1
|
Magnan B, Chen XH, Rashid S, Minard A, Chau W, Uyesugi T, Edwards RA, Panigrahi R, Glover JNM, LaPointe P, Spyracopoulos L. Asymmetric Dynamics Drive Catalytic Activation of the Hsp90 Chaperone. J Phys Chem B 2024; 128:8388-8399. [PMID: 39186634 DOI: 10.1021/acs.jpcb.4c03363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The Hsp90 chaperone is an ATPase enzyme composed of two copies of a three-domain subunit. Hsp90 stabilizes and activates a diverse array of regulatory proteins. Substrates are bound and released by the middle domain through a clamping cycle involving conformational transitions between a dynamic open state and a compact conformationally restricted closed state. Intriguingly, the overall ATPase activity of dimeric Hsp90 can be asymmetrically enhanced through a single subunit when Hsp90 is bound to a cochaperone or when Hsp90 is composed of one active and one catalytically defunct subunit as a heterodimer. To explore the mechanism of asymmetric Hsp90 activation, we designed a subunit bearing N-terminal ATPase mutations that demonstrate increased intra- and interdomain dynamics. Using intact Hsp90 and various N-terminal and middle domain constructs, we blended 19F NMR spectroscopy, molecular dynamics (MD) simulations, and ATPase assays to show that within the context of heterodimeric Hsp90, the conformationally dynamic subunit stimulates the ATPase activity of the normal subunit. The contrasting dynamic properties of the subunits within heterodimeric Hsp90 provide a mechanistic framework to understand the molecular basis for asymmetric Hsp90 activation and its importance for the biological function of Hsp90.
Collapse
Affiliation(s)
- Breanna Magnan
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Xu Hong Chen
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Suad Rashid
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Alissa Minard
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - William Chau
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Toshi Uyesugi
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ross A Edwards
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Rashmi Panigrahi
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Paul LaPointe
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
2
|
Backe SJ, Mollapour M, Woodford MR. Saccharomyces cerevisiae as a tool for deciphering Hsp90 molecular chaperone function. Essays Biochem 2023; 67:781-795. [PMID: 36912239 PMCID: PMC10497724 DOI: 10.1042/ebc20220224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 03/14/2023]
Abstract
Yeast is a valuable model organism for their ease of genetic manipulation, rapid growth rate, and relative similarity to higher eukaryotes. Historically, Saccharomyces cerevisiae has played a major role in discovering the function of complex proteins and pathways that are important for human health and disease. Heat shock protein 90 (Hsp90) is a molecular chaperone responsible for the stabilization and activation of hundreds of integral members of the cellular signaling network. Much important structural and functional work, including many seminal discoveries in Hsp90 biology are the direct result of work carried out in S. cerevisiae. Here, we have provided a brief overview of the S. cerevisiae model system and described how this eukaryotic model organism has been successfully applied to the study of Hsp90 chaperone function.
Collapse
Affiliation(s)
- Sarah J. Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| | - Mark R. Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
3
|
Zhang F, Xu LD, Zhang Q, Wang A, Yu X, Liu S, Chen C, Wu S, Jin J, Lin A, Neculai D, Zhao B, Feng XH, Liang T, Xu P, Huang YW. Targeting proteostasis of the HEV replicase to combat infection in preclinical models. J Hepatol 2023; 78:704-716. [PMID: 36574921 DOI: 10.1016/j.jhep.2022.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/15/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Appropriate treatment options are lacking for hepatitis E virus (HEV)-infected pregnant women and immunocompromised individuals. Thus, we aimed to identify efficient anti-HEV drugs through high-throughput screening, validate them in vitro and in vivo (in a preclinical animal study), and elucidate their underlying antiviral mechanism of action. METHODS Using appropriate cellular and rodent HEV infection models, we studied a critical pathway for host-HEV interactions and performed a preclinical study of the corresponding antivirals, which target proteostasis of the HEV replicase. RESULTS We found 17 inhibitors that target HEV-HSP90 interactions by unbiased compound library screening on human hepatocytes harboring an HEV replicon. Inhibitors of HSP90 (iHSP90) markedly suppressed HEV replication with efficacy exceeding that of conventional antivirals (IFNα and ribavirin) in vitro. Mechanistically, iHSP90 treatment released the viral replicase ORF1 protein from the ORF1-HSP90 complex and triggered rapid ubiquitin/proteasome-mediated degradation of ORF1, resulting in abrogated HEV replication. Furthermore, a preclinical trial in a Mongolian gerbil HEV infection model showed this novel anti-HEV strategy to be safe, efficient, and able to prevent HEV-induced liver damage. CONCLUSIONS In this study, we uncover a proteostatic pathway that is critical for host-HEV interactions and we provide a foundation from which to translate this new understanding of the HEV life cycle into clinically promising antivirals. IMPACT AND IMPLICATIONS Appropriate treatment options for hepatitis E virus (HEV)-infected pregnant women and immunocompromised patients are lacking; hence, there is an urgent need for safe and effective HEV-specific therapies. This study identified new antivirals (inhibitors of HSP90) that significantly limit HEV infection by targeting the viral replicase for degradation. Moreover, these anti-HEV drugs were validated in an HEV rodent model and were found to be safe and efficient for prevention of HEV-induced liver injury in preclinical experiments. Our findings substantially promote the understanding of HEV pathobiology and pave the way for antiviral development.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Ling-Dong Xu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Ailian Wang
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xinyuan Yu
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Shengduo Liu
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China; Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Chu Chen
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center (ZJU-HIC), Hangzhou, 310058, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shiying Wu
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jianping Jin
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Aifu Lin
- MOE Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dante Neculai
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bin Zhao
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Hua Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Pinglong Xu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China; Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Yao-Wei Huang
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center (ZJU-HIC), Hangzhou, 310058, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Heterocyclic Compounds as Hsp90 Inhibitors: A Perspective on Anticancer Applications. Pharmaceutics 2022; 14:pharmaceutics14102220. [PMID: 36297655 PMCID: PMC9610671 DOI: 10.3390/pharmaceutics14102220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
Heat shock proteins (Hsps) have garnered special attention in cancer therapy as molecular chaperones with regulatory/mediatory effects on folding, maintenance/stability, maturation, and conformation of proteins as well as their effects on prevention of protein aggregation. Hsp90 ensures the stability of various client proteins needed for the growth of cells or the survival of tumor cells; therefore, they are overexpressed in tumor cells and play key roles in carcinogenesis. Accordingly, Hsp90 inhibitors are recognized as attractive therapeutic agents for investigations pertaining to tumor suppression. Natural Hsp90 inhibitors comprising geldanamycin (GM), reclaimed analogs of GM including 17-AAG and DMAG, and radicicol, a natural macrocyclic antifungal, are among the first potent Hsp90 inhibitors. Herein, recently synthesized heterocyclic compounds recognized as potent Hsp90 inhibitors are reviewed along with the anticancer effects of heterocyclic compounds, comprising purine, pyrazole, triazine, quinolines, coumarin, and isoxazoles molecules.
