1
|
Haack DB, Rudolfs B, Jin S, Khitun A, Weeks KM, Toor N. Scaffold-enabled high-resolution cryo-EM structure determination of RNA. Nat Commun 2025; 16:880. [PMID: 39837824 PMCID: PMC11751092 DOI: 10.1038/s41467-024-55699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Cryo-EM structure determination of protein-free RNAs has remained difficult with most attempts yielding low to moderate resolution and lacking nucleotide-level detail. These difficulties are compounded for small RNAs as cryo-EM is inherently more difficult for lower molecular weight macromolecules. Here we present a strategy for fusing small RNAs to a group II intron that yields high resolution structures of the appended RNA. We demonstrate this technology by determining the structures of the 86-nucleotide (nt) thiamine pyrophosphate (TPP) riboswitch aptamer domain and the recently described 210-nt raiA bacterial non-coding RNA involved in sporulation and biofilm formation. In the case of the TPP riboswitch aptamer domain, the scaffolding approach allowed visualization of the riboswitch ligand binding pocket at 2.5 Å resolution. We also determined the structure of the ligand-free apo state and observe that the aptamer domain of the riboswitch adopts an open Y-shaped conformation in the absence of ligand. Using this scaffold approach, we determined the structure of raiA at 2.5 Å in the core. Our versatile scaffolding strategy enables efficient RNA structure determination for a broad range of small to moderate-sized RNAs, which were previously intractable for high-resolution cryo-EM studies.
Collapse
Affiliation(s)
- Daniel B Haack
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Boris Rudolfs
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Shouhong Jin
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Alexandra Khitun
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Navtej Toor
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA.
| |
Collapse
|
2
|
Imran M, Altamimi ASA, Babu MA, Goyal K, Kaur I, Kumar S, Sharma N, Kumar MR, Alanazi FJ, Alruwaili AN, Aldhafeeri NA, Ali H. Non-coding RNAs (ncRNAs) as therapeutic targets and biomarkers in oligodendroglioma. Pathol Res Pract 2024; 264:155708. [PMID: 39531874 DOI: 10.1016/j.prp.2024.155708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Oligodendrogliomas (ODGs) are neuroepithelial tumors that need personalized treatment plans because of their unique molecular and histological features. Non-coding RNAs form an epigenetic class of molecules that act as the first steps in gene regulation. They consist of microRNAs, long non-coding RNAs, and circular RNAs. These molecules significantly participate in ODG pathogenesis by regulating ODG initiation, progression, and treatment response. This review is designated to analyze the literature and describe the genomic profile of ODGs, the complex actions of ncRNAs in ODGs pathogenesis and treatment, and their roles as appropriate biomarkers and as one of the precision mechanisms action targets, such as antisense oligonucleotides, small interfering RNAs, gene therapy vectors, peptide nucleic acids, and small molecule inhibitors. Overall, ncRNAs considerably alter the pathological spectrum of ODGs by influencing fundamental processes in tumor biology. Applying ncRNAs in a clinical context exhibits promise for enhanced diagnosis and individualized therapeutic interventions. Nevertheless, the delivery efficacy and potential adverse "off-target" sequels retain the main obstacles undermining clinical potential. Continuous research and technological advancements in ncRNAs offer new insights and promising prospects for revolutionizing oligodendroglioma care, leading to better, personalized treatment outcomes.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | | | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India.
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Fadiyah Jadid Alanazi
- Center for Health Research, Northern Border University, Arar, Saudi Arabia; Public Health Nursing Department, College of Nursing, Northern Border University, Arar, Saudi Arabia
| | - Abeer Nuwayfi Alruwaili
- Department of Nursing Administration and Education, College of Nursing, Jouf University, Al Jouf City 72388, Saudi Arabia
| | - Nouf Afit Aldhafeeri
- College of Nursing, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Haider Ali
- Division of Translational Health Research, Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| |
Collapse
|
3
|
Mishra A, Mishra S. Metastasis-Associated Lung Adenocarcinoma Transcript 1 ( MALAT1) lncRNA Conformational Dynamics in Complex with RNA-Binding Protein with Serine-Rich Domain 1 (RNPS1) in the Pan-cancer Splicing and Gene Expression. ACS OMEGA 2024; 9:42212-42226. [PMID: 39431102 PMCID: PMC11483381 DOI: 10.1021/acsomega.4c04467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024]
Abstract
Alternative splicing events increase the transcriptomic and proteomic complexity in cancers. Overexpression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a highly conserved lncRNA, is widely known to promote cancer development, one mechanism for which may be through the regulation of alternative splicing and, thereby, gene expression. Its regulatory interactions with proteins have been a subject of much interest, yet little research has been carried out on the mechanisms adopted. It has been observed that MALAT1 binds to RNA-binding protein with serine-rich domain 1 (RNPS1), being colocalized in the nuclear speckles, and together, these two binding partners may regulate alternative splicing. Upregulated RNPS1 is predicted to play a key role in the pan-cancer development. Experimental tertiary structure of full-length MALAT1 is currently lacking despite the availability of the 3D structure of 3' expression and nuclear retention element. We hypothesize that the computationally modeled tertiary structures of the specific binding motifs in the M-region, E-region, and full-length structures of MALAT1 may adopt a modular structure and bind to the RNPS1 loop region of RS/P domain involved in exon skipping, interacting in a manner fully consistent with the biochemical experiments. Extensive observations using the powerful molecular dynamics (MD) simulations of MALAT1 regions bound to RNPS1 suggested that all three regions form interactive, yet stable complexes. The ranking of the MM-GBSA- and MM-PBSA-derived binding free energies between these complexes corroborated well in the MD simulations and experiments. Energy decomposition analyses suggested that arginines in the RNPS1 protein are among the major contributors toward the binding free energies as calculated by MM-GBSA present in the Amber package; while among the nucleotides, the major contributors were nucleotides with G and A nucleobases, with more contributory effect in comparison to arginines, across the bound M-region, E-region, and full-length MALAT1. This suggests that specific purines play a greater role in the complex formation, in a loop-specific manner, and the more proactive approach in complexation tilts toward MALAT1. To the best of our knowledge, our studies are the first studies taking a unique approach, utilizing the binding motifs to deduce a tertiary structure of MALAT1, toward our understanding of the lncRNA-protein interactions, stability, and binding on a structural basis. The therapeutic implications of targeting this complex formation to regulate splicing and hence, oncogenesis, is further envisaged.
