2013] [Indexed: 01/21/2023]
Abstract
Monosomy 7 and interstitial deletion of 7q (-7/7q-) are well-recognized nonrandom chromosomal abnormalities frequently found among patients with myelodysplastic syndromes (MDSs) and myeloid leukemias. We previously identified candidate myeloid tumor suppressor genes (SAMD9, SAMD9-like = SAMD9L, and Miki) in the 7q21.3 subband. We established SAMD9L-deficient mice and found that SAMD9L(+/-) mice as well as SAMD9L(-/-) mice develop myeloid diseases resembling human diseases associated with -7/7q-. SAMD9L-deficient hematopoietic stem cells showed enhanced colony formation potential and in vivo reconstitution ability. SAMD9L localizes in early endosomes. SAMD9L-deficient cells showed delays in homotypic endosome fusion, resulting in persistence of ligand-bound cytokine receptors. These findings suggest that haploinsufficiency of SAMD9L and/or SAMD9 gene(s) contributes to myeloid transformation.
Collapse
Affiliation(s)
- Akiko Nagamachi
- Department of Molecular Oncology and Leukemia Program Project, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lehtiö L, Chi NW, Krauss S. Tankyrases as drug targets. FEBS J 2013; 280:3576-93. [PMID: 23648170 DOI: 10.1111/febs.12320] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/30/2013] [Accepted: 05/01/2013] [Indexed: 12/11/2022]
Abstract
Tankyrase 1 and tankyrase 2 are poly(ADP-ribosyl)ases that are distinguishable from other members of the enzyme family by the structural features of the catalytic domain, and the presence of a sterile α-motif multimerization domain and an ankyrin repeat protein-interaction domain. Tankyrases are implicated in a multitude of cellular functions, including telomere homeostasis, mitotic spindle formation, vesicle transport linked to glucose metabolism, Wnt-β-catenin signaling, and viral replication. In these processes, tankyrases interact with target proteins, catalyze poly(ADP-ribosyl)ation, and regulate protein interactions and stability. The proposed roles of tankyrases in disease-relevant cellular processes have made them attractive drug targets. Recently, several inhibitors have been identified. The selectivity and potency of these small molecules can be rationalized by how they fit within the NAD(+)-binding groove of the catalytic domain. Some molecules bind to the nicotinamide subsite, such as generic diphtheria toxin-like ADP-ribosyltransferase inhibitors, whereas others bind to a distinct adenosine subsite that diverges from other diphtheria toxin-like ADP-ribosyltransferases and confers specificity. A highly potent dual-site inhibitor is also available. Within the last few years, tankyrase inhibitors have proved to be useful chemical probes and potential lead compounds, especially for specific cancers.
Collapse
Affiliation(s)
- Lari Lehtiö
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Oulu, Finland.
| | | | | |
Collapse
|
48
|
Voronkov A, Holsworth DD, Waaler J, Wilson SR, Ekblad B, Perdreau-Dahl H, Dinh H, Drewes G, Hopf C, Morth JP, Krauss S. Structural basis and SAR for G007-LK, a lead stage 1,2,4-triazole based specific tankyrase 1/2 inhibitor. J Med Chem 2013; 56:3012-23. [PMID: 23473363 DOI: 10.1021/jm4000566] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tankyrases 1 and 2 (TNKS1/2) are promising pharmacological biotargets with possible applications for the development of novel anticancer therapeutics. A focused structure-activity relationship study was conducted based on the tankyrase inhibitor JW74 (1). Chemical analoging of 1 improved the 1,2,4-triazole based core and led to 4-{5-[(E)-2-{4-(2-chlorophenyl)-5-[5-(methylsulfonyl)pyridin-2-yl]-4H-1,2,4-triazol-3-yl}ethenyl]-1,3,4-oxadiazol-2-yl}benzonitrile (G007-LK), a potent, "rule of 5" compliant and a metabolically stable TNKS1/2 inhibitor. G007-LK (66) displayed high selectivity toward tankyrases 1 and 2 with biochemical IC50 values of 46 nM and 25 nM, respectively, and a cellular IC50 value of 50 nM combined with an excellent pharmacokinetic profile in mice. The PARP domain of TNKS2 was cocrystallized with 66, and the X-ray structure was determined at 2.8 Å resolution in the space group P3221. The structure revealed that 66 binds to unique structural features in the extended adenosine binding pocket which forms the structural basis for the compound's high target selectivity and specificity. Our study provides a significantly optimized compound for targeting TNKS1/2 in vitro and in vivo.
Collapse
Affiliation(s)
- Andrew Voronkov
- SFI CAST Biomedical Innovation Center, Unit for Cell Signaling, Oslo University Hospital, Forskningsparken, Gaustadalleén 21, 0349 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The Golgi complex of mammalian cells is composed of interconnected stacks of flattened cisternae that form a continuous membrane system in the pericentriolar region of the cell. At the onset of mitosis, this so-called Golgi ribbon is converted into small tubular-vesicular clusters in a tightly regulated fragmentation process, which leads to a temporary loss of the physical Golgi-centrosome proximity. Mitotic Golgi breakdown is required for Golgi partitioning into the two daughter cells, cell cycle progression and may contribute to the dispersal of Golgi-associated signaling molecules. Here, we review our current understanding of the mechanisms that control mitotic Golgi reorganization, its biological significance, and assays that are used to study this process.
Collapse
|