1
|
Amoah DP, Hussein SK, Johnson JL, LaPointe P. Ordered ATP hydrolysis in the Hsp90 chaperone is regulated by Aha1 and a conserved post-translational modification. Protein Sci 2025; 34:e5255. [PMID: 39665290 PMCID: PMC11635476 DOI: 10.1002/pro.5255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
Hsp90 is a dimeric molecular chaperone that is important for the folding, stabilization, activation, and maturation of hundreds of protein substrates called "clients" in cells. Dozens of co-chaperones and hundreds of post-translational modifications (PTMs) regulate the ATP-dependent client activation cycle. The Aha1 co-chaperone is the most potent stimulator of the ATPase cycle of Hsp90 and phosphorylation of threonine 22 in Hsp90 can regulate the recruitment of Aha1 in cells. We report here that phosphorylation of threonine 22 regulates specific aspects of Aha1 function after recruitment occurs. The phosphomimetic substitution, T22E, neutralizes the action of the Aha1 NxNNWHW motif. Moreover, this substitution can exert this effect from only one protomer of the Hsp90 dimer. This work sheds light on how asymmetric modifications in the Hsp90 dimer can functionalize individual protomers and fine-tune the Hsp90 cycle.
Collapse
Affiliation(s)
- Desmond Prah Amoah
- Department of Cell Biology, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Solomon K. Hussein
- Department of Cell Biology, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Jill L. Johnson
- Department of Biological Sciences and the Center for Reproductive BiologyUniversity of IdahoMoscowIdahoUSA
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
2
|
Silbermann LM, Vermeer B, Schmid S, Tych K. The known unknowns of the Hsp90 chaperone. eLife 2024; 13:e102666. [PMID: 39737863 PMCID: PMC11687934 DOI: 10.7554/elife.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025] Open
Abstract
Molecular chaperones are vital proteins that maintain protein homeostasis by assisting in protein folding, activation, degradation, and stress protection. Among them, heat-shock protein 90 (Hsp90) stands out as an essential proteostasis hub in eukaryotes, chaperoning hundreds of 'clients' (substrates). After decades of research, several 'known unknowns' about the molecular function of Hsp90 remain unanswered, hampering rational drug design for the treatment of cancers, neurodegenerative, and other diseases. We highlight three fundamental open questions, reviewing the current state of the field for each, and discuss new opportunities, including single-molecule technologies, to answer the known unknowns of the Hsp90 chaperone.
Collapse
Affiliation(s)
- Laura-Marie Silbermann
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Benjamin Vermeer
- Laboratory of Biophysics, Wageningen University & ResearchWageningenNetherlands
| | - Sonja Schmid
- Laboratory of Biophysics, Wageningen University & ResearchWageningenNetherlands
| | - Katarzyna Tych
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| |
Collapse
|
3
|
Blagg BS, Catalfano KC. The role of Aha1 in cancer and neurodegeneration. Front Mol Neurosci 2024; 17:1509280. [PMID: 39776493 PMCID: PMC11703849 DOI: 10.3389/fnmol.2024.1509280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The 90 kDa Heat shock protein (Hsp90) is a family of ubiquitously expressed molecular chaperones responsible for the stabilization and maturation of >400 client proteins. Hsp90 exhibits dramatic conformational changes to accomplish this, which are regulated by partner proteins termed co-chaperones. One of these co-chaperones is called the activator or Hsp90 ATPase activity homolog 1 (Aha1) and is the most potent accelerator of Hsp90 ATPase activity. In conditions where Aha1 levels are dysregulated including cystic fibrosis, cancer and neurodegeneration, Hsp90 mediated client maturation is disrupted. Accumulating evidence has demonstrated that many disease states exhibit large hetero-protein complexes with Hsp90 as the center. Many of these include Aha1, where increased Aha1 levels drive disease states forward. One strategy to block these effects is to design small molecule disruptors of the Hsp90/Aha1 complex. Studies have demonstrated that current Hsp90/Aha1 small molecule disruptors are effective in both models for cancer and neurodegeration.
Collapse
Affiliation(s)
- Brian S.J. Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | | |
Collapse
|
4
|
Sager RA, Backe SJ, Dunn DM, Heritz JA, Ahanin E, Dushukyan N, Panaretou B, Bratslavsky G, Woodford MR, Bourboulia D, Mollapour M. SUMOylation of protein phosphatase 5 regulates phosphatase activity and substrate release. EMBO Rep 2024; 25:4636-4654. [PMID: 39304777 PMCID: PMC11549447 DOI: 10.1038/s44319-024-00250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
The serine/threonine protein phosphatase 5 (PP5) regulates hormone and stress-induced signaling networks. Unlike other phosphoprotein phosphatases, PP5 contains both regulatory and catalytic domains and is further regulated through post-translational modifications (PTMs). Here we identify that SUMOylation of K430 in the catalytic domain of PP5 regulates phosphatase activity. Additionally, phosphorylation of PP5-T362 is pre-requisite for SUMOylation, suggesting the ordered addition of PTMs regulates PP5 function in cells. Using the glucocorticoid receptor, a well known substrate for PP5, we demonstrate that SUMOylation results in substrate release from PP5. We harness this information to create a non-SUMOylatable K430R mutant as a 'substrate trap' and globally identified novel PP5 substrate candidates. Lastly, we generated a consensus dephosphorylation motif using known substrates, and verified its presence in the new candidate substrates. This study unravels the impact of cross talk of SUMOylation and phosphorylation on PP5 phosphatase activity and substrate release in cells.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Diana M Dunn
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Jennifer A Heritz
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Natela Dushukyan
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Barry Panaretou
- School of Cancer and Pharmaceutical Sciences, Institute of Pharmaceutical Science, King's College London, London, SE1 9NQ, UK
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
| |
Collapse
|
5
|
Roychowdhury T, McNutt SW, Pasala C, Nguyen HT, Thornton DT, Sharma S, Botticelli L, Digwal CS, Joshi S, Yang N, Panchal P, Chakrabarty S, Bay S, Markov V, Kwong C, Lisanti J, Chung SY, Ginsberg SD, Yan P, De Stanchina E, Corben A, Modi S, Alpaugh ML, Colombo G, Erdjument-Bromage H, Neubert TA, Chalkley RJ, Baker PR, Burlingame AL, Rodina A, Chiosis G, Chu F. Phosphorylation-driven epichaperome assembly is a regulator of cellular adaptability and proliferation. Nat Commun 2024; 15:8912. [PMID: 39414766 PMCID: PMC11484706 DOI: 10.1038/s41467-024-53178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
The intricate network of protein-chaperone interactions is crucial for maintaining cellular function. Recent discoveries have unveiled the existence of specialized chaperone assemblies, known as epichaperomes, which serve as scaffolding platforms that orchestrate the reconfiguration of protein-protein interaction networks, thereby enhancing cellular adaptability and proliferation. This study explores the structural and regulatory aspects of epichaperomes, with a particular focus on the role of post-translational modifications (PTMs) in their formation and function. A key finding is the identification of specific PTMs on HSP90, particularly at residues Ser226 and Ser255 within an intrinsically disordered region, as critical determinants of epichaperome assembly. Our data demonstrate that phosphorylation of these serine residues enhances HSP90's interactions with other chaperones and co-chaperones, creating a microenvironment conducive to epichaperome formation. Moreover, we establish a direct link between epichaperome function and cellular physiology, particularly in contexts where robust proliferation and adaptive behavior are essential, such as in cancer and pluripotent stem cell maintenance. These findings not only provide mechanistic insights but also hold promise for the development of novel therapeutic strategies targeting chaperone assemblies in diseases characterized by epichaperome dysregulation, thereby bridging the gap between fundamental research and precision medicine.
Collapse
Affiliation(s)
- Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Seth W McNutt
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hieu T Nguyen
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Daniel T Thornton
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luke Botticelli
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nan Yang
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Souparna Chakrabarty
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sadik Bay
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vladimir Markov
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlene Kwong
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeanine Lisanti
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sun Young Chung
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen D Ginsberg
- Departments of Psychiatry, Neuroscience & Physiology & the NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa De Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Maimonides Medical Center, Brooklyn, NY, USA
| | - Shanu Modi
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mary L Alpaugh
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Rowan University, Glassboro, NJ, USA
| | | | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas A Neubert
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Robert J Chalkley
- Mass Spectrometry Facility, University of California, San Francisco, CA, USA
| | - Peter R Baker
- Mass Spectrometry Facility, University of California, San Francisco, CA, USA
| | - Alma L Burlingame
- Mass Spectrometry Facility, University of California, San Francisco, CA, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Feixia Chu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|
6
|
Magnan B, Chen XH, Rashid S, Minard A, Chau W, Uyesugi T, Edwards RA, Panigrahi R, Glover JNM, LaPointe P, Spyracopoulos L. Asymmetric Dynamics Drive Catalytic Activation of the Hsp90 Chaperone. J Phys Chem B 2024; 128:8388-8399. [PMID: 39186634 DOI: 10.1021/acs.jpcb.4c03363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The Hsp90 chaperone is an ATPase enzyme composed of two copies of a three-domain subunit. Hsp90 stabilizes and activates a diverse array of regulatory proteins. Substrates are bound and released by the middle domain through a clamping cycle involving conformational transitions between a dynamic open state and a compact conformationally restricted closed state. Intriguingly, the overall ATPase activity of dimeric Hsp90 can be asymmetrically enhanced through a single subunit when Hsp90 is bound to a cochaperone or when Hsp90 is composed of one active and one catalytically defunct subunit as a heterodimer. To explore the mechanism of asymmetric Hsp90 activation, we designed a subunit bearing N-terminal ATPase mutations that demonstrate increased intra- and interdomain dynamics. Using intact Hsp90 and various N-terminal and middle domain constructs, we blended 19F NMR spectroscopy, molecular dynamics (MD) simulations, and ATPase assays to show that within the context of heterodimeric Hsp90, the conformationally dynamic subunit stimulates the ATPase activity of the normal subunit. The contrasting dynamic properties of the subunits within heterodimeric Hsp90 provide a mechanistic framework to understand the molecular basis for asymmetric Hsp90 activation and its importance for the biological function of Hsp90.