Collapse
Affiliation(s)
- Aanchal Mishra
- Department of Biochemistry, School
of Life Sciences, University of Hyderabad-500046 Hyderabad, India
| | - Seema Mishra
- Department of Biochemistry, School
of Life Sciences, University of Hyderabad-500046 Hyderabad, India
| |
Collapse
|
4
|
Zhu M, Zuber J, Tan Z, Sharma G, Mathews DH. DecoyFinder: Identification of Contaminants in Sets of Homologous RNA Sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.618037. [PMID: 39464058 PMCID: PMC11507696 DOI: 10.1101/2024.10.12.618037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Motivation RNA structure is essential for the function of many non-coding RNAs. Using multiple homologous sequences, which share structure and function, secondary structure can be predicted with much higher accuracy than with a single sequence. It can be difficult, however, to establish a set of homologous sequences when their structure is not yet known. We developed a method to identify sequences in a set of putative homologs that are in fact non-homologs. Results Previously, we developed TurboFold to estimate conserved structure using multiple, unaligned RNA homologs. Here, we report that the positive predictive value of TurboFold is significantly reduced by the presence of contamination by non-homologous sequences, although the reduction is less than 1%. We developed a method called DecoyFinder, which applies machine learning trained with features determined by TurboFold, to detect sequences that are not homologous with the other sequences in the set. This method can identify approximately 45% of non-homologous sequences, at a rate of 5% misidentification of true homologous sequences. Availability DecoyFinder and TurboFold are incorporated in RNAstructure, which is provided for free and open source under the GPL V2 license. It can be downloaded at http://rna.urmc.rochester.edu/RNAstructure.html.
Collapse
Affiliation(s)
- Mingyi Zhu
- Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States
| | - Jeffrey Zuber
- Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zhen Tan
- Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States
| | - Gaurav Sharma
- University of Rochester, Department of Electrical and Computer Engineering, Rochester, NY, United States
- University of Rochester, Department of Computer Science, Rochester, NY, United States
| | - David H Mathews
- Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
5
|
Farberov S, Ziv O, Lau JY, Ben-Tov Perry R, Lubelsky Y, Miska E, Kudla G, Ulitsky I. Structural features within the NORAD long noncoding RNA underlie efficient repression of Pumilio activity. Nat Struct Mol Biol 2024:10.1038/s41594-024-01393-5. [PMID: 39327473 DOI: 10.1038/s41594-024-01393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Long noncoding RNAs (lncRNAs) are increasingly appreciated for their important functions in mammalian cells. However, how their functional capacities are encoded in their sequences and manifested in their structures remains largely unknown. Some lncRNAs bind to and modulate the availability of RNA-binding proteins, but the structural principles that underlie this mode of regulation are unknown. The NORAD lncRNA is a known decoy for Pumilio proteins, which modulate the translation and stability of hundreds of messenger RNAs and, consequently, a regulator of genomic stability and aging. Here we probed the RNA structure and long-range RNA-RNA interactions formed by human NORAD inside cells under different stressful conditions. We discovered a highly modular structure consisting of well-defined domains that contribute independently to NORAD function. Following arsenite stress, most structural domains undergo relaxation and form interactions with other RNAs that are targeted to stress granules. We further revealed a unique structural organization that spatially clusters the multiple Pumilio binding sites along NORAD and consequently contributes to the derepression of Pumilio targets. We then applied these structural principles to design an effective artificial decoy for the let-7 microRNA. Our work demonstrates how the sequence of a lncRNA spatially clusters its function into separated domains and how structural principles can be employed for the rational design of lncRNAs with desired activities.
Collapse
Affiliation(s)
- Svetlana Farberov
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Omer Ziv
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Eleven Therapeutics, Cambridge, UK.
| | - Jian You Lau
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Rotem Ben-Tov Perry
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Lubelsky
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Eric Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
| | - Grzegorz Kudla
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK.
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Tamburri S, Rustichelli S, Amato S, Pasini D. Navigating the complexity of Polycomb repression: Enzymatic cores and regulatory modules. Mol Cell 2024; 84:3381-3405. [PMID: 39178860 DOI: 10.1016/j.molcel.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Polycomb proteins are a fundamental repressive system that plays crucial developmental roles by orchestrating cell-type-specific transcription programs that govern cell identity. Direct alterations of Polycomb activity are indeed implicated in human pathologies, including developmental disorders and cancer. General Polycomb repression is coordinated by three distinct activities that regulate the deposition of two histone post-translational modifications: tri-methylation of histone H3 lysine 27 (H3K27me3) and histone H2A at lysine 119 (H2AK119ub1). These activities exist in large and heterogeneous multiprotein ensembles consisting of common enzymatic cores regulated by heterogeneous non-catalytic modules composed of a large number of accessory proteins with diverse biochemical properties. Here, we have analyzed the current molecular knowledge, focusing on the functional interaction between the core enzymatic activities and their regulation mediated by distinct accessory modules. This provides a comprehensive analysis of the molecular details that control the establishment and maintenance of Polycomb repression, examining their underlying coordination and highlighting missing information and emerging new features of Polycomb-mediated transcriptional control.
Collapse
Affiliation(s)
- Simone Tamburri
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| | - Samantha Rustichelli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Simona Amato
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Diego Pasini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
7
|
Sarkar S, Moitra P, Bera S, Bhattacharya S. Antisense Oligonucleotide Embedded Context Responsive Nanoparticles Derived from Synthetic Ionizable Lipids for lncRNA Targeted Therapy of Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45871-45887. [PMID: 39163516 DOI: 10.1021/acsami.4c04893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The long noncoding RNAs (lncRNA) are primarily associated with several essential gene regulations but are also connected to cancer metabolism and progression. HOTAIR and MALAT1 are two such lncRNAs that are detected in malignancies of various origins and are responsible for the poor prognosis of cancer patients. Due to these factors, the lncRNAs have emerged as prime targets for the development of anticancer therapeutics. However, nonviral delivery of lncRNA-targeted antisense oligonucleotides (ASOs) still remains a critical challenge while maintaining their structural and functional integrity. Herein, we have designed and synthesized a new series of ionizable lipids with variations in their head groups to prepare lipid nanoparticle (LNP) formulation along with cholesterol-based twin cationic lipid and amphiphilic zwitterionic lipid. The context responsiveness of these formulations in delivering the ASOs has been thoroughly investigated by various bioanalytical techniques, and an optimum formulation has been identified. The LNPs are utilized to deliver the ASOs targeting HOTAIR lncRNA in human cancer cell lines and MALAT1 lncRNA in mouse models. This study thus standardizes an advanced nanomaterial system for nonviral gene delivery that has been validated by a considerable reduction in the target lncRNA level under in vitro and a significant reduction in tumor volume under in vivo settings.