Collapse
|
5
|
Serapian SA, Moroni E, Ferraro M, Colombo G. Atomistic Simulations of the Mechanisms of the Poorly Catalytic Mitochondrial Chaperone Trap1: Insights into the Effects of Structural Asymmetry on Reactivity. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Stefano A. Serapian
- Department of Chemistry, University of Pavia, Via Torquato Taramelli 12, 27100 Pavia, Italy
| | - Elisabetta Moroni
- ″Giulio Natta” Institute of Chemical and Technological Sciences (SCITEC), Via Mario Bianco 9, 20131 Milan, Italy
| | - Mariarosaria Ferraro
- ″Giulio Natta” Institute of Chemical and Technological Sciences (SCITEC), Via Mario Bianco 9, 20131 Milan, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, Via Torquato Taramelli 12, 27100 Pavia, Italy
- ″Giulio Natta” Institute of Chemical and Technological Sciences (SCITEC), Via Mario Bianco 9, 20131 Milan, Italy
| |
Collapse
|
6
|
Banerjee M, Hatial I, Keegan BM, Blagg BSJ. Assay design and development strategies for finding Hsp90 inhibitors and their role in human diseases. Pharmacol Ther 2021; 221:107747. [PMID: 33245994 PMCID: PMC8744950 DOI: 10.1016/j.pharmthera.2020.107747] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that facilitates the maturation of its client proteins including protein kinases, transcription factors, and steroid hormone receptors which are structurally and functionally diverse. These client proteins are involved in various cellular signaling pathways, and Hsp90 is implicated in various human diseases including cancer, inflammation, and diseases associated with protein misfolding; thus making Hsp90 a promising target for drug discovery. Some of its client proteins are well-known cancer targets. Instead of targeting these client proteins individually, however, targeting Hsp90 is more practical for cancer drug development. Efforts have been invested in recognizing potential drugs for clinical use that inhibit Hsp90 activity and result in the prevention of Hsp90 client maturation and dampening of subsequent signaling cascades. Here, we discuss current assays and technologies used to find and characterize Hsp90 inhibitors that include biophysical, biochemical, cell-based assays and computational modeling. This review highlights recent discoveries that N-terminal isoform-selective compounds and inhibitors that target the Hsp90 C-terminus that may offer the potential to overcome some of the detriments observed with pan Hsp90 inhibitors. The tools and assays summarized in this review should be used to develop Hsp90-targeting drugs with high specificity, potency, and drug-like properties that may prove immensely useful in the clinic.
Collapse
Affiliation(s)
- Monimoy Banerjee
- Department of Chemistry & Biochemistry, Warren Family Research Center for Drug Discovery and Development, 305 McCourtney Hall, University of Norte Dame, Norte Dame, IN 46656, USA
| | - Ishita Hatial
- Department of Chemistry & Biochemistry, Warren Family Research Center for Drug Discovery and Development, 305 McCourtney Hall, University of Norte Dame, Norte Dame, IN 46656, USA
| | - Bradley M Keegan
- Department of Chemistry & Biochemistry, Warren Family Research Center for Drug Discovery and Development, 305 McCourtney Hall, University of Norte Dame, Norte Dame, IN 46656, USA
| | - Brian S J Blagg
- Department of Chemistry & Biochemistry, Warren Family Research Center for Drug Discovery and Development, 305 McCourtney Hall, University of Norte Dame, Norte Dame, IN 46656, USA.
| |
Collapse
|
7
|
Grindle MP, Carter B, Alao JP, Connors K, Tehver R, Kravats AN. Structural Communication between the E. coli Chaperones DnaK and Hsp90. Int J Mol Sci 2021; 22:ijms22042200. [PMID: 33672263 PMCID: PMC7926864 DOI: 10.3390/ijms22042200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/03/2023] Open
Abstract
The 70 kDa and 90 kDa heat shock proteins Hsp70 and Hsp90 are two abundant and highly conserved ATP-dependent molecular chaperones that participate in the maintenance of cellular homeostasis. In Escherichia coli, Hsp90 (Hsp90Ec) and Hsp70 (DnaK) directly interact and collaborate in protein remodeling. Previous work has produced a model of the direct interaction of both chaperones. The locations of the residues involved have been confirmed and the model has been validated. In this study, we investigate the allosteric communication between Hsp90Ec and DnaK and how the chaperones couple their conformational cycles. Using elastic network models (ENM), normal mode analysis (NMA), and a structural perturbation method (SPM) of asymmetric and symmetric DnaK-Hsp90Ec, we extract biologically relevant vibrations and identify residues involved in allosteric signaling. When one DnaK is bound, the dominant normal modes favor biological motions that orient a substrate protein bound to DnaK within the substrate/client binding site of Hsp90Ec and release the substrate from the DnaK substrate binding domain. The presence of one DnaK molecule stabilizes the entire Hsp90Ec protomer to which it is bound. Conversely, the symmetric model of DnaK binding results in steric clashes of DnaK molecules and suggests that the Hsp90Ec and DnaK chaperone cycles operate independently. Together, this data supports an asymmetric binding of DnaK to Hsp90Ec.