Collapse
Affiliation(s)
- Breanna Magnan
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Xu Hong Chen
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Suad Rashid
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Alissa Minard
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - William Chau
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Toshi Uyesugi
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ross A Edwards
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Rashmi Panigrahi
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Paul LaPointe
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
7
|
Sang T, Xu Y, Qin G, Zhao S, Hsu CC, Wang P. Highly sensitive site-specific SUMOylation proteomics in Arabidopsis. NATURE PLANTS 2024; 10:1330-1342. [PMID: 39294263 DOI: 10.1038/s41477-024-01783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/01/2024] [Indexed: 09/20/2024]
Abstract
SUMOylation-the attachment of a small ubiquitin-like modifier (SUMO) to target proteins-plays roles in controlling plant growth, nutrient signalling and stress responses. SUMOylation studies in plants are scarce because identifying SUMOylated proteins and their sites is challenging. To date, only around 80 SUMOylation sites have been identified. Here we introduce lysine-null SUMO1 into the Arabidopsis sumo1 sumo2 mutant and establish a two-step lysine-null SUMO enrichment method. We identified a site-specific SUMOylome comprising over 2,200 SUMOylation sites from 1,300 putative acceptors that function in numerous nuclear processes. SUMOylation marks occur on several motifs, differing from the canonical ψKxE motif in distant eukaryotes. Quantitative comparisons demonstrate that SUMOylation predominantly enhances the stability of SUMO1 acceptors. Our study delivers a highly sensitive and efficient method for site-specific SUMOylome studies and provides a comprehensive catalogue of Arabidopsis SUMOylation, serving as a valuable resource with which to further explore how SUMOylation regulates protein function.
Collapse
Affiliation(s)
- Tian Sang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yaping Xu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Guochen Qin
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Shasha Zhao
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chuan-Chi Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
8
|
Hussein SK, Bhat R, Overduin M, LaPointe P. Recruitment of Ahsa1 to Hsp90 is regulated by a conserved peptide that inhibits ATPase stimulation. EMBO Rep 2024; 25:3532-3546. [PMID: 38937628 PMCID: PMC11316058 DOI: 10.1038/s44319-024-00193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
Hsp90 is a molecular chaperone that acts on its clients through an ATP-dependent and conformationally dynamic functional cycle. The cochaperone Accelerator of Hsp90 ATPase, or Ahsa1, is the most potent stimulator of Hsp90 ATPase activity. Ahsa1 stimulates the rate of Hsp90 ATPase activity through a conserved motif, NxNNWHW. Metazoan Ahsa1, but not yeast, possesses an additional 20 amino acid peptide preceding the NxNNWHW motif that we have called the intrinsic chaperone domain (ICD). The ICD of Ahsa1 diminishes Hsp90 ATPase stimulation by interfering with the function of the NxNNWHW motif. Furthermore, the NxNNWHW modulates Hsp90's apparent affinity to Ahsa1 and ATP. Lastly, the ICD controls the regulated recruitment of Hsp90 in cells and its deletion results in the loss of interaction with Hsp90 and the glucocorticoid receptor. This work provides clues to how Ahsa1 conserved regions modulate Hsp90 kinetics and how they may be coupled to client folding status.
Collapse
Affiliation(s)
- Solomon K Hussein
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Rakesh Bhat
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Michael Overduin
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| |
Collapse
|
9
|
Rani K, Gotmare A, Maier A, Menghal R, Akhtar N, Fangaria N, Buchner J, Bhattacharyya S. Identification of a chaperone-code responsible for Rad51-mediated genome repair. J Biol Chem 2024; 300:107342. [PMID: 38705392 PMCID: PMC11154708 DOI: 10.1016/j.jbc.2024.107342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024] Open
Abstract
Posttranslational modifications of Hsp90 are known to regulate its in vivo chaperone functions. Here, we demonstrate that the lysine acetylation-deacetylation dynamics of Hsp82 is a major determinant in DNA repair mediated by Rad51. We uncover that the deacetylated lysine 27 in Hsp82 dictates the formation of the Hsp82-Aha1-Rad51 complex, which is crucial for client maturation. Intriguingly, Aha1-Rad51 complex formation is not dependent on Hsp82 or its acetylation status; implying that Aha1-Rad51 association precedes the interaction with Hsp82. The DNA damage sensitivity of Hsp82 (K27Q/K27R) mutants are epistatic to the loss of the (de)acetylase hda1Δ; reinforcing the importance of the reversible acetylation of Hsp82 at the K27 position. These findings underscore the significance of the cross talk between a specific Hsp82 chaperone modification code and the cognate cochaperones in a client-specific manner. Given the pivotal role that Rad51 plays during DNA repair in eukaryotes and particularly in cancer cells, targeting the Hda1-Hsp90 axis could be explored as a new therapeutic approach against cancer.
Collapse
Affiliation(s)
- Khushboo Rani
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Akanksha Gotmare
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Andreas Maier
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Ruchira Menghal
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Nashat Akhtar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Nupur Fangaria
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Johannes Buchner
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Sunanda Bhattacharyya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
10
|
McNutt SW, Roychowdhury T, Pasala C, Nguyen HT, Thornton DT, Sharma S, Botticelli L, Digwal CS, Joshi S, Yang N, Panchal P, Chakrabarty S, Bay S, Markov V, Kwong C, Lisanti J, Chung SY, Ginsberg SD, Yan P, DeStanchina E, Corben A, Modi S, Alpaugh M, Colombo G, Erdjument-Bromage H, Neubert TA, Chalkley RJ, Baker PR, Burlingame AL, Rodina A, Chiosis G, Chu F. Phosphorylation-Driven Epichaperome Assembly: A Critical Regulator of Cellular Adaptability and Proliferation. RESEARCH SQUARE 2024:rs.3.rs-4114038. [PMID: 38645031 PMCID: PMC11030525 DOI: 10.21203/rs.3.rs-4114038/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The intricate protein-chaperone network is vital for cellular function. Recent discoveries have unveiled the existence of specialized chaperone complexes called epichaperomes, protein assemblies orchestrating the reconfiguration of protein-protein interaction networks, enhancing cellular adaptability and proliferation. This study delves into the structural and regulatory aspects of epichaperomes, with a particular emphasis on the significance of post-translational modifications in shaping their formation and function. A central finding of this investigation is the identification of specific PTMs on HSP90, particularly at residues Ser226 and Ser255 situated within an intrinsically disordered region, as critical determinants in epichaperome assembly. Our data demonstrate that the phosphorylation of these serine residues enhances HSP90's interaction with other chaperones and co-chaperones, creating a microenvironment conducive to epichaperome formation. Furthermore, this study establishes a direct link between epichaperome function and cellular physiology, especially in contexts where robust proliferation and adaptive behavior are essential, such as cancer and stem cell maintenance. These findings not only provide mechanistic insights but also hold promise for the development of novel therapeutic strategies targeting chaperone complexes in diseases characterized by epichaperome dysregulation, bridging the gap between fundamental research and precision medicine.
Collapse
Affiliation(s)
- Seth W McNutt
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
- co-first author, equally contributed to the work
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- co-first author, equally contributed to the work
| | - Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hieu T Nguyen
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Daniel T Thornton
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Luke Botticelli
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nan Yang
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Souparna Chakrabarty
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sadik Bay
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vladimir Markov
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charlene Kwong
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jeanine Lisanti
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sun Young Chung
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stephen D Ginsberg
- Departments of Psychiatry, Neuroscience & Physiology & the NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa DeStanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Shanu Modi
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mary Alpaugh
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Thomas A Neubert
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Robert J Chalkley
- Mass Spectrometry Facility, University of California, San Francisco, California 94143, USA
| | - Peter R Baker
- Mass Spectrometry Facility, University of California, San Francisco, California 94143, USA
| | - Alma L Burlingame
- Mass Spectrometry Facility, University of California, San Francisco, California 94143, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- These authors jointly supervised this work: Feixia Chu, Gabriela Chiosis
| | - Feixia Chu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA
- These authors jointly supervised this work: Feixia Chu, Gabriela Chiosis
| |
Collapse
|
11
|
Rios EI, Hunsberger IL, Johnson JL. Insights into Hsp90 mechanism and in vivo functions learned from studies in the yeast, Saccharomyces cerevisiae. Front Mol Biosci 2024; 11:1325590. [PMID: 38389899 PMCID: PMC10881880 DOI: 10.3389/fmolb.2024.1325590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The molecular chaperone Hsp90 (Heat shock protein, 90 kDa) is an abundant and essential cytosolic protein required for the stability and/or folding of hundreds of client proteins. Hsp90, along with helper cochaperone proteins, assists client protein folding in an ATP-dependent pathway. The laboratory of Susan Lindquist, in collaboration with other researchers, was the first to establish the yeast Saccharomyces cerevisiae as a model organism to study the functional interaction between Hsp90 and clients. Important insights from studies in her lab were that Hsp90 is essential, and that Hsp90 functions and cochaperone interactions are highly conserved between yeast and mammalian cells. Here, we describe key mechanistic insights into the Hsp90 folding cycle that were obtained using the yeast system. We highlight the early contributions of the laboratory of Susan Lindquist and extend our analysis into the broader use of the yeast system to analyze the understanding of the conformational cycle of Hsp90 and the impact of altered Hsp90 function on the proteome.