Collapse
Affiliation(s)
- Sourav Sarkar
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Parikshit Moitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur, Odisha 760003, India
| | - Sayan Bera
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santanu Bhattacharya
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati (IISER Tirupati), Srinivasapuram, Yerpedu Mandal, Tirupati District, Andhra Pradesh 517619, India
| |
Collapse
|
8
|
Song J, Yao L, Gooding AR, Thron V, Kasinath V, Cech TR. Diverse RNA Structures Induce PRC2 Dimerization and Inhibit Histone Methyltransferase Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610323. [PMID: 39257770 PMCID: PMC11383989 DOI: 10.1101/2024.08.29.610323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Methyltransferase PRC2 (Polycomb Repressive Complex 2) introduces histone H3K27 trimethylation, a repressive chromatin mark, to tune the differential expression of genes. PRC2 is precisely regulated by accessory proteins, histone post-translational modifications and, notably, RNA. Research on PRC2-associated RNA has mostly focused on the tight-binding G-quadruplex (G4) RNAs, which inhibit PRC2 enzymatic activity in vitro and in cells. Our recent cryo-EM structure provided a molecular mechanism for G4 RNA inactivating PRC2 via dimerization, but it remained unclear how diverse RNAs associate with and regulate PRC2. Here, we show that a single-stranded G-rich RNA and an atypical G4 structure called pUG-fold unexpectedly also mediate near-identical PRC2 dimerization resulting in inhibition of PRC2 methyltransferase activity. The conformational flexibility of arginine-rich loops within subunits EZH2 and AEBP2 of PRC2 can accommodate diverse RNA secondary structures, resulting in protein-RNA and protein-protein interfaces similar to those observed previously with G4 RNA. Furthermore, we address a recent report that failed to detect PRC2-associated RNAs in living cells by demonstrating the insensitivity of PRC2-RNA interaction to photochemical crosslinking. Our results support the significance of RNA-mediated PRC2 regulation by showing that this interaction is not limited to a single RNA secondary structure, consistent with the broad PRC2 transcriptome containing many G-tract RNAs incapable of folding into G4 structures.
Collapse
|
9
|
Coan M, Haefliger S, Ounzain S, Johnson R. Targeting and engineering long non-coding RNAs for cancer therapy. Nat Rev Genet 2024; 25:578-595. [PMID: 38424237 DOI: 10.1038/s41576-024-00693-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
RNA therapeutics (RNATx) aim to treat diseases, including cancer, by targeting or employing RNA molecules for therapeutic purposes. Amongst the most promising targets are long non-coding RNAs (lncRNAs), which regulate oncogenic molecular networks in a cell type-restricted manner. lncRNAs are distinct from protein-coding genes in important ways that increase their therapeutic potential yet also present hurdles to conventional clinical development. Advances in genome editing, oligonucleotide chemistry, multi-omics and RNA engineering are paving the way for efficient and cost-effective lncRNA-focused drug discovery pipelines. In this Review, we present the emerging field of lncRNA therapeutics for oncology, with emphasis on the unique strengths and challenges of lncRNAs within the broader RNATx framework. We outline the necessary steps for lncRNA therapeutics to deliver effective, durable, tolerable and personalized treatments for cancer.
Collapse
Affiliation(s)
- Michela Coan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland.
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland.
| |
Collapse
|
10
|
Elmasri RA, Rashwan AA, Gaber SH, Rostom MM, Karousi P, Yasser MB, Kontos CK, Youness RA. Puzzling out the role of MIAT LncRNA in hepatocellular carcinoma. Noncoding RNA Res 2024; 9:547-559. [PMID: 38515792 PMCID: PMC10955557 DOI: 10.1016/j.ncrna.2024.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 03/23/2024] Open
Abstract
A non-negligible part of our DNA has been proven to be transcribed into non-protein coding RNA and its intricate involvement in several physiological processes has been highly evidenced. The significant biological role of non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) has been variously reported. In the current review, the authors highlight the multifaceted role of myocardial infarction-associated transcript (MIAT), a well-known lncRNA, in hepatocellular carcinoma (HCC). Since its discovery, MIAT has been described as a regulator of carcinogenesis in several malignant tumors and its overexpression predicts poor prognosis in most of them. At the molecular level, MIAT is closely linked to the initiation of metastasis, invasion, cellular migration, and proliferation, as evidenced by several in-vitro and in-vivo models. Thus, MIAT is considered a possible theranostic agent and therapeutic target in several malignancies. In this review, the authors provide a comprehensive overview of the underlying molecular mechanisms of MIAT in terms of its downstream target genes, interaction with other classes of ncRNAs, and potential clinical implications as a diagnostic and/or prognostic biomarker in HCC.
Collapse
Affiliation(s)
- Rawan Amr Elmasri
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| | - Alaa A. Rashwan
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo (AUC), 11835, Cairo, Egypt
| | - Sarah Hany Gaber
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| | - Monica Mosaad Rostom
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), 11835, Cairo, Egypt
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Montaser Bellah Yasser
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| |
Collapse
|
11
|
Rai A, Bhagchandani T, Tandon R. Transcriptional landscape of long non-coding RNAs (lncRNAs) and its implication in viral diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195023. [PMID: 38513793 DOI: 10.1016/j.bbagrm.2024.195023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Long non-coding RNAs (lncRNAs) are RNA transcripts of size >200 bp that do not translate into proteins. Emerging data revealed that viral infection results in systemic changes in the host at transcriptional level. These include alterations in the lncRNA expression levels and triggering of antiviral immune response involving several effector molecules and diverse signalling pathways. Thus, lncRNAs have emerged as an essential mediatory element at distinct phases of the virus infection cycle. The complete eradication of the viral disease requires more precise and novel approach, thus manipulation of the lncRNAs could be one of them. This review shed light upon the existing knowledge of lncRNAs wherein the implication of differentially expressed lncRNAs in blood-borne, air-borne, and vector-borne viral diseases and its promising therapeutic applications under clinical settings has been discussed. It further enhances our understanding of the complex interplay at host-pathogen interface with respect to lncRNA expression and function.
Collapse
Affiliation(s)
- Ankita Rai
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Tannu Bhagchandani
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
12
|
Alammari F, Al-Hujaily EM, Alshareeda A, Albarakati N, Al-Sowayan BS. Hidden regulators: the emerging roles of lncRNAs in brain development and disease. Front Neurosci 2024; 18:1392688. [PMID: 38841098 PMCID: PMC11150811 DOI: 10.3389/fnins.2024.1392688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical players in brain development and disease. These non-coding transcripts, which once considered as "transcriptional junk," are now known for their regulatory roles in gene expression. In brain development, lncRNAs participate in many processes, including neurogenesis, neuronal differentiation, and synaptogenesis. They employ their effect through a wide variety of transcriptional and post-transcriptional regulatory mechanisms through interactions with chromatin modifiers, transcription factors, and other regulatory molecules. Dysregulation of lncRNAs has been associated with certain brain diseases, including Alzheimer's disease, Parkinson's disease, cancer, and neurodevelopmental disorders. Altered expression and function of specific lncRNAs have been implicated with disrupted neuronal connectivity, impaired synaptic plasticity, and aberrant gene expression pattern, highlighting the functional importance of this subclass of brain-enriched RNAs. Moreover, lncRNAs have been identified as potential biomarkers and therapeutic targets for neurological diseases. Here, we give a comprehensive review of the existing knowledge of lncRNAs. Our aim is to provide a better understanding of the diversity of lncRNA structure and functions in brain development and disease. This holds promise for unravelling the complexity of neurodevelopmental and neurodegenerative disorders, paving the way for the development of novel biomarkers and therapeutic targets for improved diagnosis and treatment.