Collapse
Affiliation(s)
- Matthew P. Grindle
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA; (M.P.G.); (J.P.A.); (K.C.)
| | - Ben Carter
- Department of Physics, Denison University, Granville, OH 43023, USA; (B.C.); (R.T.)
| | - John Paul Alao
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA; (M.P.G.); (J.P.A.); (K.C.)
| | - Katherine Connors
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA; (M.P.G.); (J.P.A.); (K.C.)
| | - Riina Tehver
- Department of Physics, Denison University, Granville, OH 43023, USA; (B.C.); (R.T.)
| | - Andrea N. Kravats
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA; (M.P.G.); (J.P.A.); (K.C.)
- Correspondence:
| |
Collapse
|
8
|
Wolf S, Sohmen B, Hellenkamp B, Thurn J, Stock G, Hugel T. Hierarchical dynamics in allostery following ATP hydrolysis monitored by single molecule FRET measurements and MD simulations. Chem Sci 2021; 12:3350-3359. [PMID: 34164105 PMCID: PMC8179424 DOI: 10.1039/d0sc06134d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
We report on a study that combines advanced fluorescence methods with molecular dynamics (MD) simulations to cover timescales from nanoseconds to milliseconds for a large protein. This allows us to delineate how ATP hydrolysis in a protein causes allosteric changes at a distant protein binding site, using the chaperone Hsp90 as test system. The allosteric process occurs via hierarchical dynamics involving timescales from nano- to milliseconds and length scales from Ångstroms to several nanometers. We find that hydrolysis of one ATP is coupled to a conformational change of Arg380, which in turn passes structural information via the large M-domain α-helix to the whole protein. The resulting structural asymmetry in Hsp90 leads to the collapse of a central folding substrate binding site, causing the formation of a novel collapsed state (closed state B) that we characterise structurally. We presume that similar hierarchical mechanisms are fundamental for information transfer induced by ATP hydrolysis through many other proteins.
Collapse
Affiliation(s)
- Steffen Wolf
- Biomolecular Dynamics, Institute of Physics, University of Freiburg Freiburg Germany +49 761 203 5883 +49 761 203 5913
| | - Benedikt Sohmen
- Institute of Physical Chemistry, University of Freiburg Freiburg Germany +49 761 203 6192
| | - Björn Hellenkamp
- Engineering and Applied Sciences, Columbia University New York USA
| | - Johann Thurn
- Institute of Physical Chemistry, University of Freiburg Freiburg Germany +49 761 203 6192
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, University of Freiburg Freiburg Germany +49 761 203 5883 +49 761 203 5913
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg Freiburg Germany +49 761 203 6192
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg Freiburg Germany
| |
Collapse
|
9
|
Hu S, Ferraro M, Thomas AP, Chung JM, Yoon NG, Seol JH, Kim S, Kim HU, An MY, Ok H, Jung HS, Ryu JH, Colombo G, Kang BH. Dual Binding to Orthosteric and Allosteric Sites Enhances the Anticancer Activity of a TRAP1-Targeting Drug. J Med Chem 2020; 63:2930-2940. [DOI: 10.1021/acs.jmedchem.9b01420] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sung Hu
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Mariarosaria Ferraro
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), Consiglio Nazionale delle Ricerche (CNR), Milan 20131, Italy
| | - Ajesh P. Thomas
- Department of Chemistry, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeong Min Chung
- Division of Chemistry and Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Nam Gu Yoon
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ji-Hoon Seol
- Department of Chemistry, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sangpil Kim
- Department of Chemistry, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Han-ul Kim
- Division of Chemistry and Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Mi Young An
- Division of Chemistry and Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Haewon Ok
- Department of Chemistry, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun Suk Jung
- Division of Chemistry and Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Giorgio Colombo
- University of Pavia, Department of Chemistry, Pavia 27100, Italy
| | - Byoung Heon Kang
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
10
|
Two closed ATP- and ADP-dependent conformations in yeast Hsp90 chaperone detected by Mn(II) EPR spectroscopic techniques. Proc Natl Acad Sci U S A 2019; 117:395-404. [PMID: 31862713 DOI: 10.1073/pnas.1916030116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hsp90 plays a central role in cell homeostasis by assisting folding and maturation of a large variety of clients. It is a homo-dimer, which functions via hydrolysis of ATP-coupled to conformational changes. Hsp90's conformational cycle in the absence of cochaperones is currently postulated as apo-Hsp90 being an ensemble of "open"/"closed" conformations. Upon ATP binding, Hsp90 adopts an active ATP-bound closed conformation where the N-terminal domains, which comprise the ATP binding site, are in close contact. However, there is no consensus regarding the conformation of the ADP-bound Hsp90, which is considered important for client release. In this work, we tracked the conformational states of yeast Hsp90 at various stages of ATP hydrolysis in frozen solutions employing electron paramagnetic resonance (EPR) techniques, particularly double electron-electron resonance (DEER) distance measurements. Using rigid Gd(III) spin labels, we found the C domains to be dimerized with same distance distribution at all hydrolysis states. Then, we substituted the ATPase Mg(II) cofactor with paramagnetic Mn(II) and followed the hydrolysis state using hyperfine spectroscopy and measured the inter-N-domain distance distributions via Mn(II)-Mn(II) DEER. The point character of the Mn(II) spin label allowed us resolve 2 different closed states: The ATP-bound (prehydrolysis) characterized by a distance distribution having a maximum of 4.3 nm, which broadened and shortened, shifting the mean to 3.8 nm at the ADP-bound state (posthydrolysis). This provides experimental evidence to a second closed conformational state of Hsp90 in solution, referred to as "compact." Finally, the so-called high-energy state, trapped by addition of vanadate, was found structurally similar to the posthydrolysis state.
Collapse
|
11
|
Biebl MM, Buchner J. Structure, Function, and Regulation of the Hsp90 Machinery. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034017. [PMID: 30745292 DOI: 10.1101/cshperspect.a034017] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone involved in the maturation of a plethora of substrates ("clients"), including protein kinases, transcription factors, and E3 ubiquitin ligases, positioning Hsp90 as a central regulator of cellular proteostasis. Hsp90 undergoes large conformational changes during its ATPase cycle. The processing of clients by cytosolic Hsp90 is assisted by a cohort of cochaperones that affect client recruitment, Hsp90 ATPase function or conformational rearrangements in Hsp90. Because of the importance of Hsp90 in regulating central cellular pathways, strategies for the pharmacological inhibition of the Hsp90 machinery in diseases such as cancer and neurodegeneration are being developed. In this review, we summarize recent structural and mechanistic progress in defining the function of organelle-specific and cytosolic Hsp90, including the impact of individual cochaperones on the maturation of specific clients and complexes with clients as well as ways of exploiting Hsp90 as a drug target.