Collapse
Affiliation(s)
| | | | - Jill L. Johnson
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, United States
| |
Collapse
|
12
|
Somu P, Mohanty S, Basavegowda N, Yadav AK, Paul S, Baek KH. The Interplay between Heat Shock Proteins and Cancer Pathogenesis: A Novel Strategy for Cancer Therapeutics. Cancers (Basel) 2024; 16:638. [PMID: 38339390 PMCID: PMC10854888 DOI: 10.3390/cancers16030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Heat shock proteins (HSPs) are developmentally conserved families of protein found in both prokaryotic and eukaryotic organisms. HSPs are engaged in a diverse range of physiological processes, including molecular chaperone activity to assist the initial protein folding or promote the unfolding and refolding of misfolded intermediates to acquire the normal or native conformation and its translocation and prevent protein aggregation as well as in immunity, apoptosis, and autophagy. These molecular chaperonins are classified into various families according to their molecular size or weight, encompassing small HSPs (e.g., HSP10 and HSP27), HSP40, HSP60, HSP70, HSP90, and the category of large HSPs that include HSP100 and ClpB proteins. The overexpression of HSPs is induced to counteract cell stress at elevated levels in a variety of solid tumors, including anticancer chemotherapy, and is closely related to a worse prognosis and therapeutic resistance to cancer cells. HSPs are also involved in anti-apoptotic properties and are associated with processes of cancer progression and development, such as metastasis, invasion, and cell proliferation. This review outlines the previously mentioned HSPs and their significant involvement in diverse mechanisms of tumor advancement and metastasis, as well as their contribution to identifying potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Prathap Somu
- Department of Biotechnology and Chemical Engineering, School of Civil & Chemical Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, India;
| | - Sonali Mohanty
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Republic of Korea;
| | - Akhilesh Kumar Yadav
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 413310, Taiwan;
- Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Subhankar Paul
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Republic of Korea;
| |
Collapse
|
13
|
Wang W, Matunis MJ. Paralogue-Specific Roles of SUMO1 and SUMO2/3 in Protein Quality Control and Associated Diseases. Cells 2023; 13:8. [PMID: 38201212 PMCID: PMC10778024 DOI: 10.3390/cells13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Small ubiquitin-related modifiers (SUMOs) function as post-translational protein modifications and regulate nearly every aspect of cellular function. While a single ubiquitin protein is expressed across eukaryotic organisms, multiple SUMO paralogues with distinct biomolecular properties have been identified in plants and vertebrates. Five SUMO paralogues have been characterized in humans, with SUMO1, SUMO2 and SUMO3 being the best studied. SUMO2 and SUMO3 share 97% protein sequence homology (and are thus referred to as SUMO2/3) but only 47% homology with SUMO1. To date, thousands of putative sumoylation substrates have been identified thanks to advanced proteomic techniques, but the identification of SUMO1- and SUMO2/3-specific modifications and their unique functions in physiology and pathology are not well understood. The SUMO2/3 paralogues play an important role in proteostasis, converging with ubiquitylation to mediate protein degradation. This function is achieved primarily through SUMO-targeted ubiquitin ligases (STUbLs), which preferentially bind and ubiquitylate poly-SUMO2/3 modified proteins. Effects of the SUMO1 paralogue on protein solubility and aggregation independent of STUbLs and proteasomal degradation have also been reported. Consistent with these functions, sumoylation is implicated in multiple human diseases associated with disturbed proteostasis, and a broad range of pathogenic proteins have been identified as SUMO1 and SUMO2/3 substrates. A better understanding of paralogue-specific functions of SUMO1 and SUMO2/3 in cellular protein quality control may therefore provide novel insights into disease pathogenesis and therapeutic innovation. This review summarizes current understandings of the roles of sumoylation in protein quality control and associated diseases, with a focus on the specific effects of SUMO1 and SUMO2/3 paralogues.
Collapse
Affiliation(s)
| | - Michael J. Matunis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| |
Collapse
|
14
|
Chiosis G, Digwal CS, Trepel JB, Neckers L. Structural and functional complexity of HSP90 in cellular homeostasis and disease. Nat Rev Mol Cell Biol 2023; 24:797-815. [PMID: 37524848 PMCID: PMC10592246 DOI: 10.1038/s41580-023-00640-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
Abstract
Heat shock protein 90 (HSP90) is a chaperone with vital roles in regulating proteostasis, long recognized for its function in protein folding and maturation. A view is emerging that identifies HSP90 not as one protein that is structurally and functionally homogeneous but, rather, as a protein that is shaped by its environment. In this Review, we discuss evidence of multiple structural forms of HSP90 in health and disease, including homo-oligomers and hetero-oligomers, also termed epichaperomes, and examine the impact of stress, post-translational modifications and co-chaperones on their formation. We describe how these variations influence context-dependent functions of HSP90 as well as its interaction with other chaperones, co-chaperones and proteins, and how this structural complexity of HSP90 impacts and is impacted by its interaction with small molecule modulators. We close by discussing recent developments regarding the use of HSP90 inhibitors in cancer and how our new appreciation of the structural and functional heterogeneity of HSP90 invites a re-evaluation of how we discover and implement HSP90 therapeutics for disease treatment.
Collapse
Affiliation(s)
- Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Institute, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Institute, New York, NY, USA.
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Institute, New York, NY, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
15
|
Mandel N, Büttner M, Poschet G, Kuner R, Agarwal N. SUMOylation Modulates Reactive Oxygen Species (ROS) Levels and Acts as a Protective Mechanism in the Type 2 Model of Diabetic Peripheral Neuropathy. Cells 2023; 12:2511. [PMID: 37947589 PMCID: PMC10648122 DOI: 10.3390/cells12212511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the prevalent type of peripheral neuropathy; it primarily impacts extremity nerves. Its multifaceted nature makes the molecular mechanisms of diabetic neuropathy intricate and incompletely elucidated. Several types of post-translational modifications (PTMs) have been implicated in the development and progression of DPN, including phosphorylation, glycation, acetylation and SUMOylation. SUMOylation involves the covalent attachment of small ubiquitin-like modifier (SUMO) proteins to target proteins, and it plays a role in various cellular processes, including protein localization, stability, and function. While the specific relationship between high blood glucose and SUMOylation is not extensively studied, recent evidence implies its involvement in the development of DPN in type 1 diabetes. In this study, we investigated the impact of SUMOylation on the onset and progression of DPN in a type 2 diabetes model using genetically modified mutant mice lacking SUMOylation, specifically in peripheral sensory neurons (SNS-Ubc9-/-). Behavioural measurement for evoked pain, morphological analyses of nerve fibre loss in the epidermis, measurement of reactive oxygen species (ROS) levels, and antioxidant molecules were analysed over several months in SUMOylation-deficient and control mice. Our longitudinal analysis at 30 weeks post-high-fat diet revealed that SNS-Ubc9-/- mice exhibited earlier and more pronounced thermal and mechanical sensation loss and accelerated intraepidermal nerve fibre loss compared to control mice. Mechanistically, these changes are associated with increased levels of ROS both in sensory neuronal soma and in peripheral axonal nerve endings in SNS-Ubc9-/- mice. In addition, we observed compromised detoxifying potential, impaired respiratory chain complexes, and reduced levels of protective lipids in sensory neurons upon deletion of SUMOylation in diabetic mice. Importantly, we also identified mitochondrial malate dehydrogenase (MDH2) as a SUMOylation target, the activity of which is negatively regulated by SUMOylation. Our results indicate that SUMOylation is an essential neuroprotective mechanism in sensory neurons in type 2 diabetes, the deletion of which causes oxidative stress and an impaired respiratory chain, resulting in energy depletion and subsequent damage to sensory neurons.
Collapse
Affiliation(s)
- Nicolas Mandel
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany (R.K.)
| | - Michael Büttner
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany (R.K.)
| | - Nitin Agarwal
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany (R.K.)
| |
Collapse
|
16
|
Backe SJ, Mollapour M, Woodford MR. Saccharomyces cerevisiae as a tool for deciphering Hsp90 molecular chaperone function. Essays Biochem 2023; 67:781-795. [PMID: 36912239 PMCID: PMC10497724 DOI: 10.1042/ebc20220224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 03/14/2023]
Abstract
Yeast is a valuable model organism for their ease of genetic manipulation, rapid growth rate, and relative similarity to higher eukaryotes. Historically, Saccharomyces cerevisiae has played a major role in discovering the function of complex proteins and pathways that are important for human health and disease. Heat shock protein 90 (Hsp90) is a molecular chaperone responsible for the stabilization and activation of hundreds of integral members of the cellular signaling network. Much important structural and functional work, including many seminal discoveries in Hsp90 biology are the direct result of work carried out in S. cerevisiae. Here, we have provided a brief overview of the S. cerevisiae model system and described how this eukaryotic model organism has been successfully applied to the study of Hsp90 chaperone function.
Collapse
Affiliation(s)
- Sarah J. Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| | - Mark R. Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
17
|
Mercier R, Yama D, LaPointe P, Johnson JL. Hsp90 mutants with distinct defects provide novel insights into cochaperone regulation of the folding cycle. PLoS Genet 2023; 19:e1010772. [PMID: 37228112 PMCID: PMC10246838 DOI: 10.1371/journal.pgen.1010772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 06/07/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Molecular chaperones play a key role in maintaining proteostasis and cellular health. The abundant, essential, cytosolic Hsp90 (Heat shock protein, 90 kDa) facilitates the folding and activation of hundreds of newly synthesized or misfolded client proteins in an ATP-dependent folding pathway. In a simplified model, Hsp70 first helps load client onto Hsp90, ATP binding results in conformational changes in Hsp90 that result in the closed complex, and then less defined events result in nucleotide hydrolysis, client release and return to the open state. Cochaperones bind and assist Hsp90 during this process. We previously identified a series of yeast Hsp90 mutants that appear to disrupt either the 'loading', 'closing' or 'reopening' events, and showed that the mutants had differing effects on activity of some clients. Here we used those mutants to dissect Hsp90 and cochaperone interactions. Overexpression or deletion of HCH1 had dramatically opposing effects on the growth of cells expressing different mutants, with a phenotypic shift coinciding with formation of the closed conformation. Hch1 appears to destabilize Hsp90-nucleotide interaction, hindering formation of the closed conformation, whereas Cpr6 counters the effects of Hch1 by stabilizing the closed conformation. Hch1 and the homologous Aha1 share some functions, but the role of Hch1 in inhibiting progression through the early stages of the folding cycle is unique. Sensitivity to the Hsp90 inhibitor NVP-AUY922 also correlates with the conformational cycle, with mutants defective in the loading phase being most sensitive and those defective in the reopening phase being most resistant to the drug. Overall, our results indicate that the timing of transition into and out of the closed conformation is tightly regulated by cochaperones. Further analysis will help elucidate additional steps required for progression through the Hsp90 folding cycle and may lead to new strategies for modulating Hsp90 function.