Collapse
Affiliation(s)
- Farah Alammari
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ensaf M. Al-Hujaily
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Alaa Alshareeda
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Saudi Biobank Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Nada Albarakati
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard-Health Affairs, Jeddah, Saudi Arabia
| | - Batla S. Al-Sowayan
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Tomikawa J. Potential roles of inter-chromosomal interactions in cell fate determination. Front Cell Dev Biol 2024; 12:1397807. [PMID: 38774644 PMCID: PMC11106443 DOI: 10.3389/fcell.2024.1397807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
Mammalian genomic DNA is packed in a small nucleus, and its folding and organization in the nucleus are critical for gene regulation and cell fate determination. In interphase, chromosomes are compartmentalized into certain nuclear spaces and territories that are considered incompatible with each other. The regulation of gene expression is influenced by the epigenetic characteristics of topologically associated domains and A/B compartments within chromosomes (intrachromosomal). Previously, interactions among chromosomes detected via chromosome conformation capture-based methods were considered noise or artificial errors. However, recent studies based on newly developed ligation-independent methods have shown that inter-chromosomal interactions play important roles in gene regulation. This review summarizes the recent understanding of spatial genomic organization in mammalian interphase nuclei and discusses the potential mechanisms that determine cell identity. In addition, this review highlights the potential role of inter-chromosomal interactions in early mouse development.
Collapse
Affiliation(s)
- Junko Tomikawa
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
14
|
Chorostecki U, Saus E, Gabaldón T. Probing RNA structural landscapes across Candida yeast genomes. Front Microbiol 2024; 15:1362067. [PMID: 38468856 PMCID: PMC10926079 DOI: 10.3389/fmicb.2024.1362067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Understanding the intricate roles of RNA molecules in virulence and host-pathogen interactions can provide valuable insights into combatting infections and improving human health. Although much progress has been achieved in understanding transcriptional regulation during host-pathogen interactions in diverse species, more is needed to know about the structure of pathogen RNAs. This is particularly true for fungal pathogens, including pathogenic yeasts of the Candida genus, which are the leading cause of hospital-acquired fungal infections. Our work addresses the gap between RNA structure and their biology by employing genome-wide structure probing to comprehensively explore the structural landscape of mRNAs and long non-coding RNAs (lncRNAs) in the four major Candida pathogens. Specifically focusing on mRNA, we observe a robust correlation between sequence conservation and structural characteristics in orthologous transcripts, significantly when sequence identity exceeds 50%, highlighting structural feature conservation among closely related species. We investigate the impact of single nucleotide polymorphisms (SNPs) on mRNA secondary structure. SNPs within 5' untranslated regions (UTRs) tend to occur in less structured positions, suggesting structural constraints influencing transcript regulation. Furthermore, we compare the structural properties of coding regions and UTRs, noting that coding regions are generally more structured than UTRs, consistent with similar trends in other species. Additionally, we provide the first experimental characterization of lncRNA structures in Candida species. Most lncRNAs form independent subdomains, similar to human lncRNAs. Notably, we identify hairpin-like structures in lncRNAs, a feature known to be functionally significant. Comparing hairpin prevalence between lncRNAs and protein-coding genes, we find enrichment in lncRNAs across Candida species, humans, and Arabidopsis thaliana, suggesting a conserved role for these structures. In summary, our study offers valuable insights into the interplay between RNA sequence, structure, and function in Candida pathogens, with implications for gene expression regulation and potential therapeutic strategies against Candida infections.
Collapse
Affiliation(s)
- Uciel Chorostecki
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ester Saus
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- ICREA, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
15
|
Sharma H, Valentine MNZ, Toki N, Sueki HN, Gustincich S, Takahashi H, Carninci P. Decryption of sequence, structure, and functional features of SINE repeat elements in SINEUP non-coding RNA-mediated post-transcriptional gene regulation. Nat Commun 2024; 15:1400. [PMID: 38383605 PMCID: PMC10881587 DOI: 10.1038/s41467-024-45517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
RNA structure folding largely influences RNA regulation by providing flexibility and functional diversity. In silico and in vitro analyses are limited in their ability to capture the intricate relationships between dynamic RNA structure and RNA functional diversity present in the cell. Here, we investigate sequence, structure and functional features of mouse and human SINE-transcribed retrotransposons embedded in SINEUPs long non-coding RNAs, which positively regulate target gene expression post-transcriptionally. In-cell secondary structure probing reveals that functional SINEs-derived RNAs contain conserved short structure motifs essential for SINEUP-induced translation enhancement. We show that SINE RNA structure dynamically changes between the nucleus and cytoplasm and is associated with compartment-specific binding to RBP and related functions. Moreover, RNA-RNA interaction analysis shows that the SINE-derived RNAs interact directly with ribosomal RNAs, suggesting a mechanism of translation regulation. We further predict the architecture of 18 SINE RNAs in three dimensions guided by experimental secondary structure data. Overall, we demonstrate that the conservation of short key features involved in interactions with RBPs and ribosomal RNA drives the convergent function of evolutionarily distant SINE-transcribed RNAs.
Collapse
Affiliation(s)
- Harshita Sharma
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Matthew N Z Valentine
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Naoko Toki
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiromi Nishiyori Sueki
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | | | - Hazuki Takahashi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
- Human Technopole, Milan, 20157, Italy.
| |
Collapse
|
16
|
Fayyaz F, Eshkiki ZS, Karamzadeh AR, Moradi Z, Kaviani F, Namazi A, Karimi R, Tabaeian SP, Mansouri F, Akbari A. Relationship between long non-coding RNAs and Hippo signaling pathway in gastrointestinal cancers; molecular mechanisms and clinical significance. Heliyon 2024; 10:e23826. [PMID: 38226210 PMCID: PMC10788524 DOI: 10.1016/j.heliyon.2023.e23826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) play a significant biological role in the regulation of various cellular processes such as cell proliferation, differentiation, apoptosis and migration. In various malignancies, lncRNAs interplay with some main cancer-associated signaling pathways, including the Hippo signaling pathway to regulate the various cellular processes. It has been revealed that the cross-talking between lncRNAs and Hippo signaling pathway involves in gastrointestinal (GI) cancers development and progression. Considering the clinical significance of these lncRNAs, they have also been introduced as potential biomarkers in diagnostic, prognostic and therapeutic strategies in GI cancers. Herein, we review the mechanisms of lncRNA-mediated regulation of Hippo signaling pathway and focus on the corresponding molecular mechanisms and clinical significance of these non-coding RNAs in GI cancers.