Collapse
Affiliation(s)
- Maximilian M Biebl
- Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, D-85748 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, D-85748 Garching, Germany
| |
Collapse
|
12
|
Genest O, Wickner S, Doyle SM. Hsp90 and Hsp70 chaperones: Collaborators in protein remodeling. J Biol Chem 2018; 294:2109-2120. [PMID: 30401745 DOI: 10.1074/jbc.rev118.002806] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Heat shock proteins 90 (Hsp90) and 70 (Hsp70) are two families of highly conserved ATP-dependent molecular chaperones that fold and remodel proteins. Both are important components of the cellular machinery involved in protein homeostasis and participate in nearly every cellular process. Although Hsp90 and Hsp70 each carry out some chaperone activities independently, they collaborate in other cellular remodeling reactions. In eukaryotes, both Hsp90 and Hsp70 function with numerous Hsp90 and Hsp70 co-chaperones. In contrast, bacterial Hsp90 and Hsp70 are less complex; Hsp90 acts independently of co-chaperones, and Hsp70 uses two co-chaperones. In this review, we focus on recent progress toward understanding the basic mechanisms of Hsp90-mediated protein remodeling and the collaboration between Hsp90 and Hsp70, with an emphasis on bacterial chaperones. We describe the structure and conformational dynamics of these chaperones and their interactions with each other and with client proteins. The physiological roles of Hsp90 in Escherichia coli and other bacteria are also discussed. We anticipate that the information gained from exploring the mechanism of the bacterial chaperone system will provide the groundwork for understanding the more complex eukaryotic Hsp90 system and its modulation by Hsp90 co-chaperones.
Collapse
Affiliation(s)
- Olivier Genest
- From the Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, 13402 Marseille, France and
| | - Sue Wickner
- the Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Shannon M Doyle
- the Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
13
|
Verkhivker GM. Dynamics-based community analysis and perturbation response scanning of allosteric interaction networks in the TRAP1 chaperone structures dissect molecular linkage between conformational asymmetry and sequential ATP hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:899-912. [PMID: 29684503 DOI: 10.1016/j.bbapap.2018.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 01/29/2023]
Abstract
Allosteric interactions of the Hsp90 chaperones with cochaperones and diverse protein clients can often exhibit distinct asymmetric features that determine regulatory mechanisms and cellular functions in many signaling networks. The recent crystal structures of the mitochondrial Hsp90 isoform TRAP1 in complexes with ATP analogs have provided first evidence of significant asymmetry in the closed dimerized state that triggers independent activity of the chaperone protomers, whereby preferential hydrolysis of the buckled protomer is followed by conformational flipping between protomers and hydrolysis of the second protomer. Despite significant insights in structural characterizations of the TRAP1 chaperone, the atomistic details and mechanics of allosteric interactions that couple sequential ATP hydrolysis with asymmetric conformational switching in the TRAP1 protomers remain largely unknown. In this work, we explored atomistic and coarse-grained simulations of the TRAP1 dimer structures in combination with the ensemble-based network modeling and perturbation response scanning of residue interaction networks to probe salient features underlying allosteric signaling mechanism. This study has revealed that key effector sites that orchestrate allosteric interactions occupy the ATP binding region and N-terminal interface of the buckled protomer, whereas the main sensors of allosteric signals that drive functional conformational changes during ATPase cycle are consolidated near the client binding region of the straight protomer, channeling the energy of ATP hydrolysis for client remodeling. The community decomposition analysis of the interaction networks and reconstruction of allosteric communication pathways in the TRAP1 structures have quantified mechanism of allosteric regulation, revealing control points and interactions that coordinate asymmetric switching during ATP hydrolysis.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, United States; Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, United States.
| |
Collapse
|
14
|
Regulation of the Hsp90 system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:889-897. [PMID: 29563055 DOI: 10.1016/j.bbamcr.2018.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/01/2023]
Abstract
Hsp90 is a highly conserved and abundant chaperone. It participates in essential cellular activities by supporting the maturation process of its client proteins, many of which are protein kinases and steroid receptors. Client processing is achieved via extensive conformational changes within the dimeric chaperone. This requires an ATP hydrolysis activity that is controlled by auto-inhibitory mechanisms and several structurally diverse cofactors. Especially the client-specificity of Hsp90 depends on client-specific cofactors, which can adapt Hsp90's activities to the client requirements at different conditions and in different cell types. Additionally, post-translational modifications can influence almost every aspect of Hsp90's interactions and activities. In this review, we present these regulatory principles, discuss the factors that have an impact on Hsp90's function and elaborate the mechanisms that are responsible for regulating the Hsp90 machinery.
Collapse
|
15
|
Canale AS, Venev SV, Whitfield TW, Caffrey DR, Marasco WA, Schiffer CA, Kowalik TF, Jensen JD, Finberg RW, Zeldovich KB, Wang JP, Bolon DNA. Synonymous Mutations at the Beginning of the Influenza A Virus Hemagglutinin Gene Impact Experimental Fitness. J Mol Biol 2018; 430:1098-1115. [PMID: 29466705 DOI: 10.1016/j.jmb.2018.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/19/2018] [Accepted: 02/05/2018] [Indexed: 01/15/2023]
Abstract
The fitness effects of synonymous mutations can provide insights into biological and evolutionary mechanisms. We analyzed the experimental fitness effects of all single-nucleotide mutations, including synonymous substitutions, at the beginning of the influenza A virus hemagglutinin (HA) gene. Many synonymous substitutions were deleterious both in bulk competition and for individually isolated clones. Investigating protein and RNA levels of a subset of individually expressed HA variants revealed that multiple biochemical properties contribute to the observed experimental fitness effects. Our results indicate that a structural element in the HA segment viral RNA may influence fitness. Examination of naturally evolved sequences in human hosts indicates a preference for the unfolded state of this structural element compared to that found in swine hosts. Our overall results reveal that synonymous mutations may have greater fitness consequences than indicated by simple models of sequence conservation, and we discuss the implications of this finding for commonly used evolutionary tests and analyses.