Collapse
Affiliation(s)
- Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, the University of Alberta, Edmonton, Alberta, Canada
| | - Danielle Yama
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, the University of Alberta, Edmonton, Alberta, Canada
| | - Jill L. Johnson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
18
|
van Oosten-Hawle P. Organismal Roles of Hsp90. Biomolecules 2023; 13:biom13020251. [PMID: 36830620 PMCID: PMC9952938 DOI: 10.3390/biom13020251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is a highly conserved molecular chaperone that assists in the maturation of many client proteins involved in cellular signal transduction. As a regulator of cellular signaling processes, it is vital for the maintenance of cellular proteostasis and adaptation to environmental stresses. Emerging research shows that Hsp90 function in an organism goes well beyond intracellular proteostasis. In metazoans, Hsp90, as an environmentally responsive chaperone, is involved in inter-tissue stress signaling responses that coordinate and safeguard cell nonautonomous proteostasis and organismal health. In this way, Hsp90 has the capacity to influence evolution and aging, and effect behavioral responses to facilitate tissue-defense systems that ensure organismal survival. In this review, I summarize the literature on the organismal roles of Hsp90 uncovered in multicellular organisms, from plants to invertebrates and mammals.
Collapse
Affiliation(s)
- Patricija van Oosten-Hawle
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
19
|
p23 and Aha1: Distinct Functions Promote Client Maturation. Subcell Biochem 2023; 101:159-187. [PMID: 36520307 DOI: 10.1007/978-3-031-14740-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hsp90 is a conserved molecular chaperone regulating the folding and activation of a diverse array of several hundreds of client proteins. The function of Hsp90 in client processing is fine-tuned by a cohort of co-chaperones that modulate client activation in a client-specific manner. They affect the Hsp90 ATPase activity and the recruitment of client proteins and can in addition affect chaperoning in an Hsp90-independent way. p23 and Aha1 are central Hsp90 co-chaperones that regulate Hsp90 in opposing ways. While p23 inhibits the Hsp90 ATPase and stabilizes a client-bound Hsp90 state, Aha1 accelerates ATP hydrolysis and competes with client binding to Hsp90. Even though both proteins have been intensively studied for decades, research of the last few years has revealed intriguing new aspects of these co-chaperones that expanded our perception of how they regulate client activation. Here, we review the progress in understanding p23 and Aha1 as promoters of client processing. We highlight the structures of Aha1 and p23, their interaction with Hsp90, and how their association with Hsp90 affects the conformational cycle of Hsp90 in the context of client maturation.
Collapse
|
20
|
Sager RA, Backe SJ, Neckers L, Woodford MR, Mollapour M. Detecting Posttranslational Modifications of Hsp90 Isoforms. Methods Mol Biol 2023; 2693:125-139. [PMID: 37540432 PMCID: PMC10518168 DOI: 10.1007/978-1-0716-3342-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) is essential in eukaryotes. Hsp90 chaperones proteins that are important determinants of multistep carcinogenesis. There are multiple Hsp90 isoforms including the cytosolic Hsp90α and Hsp90β as well as GRP94 located in the endoplasmic reticulum and TRAP1 in the mitochondria. The chaperone function of Hsp90 is linked to its ability to bind and hydrolyze ATP. Co-chaperones and posttranslational modifications (such as phosphorylation, SUMOylation, and ubiquitination) are important for Hsp90 stability and regulation of its ATPase activity. Both mammalian and yeast cells can be used to express and purify Hsp90 and TRAP1 and also detect post-translational modifications by immunoblotting.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
21
|
Backe SJ, Woodford MR, Ahanin E, Sager RA, Bourboulia D, Mollapour M. Impact of Co-chaperones and Posttranslational Modifications Toward Hsp90 Drug Sensitivity. Subcell Biochem 2023; 101:319-350. [PMID: 36520312 PMCID: PMC10077965 DOI: 10.1007/978-3-031-14740-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modifications (PTMs) regulate myriad cellular processes by modulating protein function and protein-protein interaction. Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone whose activity is responsible for the stabilization and maturation of more than 300 client proteins. Hsp90 is a substrate for numerous PTMs, which have diverse effects on Hsp90 function. Interestingly, many Hsp90 clients are enzymes that catalyze PTM, demonstrating one of the several modes of regulation of Hsp90 activity. Approximately 25 co-chaperone regulatory proteins of Hsp90 impact structural rearrangements, ATP hydrolysis, and client interaction, representing a second layer of influence on Hsp90 activity. A growing body of literature has also established that PTM of these co-chaperones fine-tune their activity toward Hsp90; however, many of the identified PTMs remain uncharacterized. Given the critical role of Hsp90 in supporting signaling in cancer, clinical evaluation of Hsp90 inhibitors is an area of great interest. Interestingly, differential PTM and co-chaperone interaction have been shown to impact Hsp90 binding to its inhibitors. Therefore, understanding these layers of Hsp90 regulation will provide a more complete understanding of the chaperone code, facilitating the development of new biomarkers and combination therapies.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
22
|
Liu X, Wang Y. Aha1 Is an Autonomous Chaperone for SULT1A1. Chem Res Toxicol 2022; 35:1418-1424. [PMID: 35926086 PMCID: PMC9378526 DOI: 10.1021/acs.chemrestox.2c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cochaperone Aha1 activates HSP90 ATPase to promote the folding of its client proteins; however, very few client proteins of Aha1 are known. With the use of an ascorbate peroxidase (APEX)-based proximity labeling method, we identified SULT1A1 as a proximity protein of HSP90 that is modulated by genetic depletion of Aha1. Immunoprecipitation followed by Western blot analysis showed the interaction of SULT1A1 with Aha1, but not HSP90. We also observed a reduced level of SULT1A1 protein upon genetic depletion of Aha1 but not upon pharmacological inhibition of HSP90, suggesting that the SULT1A1 protein level is regulated by Aha1 alone. Maturation-dependent interaction assay results showed that Aha1, but not HSP90, binds preferentially to newly synthesized SULT1A1. Reconstitution of Aha1-depleted cells with wild-type Aha1 and its E67K mutant, which is deficient in interacting with HSP90, restored SULT1A1 protein to the same level. Nonetheless, complementation of Aha1-depleted cells with an Aha1 mutant lacking the first 20 amino acids, which disrupts its autonomous chaperone function, was unable to rescue the SULT1A1 protein level. Together, our study revealed, for the first time, Aha1 as an autonomous chaperone in regulating SULT1A1. SULT1A1 is a phase-II metabolic enzyme, where it adds sulfate groups to hydroxyl functionalities in endogenous hormones and xenobiotic chemicals to improve their solubilities and promote their excretion. Thus, our work suggests the role of Aha1 cochaperone in modulating the detoxification of endogenous and environmental chemicals.
Collapse
Affiliation(s)
- Xiaochuan Liu
- Department of Chemistry, University of California, Riverside, Riverside, California 92502, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, Riverside, California 92502, United States
| |
Collapse
|
23
|
Li L, Liu Z, Quan J, Sun J, Lu J, Zhao G. Comprehensive proteomic analysis to elucidate the anti-heat stress effects of nano-selenium in rainbow trout (Oncorhynchus mykiss). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113736. [PMID: 35689887 DOI: 10.1016/j.ecoenv.2022.113736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Because of the continuous intensification of global warming, extreme climate fluctuations, and high-density farming, cold-water rainbow trout (Oncorhynchus mykiss) are exposed to conditions of heat stress, which has severely impacted their survival and yield. Nano-selenium (nano-Se) shows higher biological activity and lower toxicity and has emerged as an ideal and ecological Se formulation. Herein rainbow trout were fed either a basal diet (control group) or basal diet plus 5 mg/kg nano-Se (treatment group). Samples were collected before (18 °C for 9 days; CG18, Se18) and after (24 °C for 8 h; CG24, Se24) heat stress. The DIA/SWATH approach was then applied to compare changes at the proteome level. We found 223 and 269 differentially abundant proteins in the CG18-CG24 and Se18-Se24 groups, respectively, which mainly included apoptosis-, heat stress-, and lipid-related proteins. In comparison with the CG18-CG24 group, the Se18-Se24 group showed higher abundance of molecular chaperone, such as Hsp70, Hsp90a.1, Hspa8, Hsp30, DNAJA4, Dnajb1, Bag2 and Ahsa1; on nano-Se supplementation, the heat stress-induced decline in the abundance of the selenoprotein MsrB2 was partially restored. Furthermore, nano-Se supplementation downregulated the abundance of lipid-related (CYP51, EBP, DHCR7, DHCR24, and APOB) and pro-apoptotic (caspase-8 and Bad) proteins. Protein-protein interaction analyses suggested that nano-Se inhibits apoptosis by upregulating the expression of Hsp70, Hsp90a.1, Hspa8, and Dnajb1; further, Hsp70/Hspa8 and MsrB2 appear to play a synergistic role in antioxidant defense under heat stress. Overall, our findings provide novel insights into nano-Se-mediated tolerance of heat stress, demonstrating that nano-Se exerts its anti-heat stress effects in rainbow trout by promoting protein repair, enhancing recovery of antioxidant enzyme activity, and alleviating lipid metabolism and apoptosis.