Collapse
Affiliation(s)
- Farimah Fayyaz
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shokati Eshkiki
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Reza Karamzadeh
- Occupational Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Genetic, Faculty of Sciences, Qom Branch, Islamic Azad University, Qom, Iran
| | - Zahra Moradi
- Department of Genetic, Faculty of Sciences, Qom Branch, Islamic Azad University, Qom, Iran
- Young Researchers and Elite Club, Qom Branch, Islamic Azad University, Qom, Iran
| | - Faezeh Kaviani
- Department of Genetic, Faculty of Sciences, Qom Branch, Islamic Azad University, Qom, Iran
| | - Abolfazl Namazi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Karimi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mansouri
- Department of Genetic, Faculty of Sciences, Qom Branch, Islamic Azad University, Qom, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Wang W, Liu F, Ugalde MV, Pyle AM. A compact regulatory RNA element in mouse Hsp70 mRNA. NAR MOLECULAR MEDICINE 2024; 1:ugae002. [PMID: 38318492 PMCID: PMC10840451 DOI: 10.1093/narmme/ugae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Hsp70 (70 kDa heat shock protein) performs molecular chaperone functions by assisting the folding of newly synthesized and misfolded proteins, thereby counteracting various cell stresses and preventing multiple diseases, including neurodegenerative disorders and cancers. It is well established that, immediately after heat shock, Hsp70 gene expression is mediated by a canonical mechanism of cap-dependent translation. However, the molecular mechanism of Hsp70 expression during heat shock remains elusive. Intriguingly, the 5' end of Hsp70 messenger RNA (mRNA) appears to form a compact structure with the potential to regulate protein expression in a cap-independent manner. Here, we determined the minimal length of the mHsp70 5'-terminal mRNA sequence that is required for RNA folding into a highly compact structure. This span of this RNA element was mapped and the secondary structure characterized by chemical probing, resulting in a secondary structural model that includes multiple stable stems, including one containing the canonical start codon. All of these components, including a short stretch of the 5' open reading frame (ORF), were shown to be vital for RNA folding. This work provides a structural basis for future investigations on the role of translational regulatory structures in the 5' untranslated region and ORF sequences of Hsp70 during heat shock.
Collapse
Affiliation(s)
- Wenshuai Wang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Fei Liu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Maria Vera Ugalde
- Department of Biochemistry. McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
18
|
Rocca R, Grillone K, Citriniti EL, Gualtieri G, Artese A, Tagliaferri P, Tassone P, Alcaro S. Targeting non-coding RNAs: Perspectives and challenges of in-silico approaches. Eur J Med Chem 2023; 261:115850. [PMID: 37839343 DOI: 10.1016/j.ejmech.2023.115850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
The growing information currently available on the central role of non-coding RNAs (ncRNAs) including microRNAs (miRNAS) and long non-coding RNAs (lncRNAs) for chronic and degenerative human diseases makes them attractive therapeutic targets. RNAs carry out different functional roles in human biology and are deeply deregulated in several diseases. So far, different attempts to therapeutically target the 3D RNA structures with small molecules have been reported. In this scenario, the development of computational tools suitable for describing RNA structures and their potential interactions with small molecules is gaining more and more interest. Here, we describe the most suitable strategies to study ncRNAs through computational tools. We focus on methods capable of predicting 2D and 3D ncRNA structures. Furthermore, we describe computational tools to identify, design and optimize small molecule ncRNA binders. This review aims to outline the state of the art and perspectives of computational methods for ncRNAs over the past decade.
Collapse
Affiliation(s)
- Roberta Rocca
- Department of Health Science, Magna Graecia University, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Magna Græcia University, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | | | - Anna Artese
- Department of Health Science, Magna Graecia University, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Magna Græcia University, Catanzaro, Italy.
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Stefano Alcaro
- Department of Health Science, Magna Graecia University, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Magna Græcia University, Catanzaro, Italy
| |
Collapse
|
19
|
Singh M, Kumar S. Effect of single nucleotide polymorphisms on the structure of long noncoding RNAs and their interaction with RNA binding proteins. Biosystems 2023; 233:105021. [PMID: 37703988 DOI: 10.1016/j.biosystems.2023.105021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Long non-coding RNAs (lncRNA) are emerging as a new class of regulatory RNAs with remarkable potential to be utilized as therapeutic targets against many human diseases. Several genome-wide association studies (GWAS) have catalogued Single Nucleotide Polymorphisms (SNPs) present in the noncoding regions of the genome from where lncRNAs originate. In this study, we have selected 67 lncRNAs with GWAS-tagged SNPs and have also investigated their role in affecting the local secondary structures. Majority of the SNPs lead to changes in the secondary structure of lncRNAs to a different extent by altering the base pairing patterns. These structural changes in lncRNA are also manifested in form of alteration in the binding site for RNA binding proteins (RBPs) along with affecting their binding efficacies. Ultimately, these structural modifications may influence the transcriptional and post-transcriptional pathways of these RNAs, leading to the causation of diseases. Hence, it is important to understand the possible underlying mechanism of RBPs in association with GWAS-tagged SNPs in human diseases.
Collapse
Affiliation(s)
- Mandakini Singh
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Santosh Kumar
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
20
|
Sabalette KB, Makarova L, Marcia M. G·U base pairing motifs in long non-coding RNAs. Biochimie 2023; 214:123-140. [PMID: 37353139 DOI: 10.1016/j.biochi.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
Long non-coding RNAs (lncRNAs) are recently-discovered transcripts involved in gene expression regulation and associated with diseases. Despite the unprecedented molecular complexity of these transcripts, recent studies of the secondary and tertiary structure of lncRNAs are starting to reveal the principles of lncRNA structural organization, with important functional implications. It therefore starts to be possible to analyze lncRNA structures systematically. Here, using a set of prototypical and medically-relevant lncRNAs of known secondary structure, we specifically catalogue the distribution and structural environment of one of the first-identified and most frequently occurring non-canonical Watson-Crick interactions, the G·U base pair. We compare the properties of G·U base pairs in our set of lncRNAs to those of the G·U base pairs in other well-characterized transcripts, like rRNAs, tRNAs, ribozymes, and riboswitches. Furthermore, we discuss how G·U base pairs in these targets participate in establishing interactions with proteins or miRNAs, and how they enable lncRNA tertiary folding by forming intramolecular or metal-ion interactions. Finally, by identifying highly-G·U-enriched regions of yet unknown function in our target lncRNAs, we provide a new rationale for future experimental investigation of these motifs, which will help obtain a more comprehensive understanding of lncRNA functions and molecular mechanisms in the future.