Collapse
Affiliation(s)
- Aneth S Canale
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Sergey V Venev
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Troy W Whitfield
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Daniel R Caffrey
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Wayne A Marasco
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Timothy F Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jeffrey D Jensen
- School of Life Sciences, Center for Evolution & Medicine, Arizona State University, Tempe, AZ. 85281, USA
| | - Robert W Finberg
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Konstantin B Zeldovich
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jennifer P Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
16
|
Wortmann P, Götz M, Hugel T. Cooperative Nucleotide Binding in Hsp90 and Its Regulation by Aha1. Biophys J 2017; 113:1711-1718. [PMID: 29045865 DOI: 10.1016/j.bpj.2017.08.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/02/2017] [Accepted: 08/08/2017] [Indexed: 11/30/2022] Open
Abstract
The function of the molecular chaperone Hsp90 depends on large conformational changes, the rearrangement of local motifs, and the binding and hydrolysis of ATP. The size and complexity of the Hsp90 system impedes the detailed investigation of their interplay using standard methods. To overcome this limitation, we developed a three-color single-molecule FRET assay to study the interaction of Hsp90 with a fluorescently labeled reporter nucleotide in detail. It allows us to directly observe the cooperativity between the two nucleotide binding pockets in the protein dimer. Furthermore, our approach disentangles the protein conformation and the nucleotide binding state of Hsp90 and extracts the kinetics of the state transitions. Thereby, we can identify the kinetic causes mediating the cooperativity. We find that the presence of the first nucleotide prolongs the binding of the second nucleotide to Hsp90. In addition, we observe changes in the kinetics for both the open and the closed conformation of Hsp90 in dependence on the number of occupied nucleotide binding sites. Our analysis also reveals how the co-chaperone Aha1, known to accelerate Hsp90's ATPase activity, affects those transitions in a nucleotide-dependent and independent manner, thereby adding another layer of regulation to Hsp90.
Collapse
Affiliation(s)
- Philipp Wortmann
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Markus Götz
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
17
|
Halpin JC, Street TO. Hsp90 Sensitivity to ADP Reveals Hidden Regulation Mechanisms. J Mol Biol 2017; 429:2918-2930. [PMID: 28822683 DOI: 10.1016/j.jmb.2017.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 10/19/2022]
Abstract
The ATPase cycle of the Hsp90 molecular chaperone is essential for maintaining the stability of numerous client proteins. Extensive analysis has focused on ATP-driven conformational changes of Hsp90; however, little is known about how Hsp90 operates under physiological nucleotide conditions in which both ATP and ADP are present. By quantifying Hsp90 activity under mixed nucleotide conditions, we find dramatic differences in ADP sensitivity among Hsp90 homologs. ADP acts as a strong ATPase inhibitor of cytosol-specific Hsp90 homologs, whereas organellular Hsp90 homologs (Grp94 and TRAP1) are relatively insensitive to the presence of ADP. These results imply that an ATP/ADP heterodimer of cytosolic Hsp90 is the predominant active state under physiological nucleotide conditions. ADP inhibition of human and yeast cytosolic Hsp90 can be relieved by the cochaperone aha1. ADP inhibition of bacterial Hsp90 can be relieved by bacterial Hsp70 and an activating client protein. These results suggest that altering ADP inhibition may be a mechanism of Hsp90 regulation. To determine the molecular origin of ADP inhibition, we identify residues that preferentially stabilize either ATP or ADP. Mutations at these sites can both increase and decrease ADP inhibition. An accounting of ADP is critically important for designing and interpreting experiments with Hsp90. For example, contaminating ADP is a confounding factor in fluorescence resonance energy transfer experiments measuring arm closure rates of Hsp90. Our observations suggest that ADP at physiological levels is important to Hsp90 structure, activity, and regulation.
Collapse
Affiliation(s)
- Jackson C Halpin
- Department of Biochemistry Brandeis University, Waltham, MA 02453, USA
| | - Timothy O Street
- Department of Biochemistry Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
18
|
Abstract
The heat shock protein 90 (HSP90) chaperone machinery is a key regulator of proteostasis under both physiological and stress conditions in eukaryotic cells. As HSP90 has several hundred protein substrates (or 'clients'), it is involved in many cellular processes beyond protein folding, which include DNA repair, development, the immune response and neurodegenerative disease. A large number of co-chaperones interact with HSP90 and regulate the ATPase-associated conformational changes of the HSP90 dimer that occur during the processing of clients. Recent progress has allowed the interactions of clients with HSP90 and its co-chaperones to be defined. Owing to the importance of HSP90 in the regulation of many cellular proteins, it has become a promising drug target for the treatment of several diseases, which include cancer and diseases associated with protein misfolding.
Collapse
Affiliation(s)
- Florian H Schopf
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| | - Maximilian M Biebl
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| |
Collapse
|
19
|
Jin Y, Hoxie RS, Street TO. Molecular mechanism of bacterial Hsp90 pH-dependent ATPase activity. Protein Sci 2017; 26:1206-1213. [PMID: 28383119 DOI: 10.1002/pro.3174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 11/08/2022]
Abstract
Hsp90 is a dimeric molecular chaperone that undergoes an essential and highly regulated open-to-closed-to-open conformational cycle upon ATP binding and hydrolysis. Although it has been established that a large energy barrier to closure is responsible for Hsp90's low ATP hydrolysis rate, the specific molecular contacts that create this energy barrier are not known. Here we discover that bacterial Hsp90 (HtpG) has a pH-dependent ATPase activity that is unique among other Hsp90 homologs. The underlying mechanism is a conformation-specific electrostatic interaction between a single histidine, H255, and bound ATP. H255 stabilizes ATP only while HtpG adopts a catalytically inactive open configuration, resulting in a striking anti-correlation between nucleotide binding affinity and chaperone activity over a wide range of pH. Linkage analysis reveals that the H255-ATP salt bridge contributes 1.5 kcal/mol to the energy barrier of closure. This energetic contribution is structurally asymmetric, whereby only one H255-ATP salt-bridge per dimer of HtpG controls ATPase activation. We find that a similar electrostatic mechanism regulates the ATPase of the endoplasmic reticulum Hsp90, and that pH-dependent activity can be engineered into eukaryotic cytosolic Hsp90. These results reveal site-specific energetic information about an evolutionarily conserved conformational landscape that controls Hsp90 ATPase activity.