Collapse
Affiliation(s)
- Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jun Sun
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|
24
|
Backe SJ, Sager RA, Regan BR, Sit J, Major LA, Bratslavsky G, Woodford MR, Bourboulia D, Mollapour M. A specialized Hsp90 co-chaperone network regulates steroid hormone receptor response to ligand. Cell Rep 2022; 40:111039. [PMID: 35830801 PMCID: PMC9306012 DOI: 10.1016/j.celrep.2022.111039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/25/2022] [Accepted: 06/10/2022] [Indexed: 12/29/2022] Open
Abstract
Heat shock protein-90 (Hsp90) chaperone machinery is involved in the stability and activity of its client proteins. The chaperone function of Hsp90 is regulated by co-chaperones and post-translational modifications. Although structural evidence exists for Hsp90 interaction with clients, our understanding of the impact of Hsp90 chaperone function toward client activity in cells remains elusive. Here, we dissect the impact of recently identified higher eukaryotic co-chaperones, FNIP1/2 (FNIPs) and Tsc1, toward Hsp90 client activity. Our data show that Tsc1 and FNIP2 form mutually exclusive complexes with FNIP1, and that unlike Tsc1, FNIP1/2 interact with the catalytic residue of Hsp90. Functionally, these co-chaperone complexes increase the affinity of the steroid hormone receptors glucocorticoid receptor and estrogen receptor to their ligands in vivo. We provide a model for the responsiveness of the steroid hormone receptor activation upon ligand binding as a consequence of their association with specific Hsp90:co-chaperone subpopulations.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Bethany R Regan
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Julian Sit
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Lauren A Major
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
25
|
Emerging Link between Tsc1 and FNIP Co-Chaperones of Hsp90 and Cancer. Biomolecules 2022; 12:biom12070928. [PMID: 35883484 PMCID: PMC9312812 DOI: 10.3390/biom12070928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Heat shock protein-90 (Hsp90) is an ATP-dependent molecular chaperone that is tightly regulated by a group of proteins termed co-chaperones. This chaperone system is essential for the stabilization and activation of many key signaling proteins. Recent identification of the co-chaperones FNIP1, FNIP2, and Tsc1 has broadened the spectrum of Hsp90 regulators. These new co-chaperones mediate the stability of critical tumor suppressors FLCN and Tsc2 as well as the various classes of Hsp90 kinase and non-kinase clients. Many early observations of the roles of FNIP1, FNIP2, and Tsc1 suggested functions independent of FLCN and Tsc2 but have not been fully delineated. Given the broad cellular impact of Hsp90-dependent signaling, it is possible to explain the cellular activities of these new co-chaperones by their influence on Hsp90 function. Here, we review the literature on FNIP1, FNIP2, and Tsc1 as co-chaperones and discuss the potential downstream impact of this regulation on normal cellular function and in human diseases.
Collapse
|
26
|
Liu X, Yang YY, Wang Y. HSP90 and Aha1 modulate microRNA maturation through promoting the folding of Dicer1. Nucleic Acids Res 2022; 50:6990-7001. [PMID: 35736213 PMCID: PMC9262616 DOI: 10.1093/nar/gkac528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Aha1 is a co-chaperone of heat shock protein 90 (HSP90), and it stimulates the ATPase activity of HSP90 to promote the folding of its client proteins. By employing ascorbate peroxidase (APEX)-based proximity labeling and proteomic analysis, we identified over 30 proteins exhibiting diminished abundances in the proximity proteome of HSP90 in HEK293T cells upon genetic depletion of Aha1. Dicer1 is a top-ranked protein, and we confirmed its interactions with HSP90 and Aha1 by immunoprecipitation followed by western blot analysis. Genetic depletion of Aha1 and pharmacological inhibition of HSP90 both led to reduced levels of Dicer1 protein. Additionally, HSP90 and Aha1 bind preferentially to newly translated Dicer1. Reconstitution of Aha1-depleted cells with wild-type Aha1 substantially rescued Dicer1 protein level, and a lower level of restoration was observed for complementation with the HSP90-binding-defective Aha1-E67K, whereas an Aha1 mutant lacking the first 20 amino acids-which abolishes its chaperone activity-failed to rescue Dicer1 protein level. Moreover, knockdown of Aha1 and inhibition of HSP90 led to diminished levels of mature microRNAs (miRNAs), but not their corresponding primary miRNAs. Together, we uncovered a novel mechanism of HSP90 and Aha1 in regulating the miRNA pathway through promoting the folding of Dicer1 protein, and we also demonstrated that Aha1 modulates this process by acting as an autonomous chaperone and a co-chaperone for HSP90.
Collapse
Affiliation(s)
- Xiaochuan Liu
- Department of Chemistry, University of California, Riverside, Riverside, CA 92502, USA
| | - Yen-Yu Yang
- Department of Chemistry, University of California, Riverside, Riverside, CA 92502, USA
| | - Yinsheng Wang
- To whom correspondence should be addressed. Tel: +1 951 827 2700; Fax: +1 951 827 4713;
| |
Collapse
|
27
|
Wengert LA, Backe SJ, Bourboulia D, Mollapour M, Woodford MR. TRAP1 Chaperones the Metabolic Switch in Cancer. Biomolecules 2022; 12:biom12060786. [PMID: 35740911 PMCID: PMC9221471 DOI: 10.3390/biom12060786] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial function is dependent on molecular chaperones, primarily due to their necessity in the formation of respiratory complexes and clearance of misfolded proteins. Heat shock proteins (Hsps) are a subset of molecular chaperones that function in all subcellular compartments, both constitutively and in response to stress. The Hsp90 chaperone TNF-receptor-associated protein-1 (TRAP1) is primarily localized to the mitochondria and controls both cellular metabolic reprogramming and mitochondrial apoptosis. TRAP1 upregulation facilitates the growth and progression of many cancers by promoting glycolytic metabolism and antagonizing the mitochondrial permeability transition that precedes multiple cell death pathways. TRAP1 attenuation induces apoptosis in cellular models of cancer, identifying TRAP1 as a potential therapeutic target in cancer. Similar to cytosolic Hsp90 proteins, TRAP1 is also subject to post-translational modifications (PTM) that regulate its function and mediate its impact on downstream effectors, or ‘clients’. However, few effectors have been identified to date. Here, we will discuss the consequence of TRAP1 deregulation in cancer and the impact of post-translational modification on the known functions of TRAP1.
Collapse
Affiliation(s)
- Laura A. Wengert
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (L.A.W.); (S.J.B.); (D.B.); (M.M.)
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sarah J. Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (L.A.W.); (S.J.B.); (D.B.); (M.M.)
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (L.A.W.); (S.J.B.); (D.B.); (M.M.)
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (L.A.W.); (S.J.B.); (D.B.); (M.M.)
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mark R. Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (L.A.W.); (S.J.B.); (D.B.); (M.M.)
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Correspondence:
| |
Collapse
|
28
|
Peng S, Woodruff J, Pathak PK, Matts RL, Deng J. Crystal structure of the middle and C-terminal domains of Hsp90α labeled with a coumarin derivative reveals a potential allosteric binding site as a drug target. Acta Crystallogr D Struct Biol 2022; 78:571-585. [PMID: 35503206 PMCID: PMC9063849 DOI: 10.1107/s2059798322002261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/26/2022] [Indexed: 12/01/2022] Open
Abstract
The 90 kDa heat-shock protein (Hsp90) is an abundant molecular chaperone that is essential to activate, stabilize and regulate the function of a plethora of client proteins. As drug targets for the treatment of cancer and neurodegenerative diseases, Hsp90 inhibitors that bind to the N-terminal ATP-binding site of Hsp90 have shown disappointing efficacy in clinical trials. Thus, allosteric regulation of the function of Hsp90 by compounds that interact with its middle and C-terminal (MC) domains is now being pursued as a mechanism to inhibit the ATPase activity and client protein-binding activity of Hsp90 without concomitant induction of the heat-shock response. Here, the crystal structure of the Hsp90αMC protein covalently linked to a coumarin derivative, MDCC {7-diethylamino-3-[N-(2-maleimidoethyl)carbamoyl]coumarin}, which is located in a hydrophobic pocket that is formed at the Hsp90αMC hexamer interface, is reported. MDCC binding leads to the hexamerization of Hsp90, and the stabilization and conformational changes of three loops that are critical for its function. A fluorescence competition assay demonstrated that other characterized coumarin and isoflavone-containing Hsp90 inhibitors compete with MDCC binding, suggesting that they could bind at a common site or that they might allosterically alter the structure of the MDCC binding site. This study provides insights into the mechanism by which the coumarin class of allosteric inhibitors potentially disrupt the function of Hsp90 by regulating its oligomerization and the burial of interaction sites involved in the ATP-dependent folding of Hsp90 clients. The hydrophobic binding pocket characterized here will provide new structural information for future drug design.
Collapse
Affiliation(s)
- Shuxia Peng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Jeff Woodruff
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Prabhat Kumar Pathak
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Robert L. Matts
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| |
Collapse
|
29
|
Zhao S, Tang X, Miao Z, Chen Y, Cao J, Song T, You D, Zhong Y, Lin Z, Wang D, Shi Z, Tang X, Wang D, Chen S, Wang L, Gu A, Chen F, Xie L, Huang Z, Wang H, Ji Y. Hsp90 S-nitrosylation at Cys521, as a conformational switch, modulates cycling of Hsp90-AHA1-CDC37 chaperone machine to aggravate atherosclerosis. Redox Biol 2022; 52:102290. [PMID: 35334246 PMCID: PMC8942817 DOI: 10.1016/j.redox.2022.102290] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
Endothelial dysfunction is the initial process of atherosclerosis. Heat shock protein 90 (Hsp90), as a molecular chaperone, plays a crucial role in various cardiovascular diseases. Hsp90 function is regulated by S-nitrosylation (SNO). However, the precise role of SNO-Hsp90 in endothelial dysfunction during atherosclerosis remains unclear. We here identified Hsp90 as a highly S-nitrosylated target in endothelial cells (ECs) by biotin switch assay combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The elevation of SNO-Hsp90 was observed in atherosclerotic human and rodent aortas as well as in oxidized LDL (oxLDL)-treated ECs. Inhibition of inducible nitric oxide synthase (iNOS) or transfection with Hsp90 cysteine 521 (Cys521) mutation plasmid decreased the level of SNO-Hsp90 in oxLDL-cultured ECs. Coimmunoprecipitation and proximity ligation assay demonstrated that SNO-Hsp90 at Cys521 suppressed the interaction between Hsp90 and activator of Hsp90 ATPase activity 1 (AHA1), but promoted the association of Hsp90 and cell division cycle 37 (CDC37). Hsp90 Cys521 mutation increased endothelial nitric oxide synthase (eNOS) activity and inhibited nuclear factor kappa-B (NF-κB) signaling, thereby increasing nitric oxide (NO) bioavailability and alleviating endothelial adhesion, inflammation and oxidative stress in oxLDL-treated ECs. Also, administration of endothelial-specific adeno-associated viruses of Cys521-mutated Hsp90 significantly mitigated vascular oxidative stress, macrophage infiltration and atherosclerosis lesion areas in high fat diet-fed ApoE-/- mice. In conclusion, SNO-Hsp90 at Cys521, that serves as a conformational switch, disrupts Hsp90/AHA1 interaction but promotes recruitment of CDC37 to exacerbate atherosclerosis. Hsp90 S-nitrosylation at Cys521 acts as a conformational switch to modulate Hsp90/AHA1 and Hsp90/CDC37 interaction. SNO-Hsp90 induces endothelial adhesion, inflammation and oxidative stress. SNO-Hsp90 mediates endothelial dysfunction to exacerbate atherosclerosis.