Collapse
Affiliation(s)
- Karina Belen Sabalette
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Liubov Makarova
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France.
| |
Collapse
|
21
|
Ballarino M, Pepe G, Helmer-Citterich M, Palma A. Exploring the landscape of tools and resources for the analysis of long non-coding RNAs. Comput Struct Biotechnol J 2023; 21:4706-4716. [PMID: 37841333 PMCID: PMC10568309 DOI: 10.1016/j.csbj.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
In recent years, research on long non-coding RNAs (lncRNAs) has gained considerable attention due to the increasing number of newly identified transcripts. Several characteristics make their functional evaluation challenging, which called for the urgent need to combine molecular biology with other disciplines, including bioinformatics. Indeed, the recent development of computational pipelines and resources has greatly facilitated both the discovery and the mechanisms of action of lncRNAs. In this review, we present a curated collection of the most recent computational resources, which have been categorized into distinct groups: databases and annotation, identification and classification, interaction prediction, and structure prediction. As the repertoire of lncRNAs and their analysis tools continues to expand over the years, standardizing the computational pipelines and improving the existing annotation of lncRNAs will be crucial to facilitate functional genomics studies.
Collapse
Affiliation(s)
- Monica Ballarino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00161 Rome, Italy
| | - Gerardo Pepe
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 1, 00133 Rome, Italy
| | - Manuela Helmer-Citterich
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 1, 00133 Rome, Italy
| | - Alessandro Palma
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00161 Rome, Italy
| |
Collapse
|
22
|
Tants JN, Schlundt A. Advances, Applications, and Perspectives in Small-Angle X-ray Scattering of RNA. Chembiochem 2023; 24:e202300110. [PMID: 37466350 DOI: 10.1002/cbic.202300110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/22/2023] [Indexed: 07/20/2023]
Abstract
RNAs exhibit a plethora of functions far beyond transmitting genetic information. Often, RNA functions are entailed in their structure, be it as a regulatory switch, protein binding site, or providing catalytic activity. Structural information is a prerequisite for a full understanding of RNA-regulatory mechanisms. Owing to the inherent dynamics, size, and instability of RNA, its structure determination remains challenging. Methods such as NMR spectroscopy, X-ray crystallography, and cryo-electron microscopy can provide high-resolution structures; however, their limitations make structure determination, even for small RNAs, cumbersome, if at all possible. Although at a low resolution, small-angle X-ray scattering (SAXS) has proven valuable in advancing structure determination of RNAs as a complementary method, which is also applicable to large-sized RNAs. Here, we review the technological and methodological advancements of RNA SAXS. We provide examples of the powerful inclusion of SAXS in structural biology and discuss possible future applications to large RNAs.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Goethe University Frankfurt, Institute for Molecular Biosciences and Biomagnetic Resonance Centre (BMRZ), Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Andreas Schlundt
- Goethe University Frankfurt, Institute for Molecular Biosciences and Biomagnetic Resonance Centre (BMRZ), Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| |
Collapse
|
23
|
Wang W, Liu F, Ugalde MV, Pyle AM. A compact regulatory RNA element in mouse Hsp70 mRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529618. [PMID: 36865185 PMCID: PMC9980084 DOI: 10.1101/2023.02.22.529618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Hsp70 performs molecular chaperone functions by assisting in folding newly synthesized or misfolded proteins, thereby counteracting various cell stresses and preventing multiple diseases including neurodegenerative disorders and cancer. It is well established that Hsp70 upregulation during post-heat shock stimulus is mediated by cap-dependent translation. However, the molecular mechanisms of Hsp70 expression during heat shock stimulus remains elusive, even though the 5' end of Hsp70 mRNA may form a compact structure to positively regulate protein expression in the mode of cap-independent translation. The minimal truncation which can fold to a compact structure was mapped and its secondary structure was characterized by chemical probing. The predicted model revealed a highly compact structure with multiple stems. Including the stem where the canonical start codon is located, several stems were identified to be vital for RNA folding, thereby providing solid structural basis for future investigations on the function of this RNA structure on Hsp70 translation during heat shock.
Collapse
|
24
|
Tufail M. HOTAIR in colorectal cancer: structure, function, and therapeutic potential. Med Oncol 2023; 40:259. [PMID: 37530984 DOI: 10.1007/s12032-023-02131-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
lncRNAs play a vital part in cancer development by regulating gene expression. Among these, the lncRNA HOTAIR has gained considerable attention due to its entanglement in multiple cellular processes, including chromatin remodeling and gene regulation. HOTAIR has a complex structure consisting of multiple domains that interact with various protein complexes and RNA molecules. In colorectal cancer (CRC), HOTAIR expression is upregulated, and its overexpression has been correlated with poor patient prognosis and resistance to chemotherapy. HOTAIR has been found to regulate gene expression and promote cancer growth by interacting with specific miRNAs. In addition, HOTAIR has been implicated in the development of treatment resistance in colorectal cancer. To develop effective treatments, it's important to understand how HOTAIR regulates gene expression. This article discusses HOTAIR's structure, functions, and mechanisms in CRC and its potential as a target for therapy. The author also suggests future research directions to better understand HOTAIR's role in CRC progression and drug resistance.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
25
|
Guo LT, Pyle AM. End-to-end RT-PCR of long RNA and highly structured RNA. Methods Enzymol 2023; 691:3-15. [PMID: 37914451 DOI: 10.1016/bs.mie.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
RNA molecules play important roles in numerous normal cellular processes and disease states, from protein coding to gene regulation. RT-PCR, applying the power of polymerase chain reaction (PCR) to RNA by coupling reverse transcription with PCR, is one of the most important techniques to characterize RNA transcripts and monitor gene expression. The ability to analyze full-length RNA transcripts and detect their expression is critical to decipher their biological functions. However, due to the low processivity of retroviral reverse transcriptases (RTs), we can only monitor a small fraction of long RNA transcripts, especially those containing stable secondary and tertiary structures. The full-length sequences can only be deduced by computational analysis, which is often misleading. Group II intron-encoded RTs are a new type of RT enzymes. They have evolved specialized structural elements that unwind template structures and maintain close contact with the RNA template. Therefore, group II intron-encoded RTs are more processive than the retroviral RTs. The discovery, optimization and deployment of processive group II intron RTs provide us the opportunity to analyze RNA transcripts with single molecule resolution. MarathonRT, the most processive group II intron RT, has been extensively optimized for processive reverse transcription. In this chapter, we use MarathonRT to deliver a general protocol for long amplicon generation by RT-PCR, and also provide guidance for troubleshooting and further optimization.