Collapse
Affiliation(s)
- Yi Jin
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, 02453
| | - Reyal S Hoxie
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, 02453
| | - Timothy O Street
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, 02453
| |
Collapse
|
20
|
Importance of cycle timing for the function of the molecular chaperone Hsp90. Nat Struct Mol Biol 2016; 23:1020-1028. [PMID: 27723736 DOI: 10.1038/nsmb.3305] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/13/2016] [Indexed: 01/02/2023]
Abstract
Hsp90 couples ATP hydrolysis to large conformational changes essential for activation of client proteins. The structural transitions involve dimerization of the N-terminal domains and formation of 'closed states' involving the N-terminal and middle domains. Here, we used Hsp90 mutants that modulate ATPase activity and biological function as probes to address the importance of conformational cycling for Hsp90 activity. We found no correlation between the speed of ATP turnover and the in vivo activity of Hsp90: some mutants with almost normal ATPase activity were lethal, and some mutants with lower or undetectable ATPase activity were viable. Our analysis showed that it is crucial for Hsp90 to attain and spend time in certain conformational states: a certain dwell time in open states is required for optimal processing of client proteins, whereas a prolonged population of closed states has negative effects. Thus, the timing of conformational transitions is crucial for Hsp90 function and not cycle speed.
Collapse
|
21
|
Wolmarans A, Lee B, Spyracopoulos L, LaPointe P. The Mechanism of Hsp90 ATPase Stimulation by Aha1. Sci Rep 2016; 6:33179. [PMID: 27615124 PMCID: PMC5018835 DOI: 10.1038/srep33179] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022] Open
Abstract
Hsp90 is a dimeric molecular chaperone responsible for the folding, maturation, and activation of hundreds of substrate proteins called ‘clients’. Numerous co-chaperone proteins regulate progression through the ATP-dependent client activation cycle. The most potent stimulator of the Hsp90 ATPase activity is the co-chaperone Aha1p. Only one molecule of Aha1p is required to fully stimulate the Hsp90 dimer despite the existence of two, presumably identical, binding sites for this regulator. Using ATPase assays with Hsp90 heterodimers, we find that Aha1p stimulates ATPase activity by a three-step mechanism via the catalytic loop in the middle domain of Hsp90. Binding of the Aha1p N domain to the Hsp90 middle domain exerts a small stimulatory effect but also drives a separate conformational rearrangement in the Hsp90 N domains. This second event drives a rearrangement in the N domain of the opposite subunit and is required for the stimulatory action of the Aha1p C domain. Furthermore, the second event can be blocked by a mutation in one subunit of the Hsp90 dimer but not the other. This work provides a foundation for understanding how post-translational modifications regulate co-chaperone engagement with the Hsp90 dimer.
Collapse
Affiliation(s)
- Annemarie Wolmarans
- Department of Cell Biology, 514 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Brian Lee
- Department of Biochemistry, 416 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, 416 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Paul LaPointe
- Department of Cell Biology, 514 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| |
Collapse
|
22
|
Verma S, Goyal S, Jamal S, Singh A, Grover A. Hsp90: Friends, clients and natural foes. Biochimie 2016; 127:227-40. [DOI: 10.1016/j.biochi.2016.05.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/29/2016] [Indexed: 12/13/2022]
|
23
|
Pearl LH. Review: The HSP90 molecular chaperone-an enigmatic ATPase. Biopolymers 2016; 105:594-607. [PMID: 26991466 PMCID: PMC4879513 DOI: 10.1002/bip.22835] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 12/16/2022]
Abstract
The HSP90 molecular chaperone is involved in the activation and cellular stabilization of a range of 'client' proteins, of which oncogenic protein kinases and nuclear steroid hormone receptors are of particular biomedical significance. Work over the last two decades has revealed a conformational cycle critical to the biological function of HSP90, coupled to an inherent ATPase activity that is regulated and manipulated by many of the co-chaperones proteins with which it collaborates. Pharmacological inhibition of HSP90 ATPase activity results in degradation of client proteins in vivo, and is a promising target for development of new cancer therapeutics. Despite this, the actual function that HSP90s conformationally-coupled ATPase activity provides in its biological role as a molecular chaperone remains obscure. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 594-607, 2016.
Collapse
Affiliation(s)
- Laurence H Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QR, UK
| |
Collapse
|
24
|
Schulze A, Beliu G, Helmerich DA, Schubert J, Pearl LH, Prodromou C, Neuweiler H. Cooperation of local motions in the Hsp90 molecular chaperone ATPase mechanism. Nat Chem Biol 2016; 12:628-35. [PMID: 27322067 PMCID: PMC4955915 DOI: 10.1038/nchembio.2111] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/14/2016] [Indexed: 11/08/2022]
Abstract
The Hsp90 chaperone is a central node of protein homeostasis, activating many diverse client proteins. Hsp90 functions as a molecular clamp that closes and opens in response to the binding and hydrolysis of ATP. Crystallographic studies have defined distinct conformational states of the mechanistic core, implying structural changes that have not yet been observed in solution. Here we engineered one-nanometer fluorescence probes based on photoinduced electron transfer into the yeast Hsp90 to observe these motions. We found that the ATPase activity of the chaperone was reflected in the kinetics of specific structural rearrangements at remote positions that acted cooperatively. Nanosecond single-molecule fluorescence fluctuation analysis uncovered that critical structural elements that undergo rearrangement were mobile on a sub-millisecond time scale. We identified a two-step mechanism for lid closure over the nucleotide-binding pocket. The activating co-chaperone Aha1 mobilized the lid of apo Hsp90, suggesting an early role in the catalytic cycle.