Collapse
|
30
|
Ferritinophagy and α-Synuclein: Pharmacological Targeting of Autophagy to Restore Iron Regulation in Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23042378. [PMID: 35216492 PMCID: PMC8878351 DOI: 10.3390/ijms23042378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
A major hallmark of Parkinson’s disease (PD) is the fatal destruction of dopaminergic neurons within the substantia nigra pars compacta. This event is preceded by the formation of Lewy bodies, which are cytoplasmic inclusions composed of α-synuclein protein aggregates. A triad contribution of α-synuclein aggregation, iron accumulation, and mitochondrial dysfunction plague nigral neurons, yet the events underlying iron accumulation are poorly understood. Elevated intracellular iron concentrations up-regulate ferritin expression, an iron storage protein that provides cytoprotection against redox stress. The lysosomal degradation pathway, autophagy, can release iron from ferritin stores to facilitate its trafficking in a process termed ferritinophagy. Aggregated α-synuclein inhibits SNARE protein complexes and destabilizes microtubules to halt vesicular trafficking systems, including that of autophagy effectively. The scope of this review is to describe the physiological and pathological relationship between iron regulation and α-synuclein, providing a detailed understanding of iron metabolism within nigral neurons. The underlying mechanisms of autophagy and ferritinophagy are explored in the context of PD, identifying potential therapeutic targets for future investigation.
Collapse
|
31
|
Exploring Mechanisms of Allosteric Regulation and Communication Switching in the Multiprotein Regulatory Complexes of the Hsp90 Chaperone with Cochaperones and Client Proteins : Atomistic Insights from Integrative Biophysical Modeling and Network Analysis of Conformational Landscapes. J Mol Biol 2022; 434:167506. [DOI: 10.1016/j.jmb.2022.167506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022]
|
32
|
Heat Shock Proteins in Benign Prostatic Hyperplasia and Prostate Cancer. Int J Mol Sci 2022; 23:ijms23020897. [PMID: 35055079 PMCID: PMC8779911 DOI: 10.3390/ijms23020897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Two out of three diseases of the prostate gland affect aging men worldwide. Benign prostatic hyperplasia (BPH) is a noncancerous enlargement affecting millions of men. Prostate cancer (PCa) in turn is the second leading cause of cancer death. The factors influencing the occurrence of BPH and PCa are different; however, in the course of these two diseases, the overexpression of heat shock proteins is observed. Heat shock proteins (HSPs), chaperone proteins, are known to be one of the main proteins playing a role in maintaining cell homeostasis. HSPs take part in the process of the proper folding of newly formed proteins, and participate in the renaturation of damaged proteins. In addition, they are involved in the transport of specific proteins to the appropriate cell organelles and directing damaged proteins to proteasomes or lysosomes. Their function is to protect the proteins against degradation factors that are produced during cellular stress. HSPs are also involved in modulating the immune response and the process of apoptosis. One well-known factor affecting HSPs is the androgen receptor (AR)—a main player involved in the development of BPH and the progression of prostate cancer. HSPs play a cytoprotective role and determine the survival of cancer cells. These chaperones are often upregulated in malignancies and play an indispensable role in tumor progression. Therefore, HSPs are considered as one of the therapeutic targets in anti-cancer therapies. In this review article, we discuss the role of different HSPs in prostate diseases, and their potential as therapeutic targets.
Collapse
|
33
|
Heterogeneous Responses and Isoform Compensation Dim Therapeutic Window of Hsp90 ATP-Binding Inhibitors in Cancer. Mol Cell Biol 2021; 42:e0045921. [PMID: 34871064 DOI: 10.1128/mcb.00459-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The rare capacity for heat shock protein-90 (Hsp90) chaperones to support almost the entire cellular signaling networks was viewed as a potential breakthrough point to combat tumor resistance to single oncogene-based therapeutics. Over two decades, several generations of Hsp90 ATP-binding inhibitors have entered numerous cancer clinical trials, but few have advanced to FDA approval for treatment of human cancers. Herein, we report that Hsp90 expression dramatically vary especially among different types of non-cancer cells and organs. The highly variable levels of Hsp90 from as low as 1.7% to as high as 9% of their total cellular proteins were responsible for either an extreme sensitivity or an extreme resistance to a classical Hsp90 ATP-binding inhibitor. Among randomly selected cancer cell lines, the same client proteins for regulation of cell growth exhibited unexpectedly heterogenous reactions in response to Hsp90 ATP-binding inhibitor, inconsistent with the current understanding. Finally, a minimum amount (<10%) of Hsp90β was still required for client protein stability and cell survival even in the presence of full Hsp90α. These new findings of Hsp90 expression in host and isoform compensation in tumor cells could complicate biomarker selection, toxicity readout and clinical efficacy of Hsp90-ATP-binding inhibitors in cancer clinical trials.
Collapse
|
34
|
Patel TK, Adhikari N, Amin SA, Biswas S, Jha T, Ghosh B. Small molecule drug conjugates (SMDCs): an emerging strategy for anticancer drug design and discovery. NEW J CHEM 2021. [DOI: 10.1039/d0nj04134c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanisms of how SMDCs work. Small molecule drugs are conjugated with the targeted ligand using pH sensitive linkers which allow the drug molecule to get released at lower lysosomal pH. It helps to accumulate the chemotherapeutic agents to be localized in the tumor environment upon cleaving of the pH-labile bonds.
Collapse
Affiliation(s)
- Tarun Kumar Patel
- Epigenetic Research Laboratory, Department of Pharmacy
- BITS-Pilani
- Hyderabad
- India
| | - Nilanjan Adhikari
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
| | - Sk. Abdul Amin
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
| | - Swati Biswas
- Epigenetic Research Laboratory, Department of Pharmacy
- BITS-Pilani
- Hyderabad
- India
| | - Tarun Jha
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy
- BITS-Pilani
- Hyderabad
- India
| |
Collapse
|
35
|
Edkins AL, Boshoff A. General Structural and Functional Features of Molecular Chaperones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:11-73. [PMID: 34569020 DOI: 10.1007/978-3-030-78397-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), J domain proteins (Hsp40/DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures, and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction, and virulence.
Collapse
Affiliation(s)
- Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
- Rhodes University, Makhanda/Grahamstown, South Africa.
| | - Aileen Boshoff
- Rhodes University, Makhanda/Grahamstown, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
36
|
Sanchez-Martin C, Serapian SA, Colombo G, Rasola A. Dynamically Shaping Chaperones. Allosteric Modulators of HSP90 Family as Regulatory Tools of Cell Metabolism in Neoplastic Progression. Front Oncol 2020; 10:1177. [PMID: 32766157 PMCID: PMC7378685 DOI: 10.3389/fonc.2020.01177] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022] Open
Abstract
Molecular chaperones have recently emerged as fundamental regulators of salient biological routines, including metabolic adaptations to environmental changes. Yet, many of the molecular mechanisms at the basis of their functions are still unknown or at least uncertain. This is in part due to the lack of chemical tools that can interact with the chaperones to induce measurable functional perturbations. In this context, the use of small molecules as modulators of protein functions has proven relevant for the investigation of a number of biomolecular systems. Herein, we focus on the functions, interactions and signaling pathways of the HSP90 family of molecular chaperones as possible targets for the discovery of new molecular entities aimed at tuning their activity and interactions. HSP90 and its mitochondrial paralog, TRAP1, regulate the activity of crucial metabolic circuitries, making cells capable of efficiently using available energy sources, with relevant implications both in healthy conditions and in a variety of disease states and especially cancer. The design of small-molecules targeting the chaperone cycle of HSP90 and able to inhibit or stimulate the activity of the protein can provide opportunities to finely dissect their biochemical activities and to obtain lead compounds to develop novel, mechanism-based drugs.
Collapse
Affiliation(s)
| | | | - Giorgio Colombo
- Dipartimento di Chimica, Università di Pavia, Pavia, Italy.,Istituto di Chimica del Riconoscimento Molecolare, CNR, Milan, Italy
| | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Università di Padova, Padua, Italy
| |
Collapse
|
37
|
Backe SJ, Sager RA, Woodford MR, Makedon AM, Mollapour M. Post-translational modifications of Hsp90 and translating the chaperone code. J Biol Chem 2020; 295:11099-11117. [PMID: 32527727 DOI: 10.1074/jbc.rev120.011833] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cells have a remarkable ability to synthesize large amounts of protein in a very short period of time. Under these conditions, many hydrophobic surfaces on proteins may be transiently exposed, and the likelihood of deleterious interactions is quite high. To counter this threat to cell viability, molecular chaperones have evolved to help nascent polypeptides fold correctly and multimeric protein complexes assemble productively, while minimizing the danger of protein aggregation. Heat shock protein 90 (Hsp90) is an evolutionarily conserved molecular chaperone that is involved in the stability and activation of at least 300 proteins, also known as clients, under normal cellular conditions. The Hsp90 clients participate in the full breadth of cellular processes, including cell growth and cell cycle control, signal transduction, DNA repair, transcription, and many others. Hsp90 chaperone function is coupled to its ability to bind and hydrolyze ATP, which is tightly regulated both by co-chaperone proteins and post-translational modifications (PTMs). Many reported PTMs of Hsp90 alter chaperone function and consequently affect myriad cellular processes. Here, we review the contributions of PTMs, such as phosphorylation, acetylation, SUMOylation, methylation, O-GlcNAcylation, ubiquitination, and others, toward regulation of Hsp90 function. We also discuss how the Hsp90 modification state affects cellular sensitivity to Hsp90-targeted therapeutics that specifically bind and inhibit its chaperone activity. The ultimate challenge is to decipher the comprehensive and combinatorial array of PTMs that modulate Hsp90 chaperone function, a phenomenon termed the "chaperone code."