Collapse
Affiliation(s)
- Li-Tao Guo
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States; Department of Chemistry, Yale University, New Haven, CT, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
26
|
Rivas E. RNA covariation at helix-level resolution for the identification of evolutionarily conserved RNA structure. PLoS Comput Biol 2023; 19:e1011262. [PMID: 37450549 PMCID: PMC10370758 DOI: 10.1371/journal.pcbi.1011262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Many biologically important RNAs fold into specific 3D structures conserved through evolution. Knowing when an RNA sequence includes a conserved RNA structure that could lead to new biology is not trivial and depends on clues left behind by conservation in the form of covariation and variation. For that purpose, the R-scape statistical test was created to identify from alignments of RNA sequences, the base pairs that significantly covary above phylogenetic expectation. R-scape treats base pairs as independent units. However, RNA base pairs do not occur in isolation. The Watson-Crick (WC) base pairs stack together forming helices that constitute the scaffold that facilitates the formation of the non-WC base pairs, and ultimately the complete 3D structure. The helix-forming WC base pairs carry most of the covariation signal in an RNA structure. Here, I introduce a new measure of statistically significant covariation at helix-level by aggregation of the covariation significance and covariation power calculated at base-pair-level resolution. Performance benchmarks show that helix-level aggregated covariation increases sensitivity in the detection of evolutionarily conserved RNA structure without sacrificing specificity. This additional helix-level sensitivity reveals an artifact that results from using covariation to build an alignment for a hypothetical structure and then testing the alignment for whether its covariation significantly supports the structure. Helix-level reanalysis of the evolutionary evidence for a selection of long non-coding RNAs (lncRNAs) reinforces the evidence against these lncRNAs having a conserved secondary structure.
Collapse
Affiliation(s)
- Elena Rivas
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
27
|
Kumar A, Daripa P, Maiti S, Jain N. Interaction of hnRNPB1 with Helix-12 of hHOTAIR Reveals the Distinctive Mode of RNA Recognition That Enables the Structural Rearrangement by LCD. Biochemistry 2023; 62:2041-2054. [PMID: 37307069 DOI: 10.1021/acs.biochem.3c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The lncRNA human Hox transcript antisense intergenic RNA (hHOTAIR) regulates gene expression by recruiting chromatin modifiers. The prevailing model suggests that hHOTAIR recruits hnRNPB1 to facilitate intermolecular RNA-RNA interactions between the lncRNA HOTAIR and its target gene transcripts. This B1-mediated RNA-RNA interaction modulates the structure of hHOTAIR, attenuates its inhibitory effect on polycomb repression complex 2, and enhances its methyl transferase activity. However, the molecular details by which the nuclear hnRNPB1 protein assembles on the lncRNA HOTAIR have not yet been described. Here, we investigate the molecular interactions between hnRNPB1 and Helix-12 (hHOTAIR). We show that the low-complexity domain segment (LCD) of hnRNPB1 interacts with a strong affinity for Helix-12. Our studies revealed that unbound Helix-12 folds into a specific base-pairing pattern and contains an internal loop that, as determined by thermal melting and NMR studies, exhibits hydrogen bonding between strands and forms the recognition site for the LCD segment. In addition, mutation studies show that the secondary structure of Helix-12 makes an important contribution by acting as a landing pad for hnRNPB1. The secondary structure of Helix-12 is involved in specific interactions with different domains of hnRNPB1. Finally, we show that the LCD unwinds Helix-12 locally, indicating its importance in the hHOTAIR restructuring mechanism.
Collapse
Affiliation(s)
- Ajit Kumar
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Purba Daripa
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Souvik Maiti
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Niyati Jain
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| |
Collapse
|
28
|
Hu J, Zhang L, Zheng X, Wang G, Chen X, Hu Z, Chen Y, Wang X, Gu M, Hu S, Liu X, Jiao X, Peng D, Liu X. Long noncoding RNA #61 exerts a broad anti-influenza a virus effect by its long arm rings. Antiviral Res 2023; 215:105637. [PMID: 37196902 DOI: 10.1016/j.antiviral.2023.105637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Emerging evidence has demonstrated the critical role of long noncoding RNAs (lncRNAs) in regulating gene expression. However, the functional significance and mechanisms underlying influenza A virus (IAV)-host lncRNA interactions are still elusive. Here, we identified a functional lncRNA, LncRNA#61, as a broad anti-IAV factor. LncRNA#61 is highly upregulated by different subtypes of IAV, including human H1N1 virus and avian H5N1 and H7N9 viruses. Furthermore, nuclear-enriched LncRNA#61 can translocate from the nucleus to the cytoplasm soon after IAV infection. Forced LncRNA#61 expression dramatically impedes viral replication of various subtypes of IAV, including human H1N1 virus and avian H3N2/N8, H4N6, H5N1, H6N2/N8, H7N9, H8N4, H10N3, H11N2/N6/N9 viruses. Conversely, abolishing LncRNA#61 expression substantially favored viral replication. More importantly, LncRNA#61 delivered by the lipid nanoparticle (LNP)-encapsulated strategy shows good performance in restraining viral replication in mice. Interestingly, LncRNA#61 is involved in multiple steps of the viral replication cycle, including virus entry, viral RNA synthesis and the virus release period. Mechanistically, the four long ring arms of LncRNA#61 mainly mediate its broad antiviral effect and contribute to its inhibition of viral polymerase activity and nuclear aggregation of key polymerase components. Therefore, we defined LncRNA#61 as a potential broad-spectrum antiviral factor for IAV. Our study further extends our understanding of the stunning and unanticipated biology of lncRNAs as well as their close interaction with IAV, providing valuable clues for developing novel broad anti-IAV therapeutics targeting host lncRNAs.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Lei Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xinxin Zheng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Guoqing Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xia Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Yu Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China.
| |
Collapse
|
29
|
Gao W, Yang A, Rivas E. Thirteen dubious ways to detect conserved structural RNAs. IUBMB Life 2023; 75:471-492. [PMID: 36495545 PMCID: PMC11234323 DOI: 10.1002/iub.2694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 12/14/2022]
Abstract
Covariation induced by compensatory base substitutions in RNA alignments is a great way to deduce conserved RNA structure, in principle. In practice, success depends on many factors, importantly the quality and depth of the alignment and the choice of covariation statistic. Measuring covariation between pairs of aligned positions is easy. However, using covariation to infer evolutionarily conserved RNA structure is complicated by other extraneous sources of covariation such as that resulting from homologous sequences having evolved from a common ancestor. In order to provide evidence of evolutionarily conserved RNA structure, a method to distinguish covariation due to sources other than RNA structure is necessary. Moreover, there are several sorts of artifactually generated covariation signals that can further confound the analysis. Additionally, some covariation signal is difficult to detect due to incomplete comparative data. Here, we investigate and critically discuss the practice of inferring conserved RNA structure by comparative sequence analysis. We provide new methods on how to approach and decide which of the numerous long non-coding RNAs (lncRNAs) have biologically relevant structures.