Collapse
Affiliation(s)
- Andrea Schulze
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Gerti Beliu
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Dominic A. Helmerich
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jonathan Schubert
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Laurence H. Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| | - Chrisostomos Prodromou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| | - Hannes Neuweiler
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
25
|
Mitochondrial Hsp90 is a ligand-activated molecular chaperone coupling ATP binding to dimer closure through a coiled-coil intermediate. Proc Natl Acad Sci U S A 2016; 113:2952-7. [PMID: 26929380 DOI: 10.1073/pnas.1516167113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Heat-shock protein of 90 kDa (Hsp90) is an essential molecular chaperone that adopts different 3D structures associated with distinct nucleotide states: a wide-open, V-shaped dimer in the apo state and a twisted, N-terminally closed dimer with ATP. Although the N domain is known to mediate ATP binding, how Hsp90 senses the bound nucleotide and facilitates dimer closure remains unclear. Here we present atomic structures of human mitochondrial Hsp90N (TRAP1N) and a composite model of intact TRAP1 revealing a previously unobserved coiled-coil dimer conformation that may precede dimer closure and is conserved in intact TRAP1 in solution. Our structure suggests that TRAP1 normally exists in an autoinhibited state with the ATP lid bound to the nucleotide-binding pocket. ATP binding displaces the ATP lid that signals the cis-bound ATP status to the neighboring subunit in a highly cooperative manner compatible with the coiled-coil intermediate state. We propose that TRAP1 is a ligand-activated molecular chaperone, which couples ATP binding to dramatic changes in local structure required for protein folding.
Collapse
|
26
|
Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants. PLoS One 2015; 10:e0141786. [PMID: 26517842 PMCID: PMC4627809 DOI: 10.1371/journal.pone.0141786] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022] Open
Abstract
The two cytosolic/nuclear isoforms of the molecular chaperone HSP90, stress-inducible HSP90α and constitutively expressed HSP90β, fold, assemble and maintain the three-dimensional structure of numerous client proteins. Because many HSP90 clients are important in cancer, several HSP90 inhibitors have been evaluated in the clinic. However, little is known concerning possible unique isoform or conformational preferences of either individual HSP90 clients or inhibitors. In this report, we compare the relative interaction strength of both HSP90α and HSP90β with the transcription factors HSF1 and HIF1α, the kinases ERBB2 and MET, the E3-ubiquitin ligases KEAP1 and RHOBTB2, and the HSP90 inhibitors geldanamycin and ganetespib. We observed unexpected differences in relative client and drug preferences for the two HSP90 isoforms, with HSP90α binding each client protein with greater apparent affinity compared to HSP90β, while HSP90β bound each inhibitor with greater relative interaction strength compared to HSP90α. Stable HSP90 interaction was associated with reduced client activity. Using a defined set of HSP90 conformational mutants, we found that some clients interact strongly with a single, ATP-stabilized HSP90 conformation, only transiently populated during the dynamic HSP90 chaperone cycle, while other clients interact equally with multiple HSP90 conformations. These data suggest different functional requirements among HSP90 clientele that, for some clients, are likely to be ATP-independent. Lastly, the two inhibitors examined, although sharing the same binding site, were differentially able to access distinct HSP90 conformational states.
Collapse
|
27
|
Abstract
Hsp90 chaperones receive much attention due to their role in cancer and other pathological conditions, and a tremendous effort of many laboratories has contributed in the past decades to considerable progress in the understanding of their functions. Hsp90 chaperones exist as dimers and, with the help of cochaperones, promote the folding of numerous client proteins. Although the original view of these interactions suggested that these dimeric complexes were symmetrical, it is now clear that many features are asymmetrical. In this review we discuss several recent advances that highlight how asymmetric interactions with cochaperones as well as asymmetric posttranslational modifications provide mechanisms to regulate client interactions and the progression through Hsp90's chaperone cycle.
Collapse
Affiliation(s)
- Matthias P Mayer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | - Laura Le Breton
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|
28
|
Conformational processing of oncogenic v-Src kinase by the molecular chaperone Hsp90. Proc Natl Acad Sci U S A 2015; 112:E3189-98. [PMID: 26056257 DOI: 10.1073/pnas.1424342112] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hsp90 is a molecular chaperone involved in the activation of numerous client proteins, including many kinases. The most stringent kinase client is the oncogenic kinase v-Src. To elucidate how Hsp90 chaperones kinases, we reconstituted v-Src kinase chaperoning in vitro and show that its activation is ATP-dependent, with the cochaperone Cdc37 increasing the efficiency. Consistent with in vivo results, we find that Hsp90 does not influence the almost identical c-Src kinase. To explain these findings, we designed Src kinase chimeras that gradually transform c-Src into v-Src and show that their Hsp90 dependence correlates with compactness and folding cooperativity. Molecular dynamics simulations and hydrogen/deuterium exchange of Hsp90-dependent Src kinase variants further reveal increased transitions between inactive and active states and exposure of specific kinase regions. Thus, Hsp90 shifts an ensemble of conformations of v-Src toward high activity states that would otherwise be metastable and poorly populated.
Collapse
|
29
|
Flynn JM, Mishra P, Bolon DNA. Mechanistic Asymmetry in Hsp90 Dimers. J Mol Biol 2015; 427:2904-11. [PMID: 25843003 DOI: 10.1016/j.jmb.2015.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 12/12/2022]
Abstract
Hsp90 is a molecular chaperone that facilitates the maturation of signaling proteins including many kinases and steroid hormone receptors. Through these client proteins, Hsp90 is a key mediator of many physiological processes and has emerged as a promising drug target in cancer. Additionally, Hsp90 can mask or potentiate the impact of mutations in clients with remarkable influence on evolutionary adaptations. The influential roles of Hsp90 in biology and disease have stimulated extensive research into the molecular mechanism of this chaperone. These studies have shown that Hsp90 is a homodimeric protein that requires ATP hydrolysis and a host of accessory proteins termed co-chaperones to facilitate the maturation of clients to their active states. Flexible hinge regions between its three structured domains enable Hsp90 to sample dramatically distinct conformations that are influenced by nucleotide, client, and co-chaperone binding. While it is clear that Hsp90 can exist in symmetrical conformations, recent studies have indicated that this homodimeric chaperone can also assume a variety of asymmetric conformations and complexes that are important for client maturation. The visualization of Hsp90-client complexes at high resolution together with tools to independently manipulate each subunit in the Hsp90 dimer are providing new insights into the asymmetric function of each subunit during client maturation.