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA.,College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Alan M Makedon
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
38
|
Astl L, Stetz G, Verkhivker GM. Allosteric Mechanism of the Hsp90 Chaperone Interactions with Cochaperones and Client Proteins by Modulating Communication Spines of Coupled Regulatory Switches: Integrative Atomistic Modeling of Hsp90 Signaling in Dynamic Interaction Networks. J Chem Inf Model 2020; 60:3616-3631. [DOI: 10.1021/acs.jcim.0c00380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lindy Astl
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gabrielle Stetz
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California92618, United States
| |
Collapse
|
39
|
Taldone T, Wang T, Rodina A, Pillarsetty NVK, Digwal CS, Sharma S, Yan P, Joshi S, Pagare PP, Bolaender A, Roboz GJ, Guzman ML, Chiosis G. A Chemical Biology Approach to the Chaperome in Cancer-HSP90 and Beyond. Cold Spring Harb Perspect Biol 2020; 12:a034116. [PMID: 30936118 PMCID: PMC6773535 DOI: 10.1101/cshperspect.a034116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer is often associated with alterations in the chaperome, a collection of chaperones, cochaperones, and other cofactors. Changes in the expression levels of components of the chaperome, in the interaction strength among chaperome components, alterations in chaperome constituency, and in the cellular location of chaperome members, are all hallmarks of cancer. Here we aim to provide an overview on how chemical biology has played a role in deciphering such complexity in the biology of the chaperome in cancer and in other diseases. The focus here is narrow and on pathologic changes in the chaperome executed by enhancing the interaction strength between components of distinct chaperome pathways, specifically between those of HSP90 and HSP70 pathways. We will review chemical tools and chemical probe-based assays, with a focus on HSP90. We will discuss how kinetic binding, not classical equilibrium binding, is most appropriate in the development of drugs and probes for the chaperome in disease. We will then present our view on how chaperome inhibitors may become potential drugs and diagnostics in cancer.
Collapse
Affiliation(s)
- Tony Taldone
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | | | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Piyusha P Pagare
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Alexander Bolaender
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Gail J Roboz
- Division of Hematology and Medical Oncology, Leukemia Program, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, New York 10065
| | - Monica L Guzman
- Division of Hematology and Medical Oncology, Leukemia Program, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, New York 10065
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
40
|
LaPointe P, Mercier R, Wolmarans A. Aha-type co-chaperones: the alpha or the omega of the Hsp90 ATPase cycle? Biol Chem 2020; 401:423-434. [DOI: 10.1515/hsz-2019-0341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/27/2019] [Indexed: 11/15/2022]
Abstract
AbstractHeat shock protein 90 (Hsp90) is a dimeric molecular chaperone that plays an essential role in cellular homeostasis. It functions in the context of a structurally dynamic ATP-dependent cycle to promote conformational changes in its clientele to aid stability, maturation, and activation. The client activation cycle is tightly regulated by a cohort of co-chaperone proteins that display specific binding preferences for certain conformations of Hsp90, guiding Hsp90 through its functional ATPase cycle. Aha-type co-chaperones are well-known to robustly stimulate the ATPase activity of Hsp90 but other roles in regulating the functional cycle are being revealed. In this review, we summarize the work done on the Aha-type co-chaperones since the 1990s and highlight recent discoveries with respect to the complexity of Hsp90 cycle regulation.
Collapse
Affiliation(s)
- Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - Annemarie Wolmarans
- Department of Biology, The King’s University, Edmonton T6B 2H3, Alberta, Canada
| |
Collapse
|
41
|
Mader SL, Lopez A, Lawatscheck J, Luo Q, Rutz DA, Gamiz-Hernandez AP, Sattler M, Buchner J, Kaila VRI. Conformational dynamics modulate the catalytic activity of the molecular chaperone Hsp90. Nat Commun 2020; 11:1410. [PMID: 32179743 PMCID: PMC7075974 DOI: 10.1038/s41467-020-15050-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/16/2020] [Indexed: 12/31/2022] Open
Abstract
The heat shock protein 90 (Hsp90) is a molecular chaperone that employs the free energy of ATP hydrolysis to control the folding and activation of several client proteins in the eukaryotic cell. To elucidate how the local ATPase reaction in the active site couples to the global conformational dynamics of Hsp90, we integrate here large-scale molecular simulations with biophysical experiments. We show that the conformational switching of conserved ion pairs between the N-terminal domain, harbouring the active site, and the middle domain strongly modulates the catalytic barrier of the ATP-hydrolysis reaction by electrostatic forces. Our combined findings provide a mechanistic model for the coupling between catalysis and protein dynamics in Hsp90, and show how long-range coupling effects can modulate enzymatic activity. The chaperone Hsp90 uses the free energy from ATP hydrolysis to control the folding of client proteins in eukaryotic cells. Here the authors provide mechanistic insights into how its catalytic activity is coupled to conformational changes by combining large-scale molecular simulations with NMR, FRET and SAXS experiments.
Collapse
Affiliation(s)
- Sophie L Mader
- Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748, Garching, Germany
| | - Abraham Lopez
- Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany
| | - Jannis Lawatscheck
- Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748, Garching, Germany
| | - Qi Luo
- Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748, Garching, Germany.,Soft Matter Research Center and Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Daniel A Rutz
- Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748, Garching, Germany
| | - Ana P Gamiz-Hernandez
- Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748, Garching, Germany.,Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Michael Sattler
- Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748, Garching, Germany
| | - Ville R I Kaila
- Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748, Garching, Germany. .,Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden.
| |
Collapse
|
42
|
A methylated lysine is a switch point for conformational communication in the chaperone Hsp90. Nat Commun 2020; 11:1219. [PMID: 32139682 PMCID: PMC7057950 DOI: 10.1038/s41467-020-15048-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
Methylation of a conserved lysine in C-terminal domain of the molecular chaperone Hsp90 was shown previously to affect its in vivo function. However, the underlying mechanism remained elusive. Through a combined experimental and computational approach, this study shows that this site is very sensitive to sidechain modifications and crucial for Hsp90 activity in vitro and in vivo. Our results demonstrate that this particular lysine serves as a switch point for the regulation of Hsp90 functions by influencing its conformational cycle, ATPase activity, co-chaperone regulation, and client activation of yeast and human Hsp90. Incorporation of the methylated lysine via genetic code expansion specifically shows that upon modification, the conformational cycle of Hsp90 is altered. Molecular dynamics simulations including the methylated lysine suggest specific conformational changes that are propagated through Hsp90. Thus, methylation of the C-terminal lysine allows a precise allosteric tuning of Hsp90 activity via long distances. Methylation of a lysine residue in Hsp90 is a recently discovered post-translational modification but the mechanistic effects of this modification have remained unknown so far. Here the authors combine biochemical and biophysical approaches, molecular dynamics (MD) simulations and functional experiments with yeast and show that this lysine is a switch point, which specifically modulates conserved Hsp90 functions including co-chaperone regulation and client activation.
Collapse
|
43
|
Wolmarans A, Kwantes A, LaPointe P. A novel method for site-specific chemical SUMOylation: SUMOylation of Hsp90 modulates co-chaperone binding in vitro. Biol Chem 2019; 400:487-500. [PMID: 30265648 DOI: 10.1515/hsz-2018-0251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/14/2018] [Indexed: 12/27/2022]
Abstract
SUMO is covalently attached to lysine side chains in target proteins by the action of a cascade of E1, E2, and E3 ligases. Unlike ubiquitin, SUMO does not target proteins for degradation but rather plays a regulatory role in activating target proteins or directing them to multiprotein complexes. Isolating SUMOylated proteins from native sources is challenging because of the low stoichiometry of SUMOylation that occurs for any given target protein in cells. Here we report a novel strategy to couple SUMO to the site of a target lysine for the purpose of in vitro study. Introduction of a single cysteine after the C terminal diglycine motif and a cysteine in place of a target lysine in a substrate protein allows for efficient and specific crosslinking of SUMO using a homo-bifunctional maleimide crosslinker. We demonstrate that SUMO can be crosslinked in this manner to amino acid position 178 in the dimeric molecular chaperone, Hsp90. Chemically SUMOylated Hsp90 has very similar ATPase activity compared to unmodified Hsp90 but displays preferential co-chaperone binding in vivo. Our novel strategy can easily be applied to other SUMOylated or ubiquitinated target protein in vitro.
Collapse
Affiliation(s)
- Annemarie Wolmarans
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - Allison Kwantes
- Department of Biology, The King's University, Edmonton T6B 2H3, Alberta, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| |
Collapse
|
44
|
Ginkgolic acid promotes autophagy-dependent clearance of intracellular alpha-synuclein aggregates. Mol Cell Neurosci 2019; 101:103416. [PMID: 31654699 DOI: 10.1016/j.mcn.2019.103416] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
The accumulation of intracytoplasmic inclusion bodies (Lewy bodies) composed of aggregates of the alpha-synuclein (α-syn) protein is the principal pathological characteristic of Parkinson's disease (PD) and may lead to degeneration of dopaminergic neurons. To date there is no medication that can promote the efficient clearance of these pathological aggregates. In this study, the effect on α-syn aggregate clearance of ginkgolic acid (GA), a natural compound extracted from Ginkgo biloba leaves that inhibits SUMOylation amongst other pathways, was assessed in SH-SY5Y neuroblastoma cells and rat primary cortical neurons. Depolarization of SH-SY5Y neuroblastoma cells and rat primary cortical neurons with KCl was used to induce α-syn aggregate formation. Cells pre-treated with either GA or the related compound, anacardic acid, revealed a significant decrease in intracytoplasmic aggregates immunopositive for α-syn and SUMO-1. An increased frequency of autophagosomes was also detected with both compounds. GA post-treatment 24 h after depolarization also significantly diminished α-syn aggregate bearing cells, indicating the clearance of pre-formed aggregates. Autophagy inhibitors blocked GA-dependent clearance of α-syn aggregates, but not increased autophagosome frequency. Western analysis revealed that the reduction in α-syn aggregate frequency obtained with GA pre-treatment was accompanied by little change in the abundance of SUMO conjugates. The current findings show that GA can promote autophagy-dependent clearance of α-syn aggregates and may have potential in disease modifying therapy.
Collapse
|
45
|
Woodford MR, Hughes M, Sager RA, Backe SJ, Baker-Williams AJ, Bratslavsky MS, Jacob JM, Shapiro O, Wong M, Bratslavsky G, Bourboulia D, Mollapour M. Mutation of the co-chaperone Tsc1 in bladder cancer diminishes Hsp90 acetylation and reduces drug sensitivity and selectivity. Oncotarget 2019; 10:5824-5834. [PMID: 31645902 PMCID: PMC6791385 DOI: 10.18632/oncotarget.27217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023] Open
Abstract
The molecular chaperone Heat shock protein 90 (Hsp90) is essential for the folding, stability, and activity of several drivers of oncogenesis. Hsp90 inhibitors are currently under clinical evaluation for cancer treatment, however their efficacy is limited by lack of biomarkers to optimize patient selection. We have recently identified the tumor suppressor tuberous sclerosis complex 1 (Tsc1) as a new co-chaperone of Hsp90 that affects Hsp90 binding to its inhibitors. Highly variable mutations of TSC1 have been previously identified in bladder cancer and correlate with sensitivity to the Hsp90 inhibitors. Here we showed loss of TSC1 leads to hypoacetylation of Hsp90-K407/K419 and subsequent decreased binding to the Hsp90 inhibitor ganetespib. Pharmacologic inhibition of histone deacetylases (HDACs) restores acetylation of Hsp90 and sensitizes Tsc1-mutant bladder cancer cells to ganetespib, resulting in apoptosis. Our findings suggest that TSC1 status may predict response to Hsp90 inhibitors in patients with bladder cancer, and co-targeting HDACs can sensitize tumors with Tsc1 mutations to Hsp90 inhibitors.
Collapse
Affiliation(s)
- Mark R. Woodford
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
| | - Michael Hughes
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
| | - Rebecca A. Sager
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
- College of Medicine, SUNY Upstate Medical University Syracuse, NY 13210, USA
| | - Sarah J. Backe
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
| | - Alexander J. Baker-Williams
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
| | - Michael S. Bratslavsky
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
| | - Joseph M. Jacob
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
| | - Oleg Shapiro
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
| | - Michael Wong
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
| |
Collapse
|
46
|
Takakuwa JE, Nitika, Knighton LE, Truman AW. Oligomerization of Hsp70: Current Perspectives on Regulation and Function. Front Mol Biosci 2019; 6:81. [PMID: 31555664 PMCID: PMC6742908 DOI: 10.3389/fmolb.2019.00081] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
The Hsp70 molecular chaperone in conjunction with Hsp90 and a suite of helper co-chaperones are required for the folding and subsequent refolding of a large proportion of the proteome. These proteins are critical for cell viability and play major roles in diseases of proteostasis which include neurodegenerative diseases and cancer. As a consequence, a large scientific effort has gone into understanding how chaperones such as Hsp70 function at the in vitro and in vivo level. Although many chaperones require constitutive self-interaction (dimerization and oligomerization) to function, Hsp70 has been thought to exist as a monomer, especially in eukaryotic cells. Recent studies have demonstrated that both bacterial and mammalian Hsp70 can exist as a dynamic pool of monomers, dimer, and oligomers. In this mini-review, we discuss the mechanisms and roles of Hsp70 oligomerization in Hsp70 function, as well as thoughts on how this integrates into well-established ideas of Hsp70 regulation.
Collapse
Affiliation(s)
| | | | | | - Andrew W. Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
47
|
Deneka AY, Boumber Y, Beck T, Golemis EA. Tumor-Targeted Drug Conjugates as an Emerging Novel Therapeutic Approach in Small Cell Lung Cancer (SCLC). Cancers (Basel) 2019; 11:E1297. [PMID: 31484422 PMCID: PMC6769513 DOI: 10.3390/cancers11091297] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
There are few effective therapies for small cell lung cancer (SCLC), a highly aggressive disease representing 15% of total lung cancers. With median survival <2 years, SCLC is one of the most lethal cancers. At present, chemotherapies and radiation therapy are commonly used for SCLC management. Few protein-targeted therapies have shown efficacy in improving overall survival; immune checkpoint inhibitors (ICIs) are promising agents, but many SCLC tumors do not express ICI targets such as PD-L1. This article presents an alternative approach to the treatment of SCLC: the use of drug conjugates, where a targeting moiety concentrates otherwise toxic agents in the vicinity of tumors, maximizing the differential between tumor killing and the cytotoxicity of normal tissues. Several tumor-targeted drug conjugate delivery systems exist and are currently being actively tested in the setting of SCLC. These include antibody-drug conjugates (ADCs), radioimmunoconjugates (RICs), small molecule-drug conjugates (SMDCs), and polymer-drug conjugates (PDCs). We summarize the basis of action for these targeting compounds, discussing principles of construction and providing examples of effective versus ineffective compounds, as established by preclinical and clinical testing. Such agents may offer new therapeutic options for the clinical management of this challenging disease in the future.
Collapse
Affiliation(s)
- Alexander Y Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
- Department of Biochemistry, Kazan Federal University, 420000 Kazan, Russia.
| | - Yanis Boumber
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Department of Biochemistry, Kazan Federal University, 420000 Kazan, Russia
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Tim Beck
- Cleveland Clinic, Cleveland, OH 44195, USA
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
48
|
Hsp90 middle domain phosphorylation initiates a complex conformational program to recruit the ATPase-stimulating cochaperone Aha1. Nat Commun 2019; 10:2574. [PMID: 31189925 PMCID: PMC6561935 DOI: 10.1038/s41467-019-10463-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/09/2019] [Indexed: 11/09/2022] Open
Abstract
Complex conformational dynamics are essential for function of the dimeric molecular chaperone heat shock protein 90 (Hsp90), including transient, ATP-biased N-domain dimerization that is necessary to attain ATPase competence. The intrinsic, but weak, ATP hydrolyzing activity of human Hsp90 is markedly enhanced by the co-chaperone Aha1. However, the cellular concentration of Aha1 is substoichiometric relative to Hsp90. Here we report that initial recruitment of this cochaperone to Hsp90 is markedly enhanced by phosphorylation of a highly conserved tyrosine (Y313 in Hsp90α) in the Hsp90 middle domain. Importantly, phosphomimetic mutation of Y313 promotes formation of a transient complex in which both N- and C-domains of Aha1 bind to distinct surfaces of the middle domains of opposing Hsp90 protomers prior to ATP-directed N-domain dimerization. Thus, Y313 represents a phosphorylation-sensitive conformational switch, engaged early after client loading, that affects both local and long-range conformational dynamics to facilitate initial recruitment of Aha1 to Hsp90.
Collapse
|
49
|
Targeting hsp90 family members: A strategy to improve cancer cell death. Biochem Pharmacol 2019; 164:177-187. [PMID: 30981878 DOI: 10.1016/j.bcp.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/10/2019] [Indexed: 02/01/2023]
Abstract
A crucial process in biology is the conversion of the genetic information into functional proteins that carry out the genetic program. However, a supplementary step is required to obtain functional proteins: the folding of the newly translated polypeptides into well-defined, three-dimensional conformations. Proteins chaperones are crucial for this final step in the readout of genetic information, which results in the formation of functional proteins. In this review, a special attention will be given to the strategies targeting hsp90 family members in order to increase cancer cell death. We argue that disruption of hsp90 machinery and the further client protein degradation is the main consequence of hsp90 oxidative cleavage taking place at the N-terminal nucleotide-binding site. Moreover, modulation of Grp94 expression will be discussed as a potential therapeutic goal looking for a decrease in cancer relapses.
Collapse
|
50
|
Hombach-Barrigah A, Bartsch K, Smirlis D, Rosenqvist H, MacDonald A, Dingli F, Loew D, Späth GF, Rachidi N, Wiese M, Clos J. Leishmania donovani 90 kD Heat Shock Protein - Impact of Phosphosites on Parasite Fitness, Infectivity and Casein Kinase Affinity. Sci Rep 2019; 9:5074. [PMID: 30911045 PMCID: PMC6434042 DOI: 10.1038/s41598-019-41640-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/11/2019] [Indexed: 12/28/2022] Open
Abstract
Leishmania parasites are thought to control protein activity at the post-translational level, e.g. by protein phosphorylation. In the pathogenic amastigote, the mammalian stage of Leishmania parasites, heat shock proteins show increased phosphorylation, indicating a role in stage-specific signal transduction. Here we investigate the impact of phosphosites in the L. donovani heat shock protein 90. Using a chemical knock-down/genetic complementation approach, we mutated 11 confirmed or presumed phosphorylation sites and assessed the impact on overall fitness, morphology and in vitro infectivity. Most phosphosite mutations affected the growth and morphology of promastigotes in vitro, but with one exception, none of the phosphorylation site mutants had a selective impact on the in vitro infection of macrophages. Surprisingly, aspartate replacements mimicking the negative charge of phosphorylated serines or threonines had mostly negative impacts on viability and infectivity. HSP90 is a substrate for casein kinase 1.2-catalysed phosphorylation in vitro. While several putative phosphosite mutations abrogated casein kinase 1.2 activity on HSP90, only Ser289 could be identified as casein kinase target by mass spectrometry. In summary, our data show HSP90 as a downstream client of phosphorylation-mediated signalling in an organism that depends on post-transcriptional gene regulation.
Collapse
Affiliation(s)
| | | | - Despina Smirlis
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
- Hellenic Pasteur Institute, Athens, Greece
| | - Heidi Rosenqvist
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) University of Strathclyde, Glasgow, Scotland, UK
- Novo Nordisk A/S, Gentofte, Denmark
| | - Andrea MacDonald
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, PSL Research University, Paris, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, PSL Research University, Paris, France
| | - Gerald F Späth
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Najma Rachidi
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Martin Wiese
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) University of Strathclyde, Glasgow, Scotland, UK
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|