Collapse
Affiliation(s)
- Julia M Flynn
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Parul Mishra
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
30
|
Hsp90 interaction with clients. Trends Biochem Sci 2015; 40:117-25. [PMID: 25579468 DOI: 10.1016/j.tibs.2014.12.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 01/02/2023]
Abstract
The conserved Hsp90 chaperone is an ATP-controlled machine that assists the folding and controls the stability of select proteins. Emerging data explain how Hsp90 achieves client specificity and its role in the cellular chaperone cascade. Interestingly, Hsp90 has an extended substrate binding interface that crosses domain boundaries, exhibiting specificity for proteins with hydrophobic residues spread over a large area regardless of whether they are disordered, partly folded, or even folded. This specificity principle ensures that clients preferentially bind to Hsp70 early on in the folding path, but downstream folding intermediates bind Hsp90. Discussed here, the emerging model is that the Hsp90 ATPase does not modulate client affinity but instead controls substrate influx from Hsp70.
Collapse
|
31
|
Jeng W, Lee S, Sung N, Lee J, Tsai FT. Molecular chaperones: guardians of the proteome in normal and disease states. F1000Res 2015; 4:F1000 Faculty Rev-1448. [PMID: 26918154 PMCID: PMC4754035 DOI: 10.12688/f1000research.7214.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2015] [Indexed: 12/31/2022] Open
Abstract
Proteins must adopt a defined three-dimensional structure in order to gain functional activity, or must they? An ever-increasing number of intrinsically disordered proteins and amyloid-forming polypeptides challenge this dogma. While molecular chaperones and proteases are traditionally associated with protein quality control inside the cell, it is now apparent that molecular chaperones not only promote protein folding in the "forward" direction by facilitating folding and preventing misfolding and aggregation, but also facilitate protein unfolding and even disaggregation resulting in the recovery of functional protein from aggregates. Here, we review our current understanding of ATP-dependent molecular chaperones that harness the energy of ATP binding and hydrolysis to fuel their chaperone functions. An emerging theme is that most of these chaperones do not work alone, but instead function together with other chaperone systems to maintain the proteome. Hence, molecular chaperones are the major component of the proteostasis network that guards and protects the proteome from damage. Furthermore, while a decline of this network is detrimental to cell and organismal health, a controlled perturbation of the proteostasis network may offer new therapeutic avenues against human diseases.
Collapse
Affiliation(s)
- Wilson Jeng
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nuri Sung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jungsoon Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Francis T.F. Tsai
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
32
|
Abstract
Hsp90 is a conserved molecular chaperone and is responsible for the folding and activation of several hundred client proteins, involved in various cellular processes. The large number and the diversity of these client proteins demand a high adaptiveness of Hsp90 towards the need of the individual client. This adaptiveness is amongst others mediated by more than 20 so-called cochaperones that differ in their actions towards Hsp90. Some of these cochaperones are able to modulate the ATPase activity of Hsp90 and/or its client protein binding, folding and activation. p23 and Aha1 are two prominent examples with opposing effects on the ATPase activity of Hsp90. p23 is able to inhibit the ATP turnover while Aha1 is the strongest known activator of the ATPase activity of Hsp90. Even though both cochaperones are conserved from yeast to man and have been studied for years, some Hsp90-related as well as Hsp90-independent functions are still enigmatic and under current investigation. In this chapter, we first introduce the ATPase cycle of Hsp90 and then focus on the two cochaperones integrating them in the Hsp90 cycle.
Collapse
|
33
|
The Hsp90 ensemble: coordinated Hsp90–cochaperone complexes regulate diverse cellular processes. Nat Struct Mol Biol 2014; 21:1017-21. [DOI: 10.1038/nsmb.2927] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
The charged linker of the molecular chaperone Hsp90 modulates domain contacts and biological function. Proc Natl Acad Sci U S A 2014; 111:17881-6. [PMID: 25468961 DOI: 10.1073/pnas.1414073111] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The heat shock protein 90 (Hsp90) is a dimeric molecular chaperone essential in numerous cellular processes. Its three domains (N, M, and C) are connected via linkers that allow the rearrangement of domains during Hsp90's chaperone cycle. A unique linker, called charged linker (CL), connects the N- and M-domain of Hsp90. We used an integrated approach, combining single-molecule techniques and biochemical and in vivo methods, to study the unresolved structure and function of this region. Here we show that the CL facilitates intramolecular rearrangements on the milliseconds timescale between a state in which the N-domain is docked to the M-domain and a state in which the N-domain is more flexible. The docked conformation is stabilized by 1.1 kBT (2.7 kJ/mol) through binding of the CL to the N-domain of Hsp90. Docking and undocking of the CL affects the much slower intermolecular domain movement and Hsp90's chaperone cycle governing client activation, cell viability, and stress tolerance.
Collapse
|
35
|
Four-colour FRET reveals directionality in the Hsp90 multicomponent machinery. Nat Commun 2014; 5:4192. [PMID: 24947016 DOI: 10.1038/ncomms5192] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/22/2014] [Indexed: 12/24/2022] Open
Abstract
In living organisms, most proteins work in complexes to form multicomponent protein machines. The function of such multicomponent machines is usually addressed by dividing them into a collection of two state systems at equilibrium. Many molecular machines, like Hsp90, work far from equilibrium by utilizing the energy of ATP hydrolysis. In these cases, important information is gained from the observation of the succession of more than two states in a row. We developed a four-colour single-molecule FRET system to observe the succession of states in the heat shock protein 90 (Hsp90) system, consisting of an Hsp90 dimer, the cochaperone p23 and nucleotides. We show that this multicomponent system is a directional ATP-dependent machinery. This reveals a previously undescribed mechanism on how cochaperones can modify Hsp90, namely by strengthening of the coupling between ATP hydrolysis and a kinetic step involved in the Hsp90 system resulting in a stronger directionality.
Collapse
|