Collapse
Affiliation(s)
- William Gao
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ann Yang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Elena Rivas
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
30
|
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 2023; 24:430-447. [PMID: 36596869 PMCID: PMC10213152 DOI: 10.1038/s41580-022-00566-8] [Citation(s) in RCA: 742] [Impact Index Per Article: 371.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia.
| | - Paulo P Amaral
- INSPER Institute of Education and Research, São Paulo, Brazil
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling-Ling Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra, Pamplona, Spain
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen, China
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua T Mendell
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Kathryn J Moore
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - David L Spector
- Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yue Wan
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Wang K, Gong M, Zhao S, Lai C, Zhao L, Cheng S, Xia M, Li Y, Wang K, Sun H, Zhu P, Zhou Y, Ao Q, Deng X. A novel lncRNA DFRV plays a dual function in influenza A virus infection. Front Microbiol 2023; 14:1171423. [PMID: 37303776 PMCID: PMC10248499 DOI: 10.3389/fmicb.2023.1171423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been associated with a variety of biological activities, including immune responses. However, the function of lncRNAs in antiviral innate immune responses are not fully understood. Here, we identified a novel lncRNA, termed dual function regulating influenza virus (DFRV), elevating in a dose- and time-dependent manner during influenza A virus (IAV) infection, which was dependent on the NFκB signaling pathway. Meanwhile, DFRV was spliced into two transcripts post IAV infection, in which DFRV long suppress the viral replication while DFRV short plays the opposite role. Moreover, DFRV regulates IL-1β and TNF-α via activating several pro-inflammatory signaling cascades, including NFκB, STAT3, PI3K, AKT, ERK1/2 and p38. Besides, DFRV short can inhibit DFRV long expression in a dose-dependent manner. Collectively, our studies reveal that DFRV may act as a potential dual-regulator to preserve innate immune homeostasis in IAV infection.
Collapse
Affiliation(s)
- Keyu Wang
- Department of Clinical Laboratory, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Meiliang Gong
- Department of Clinical Laboratory, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sumin Zhao
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Chengcai Lai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lingna Zhao
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, China
| | - Sijie Cheng
- Center for Disease Prevention and Control, Changde, Hunan, China
| | - Min Xia
- Department of Vascular Cell Biology, Max Plank Institute for Molecular Biomedicine, Münster, Germany
| | - Yuru Li
- Department of Clinical Laboratory, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kun Wang
- Department of Clinical Laboratory, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Heqiang Sun
- Department of Clinical Laboratory, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yu Zhou
- Department of Clinical Laboratory, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiangguo Ao
- Department of Nephrology, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinli Deng
- Department of Clinical Laboratory, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
32
|
Rivas E. RNA covariation at helix-level resolution for the identification of evolutionarily conserved RNA structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.14.536965. [PMID: 37131783 PMCID: PMC10153129 DOI: 10.1101/2023.04.14.536965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Many biologically important RNAs fold into specific 3D structures conserved through evolution. Knowing when an RNA sequence includes a conserved RNA structure that could lead to new biology is not trivial and depends on clues left behind by conservation in the form of covariation and variation. For that purpose, the R-scape statistical test was created to identify from alignments of RNA sequences, the base pairs that significantly covary above phylogenetic expectation. R-scape treats base pairs as independent units. However, RNA base pairs do not occur in isolation. The Watson-Crick (WC) base pairs stack together forming helices that constitute the scaffold that facilitates the formation of the non-WC base pairs, and ultimately the complete 3D structure. The helix-forming WC base pairs carry most of the covariation signal in an RNA structure. Here, I introduce a new measure of statistically significant covariation at helix-level by aggregation of the covariation significance and covariation power calculated at base-pair-level resolution. Performance benchmarks show that helix-level aggregated covariation increases sensitivity in the detection of evolutionarily conserved RNA structure without sacrificing specificity. This additional helix-level sensitivity reveals an artifact that results from using covariation to build an alignment for a hypothetical structure and then testing the alignment for whether its covariation significantly supports the structure. Helix-level reanalysis of the evolutionary evidence for a selection of long non-coding RNAs (lncRNAs) reinforces the evidence against these lncRNAs having a conserved secondary structure. Availability Helix aggregated E-values are integrated in the R-scape software package (version 2.0.0.p and higher). The R-scape web server eddylab.org/R-scape includes a link to download the source code. Contact elenarivas@fas.harvard.edu. Supplementary information Supplementary data and code are provided with this manuscript at rivaslab.org .
Collapse
|
33
|
Aydın E, Saus E, Chorostecki U, Gabaldón T. A hybrid approach to assess the structural impact of long noncoding RNA mutations uncovers key
NEAT1
interactions in colorectal cancer. IUBMB Life 2023. [PMID: 36971476 DOI: 10.1002/iub.2710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/25/2023] [Indexed: 03/29/2023]
Abstract
Long noncoding RNAs (lncRNAs) are emerging players in cancer and they entail potential as prognostic biomarkers or therapeutic targets. Earlier studies have identified somatic mutations in lncRNAs that are associated with tumor relapse after therapy, but the underlying mechanisms behind these associations remain unknown. Given the relevance of secondary structure for the function of some lncRNAs, some of these mutations may have a functional impact through structural disturbance. Here, we examined the potential structural and functional impact of a novel A > G point mutation in NEAT1 that has been recurrently observed in tumors of colorectal cancer patients experiencing relapse after treatment. Here, we used the nextPARS structural probing approach to provide first empirical evidence that this mutation alters NEAT1 structure. We further evaluated the potential effects of this structural alteration using computational tools and found that this mutation likely alters the binding propensities of several NEAT1-interacting miRNAs. Differential expression analysis on these miRNA networks shows upregulation of Vimentin, consistent with previous findings. We propose a hybrid pipeline that can be used to explore the potential functional effects of lncRNA somatic mutations.
Collapse
Affiliation(s)
- Efe Aydın
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Ester Saus
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS). Plaça Eusebi Güell, Barcelona, Spain
| | - Uciel Chorostecki
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS). Plaça Eusebi Güell, Barcelona, Spain
| | - Toni Gabaldón
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS). Plaça Eusebi Güell, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
34
|
Mattick JS. RNA out of the mist. Trends Genet 2023; 39:187-207. [PMID: 36528415 DOI: 10.1016/j.tig.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/08/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
RNA has long been regarded primarily as the intermediate between genes and proteins. It was a surprise then to discover that eukaryotic genes are mosaics of mRNA sequences interrupted by large tracts of transcribed but untranslated sequences, and that multicellular organisms also express many long 'intergenic' and antisense noncoding RNAs (lncRNAs). The identification of small RNAs that regulate mRNA translation and half-life did not disturb the prevailing view that animals and plant genomes are full of evolutionary debris and that their development is mainly supervised by transcription factors. Gathering evidence to the contrary involved addressing the low conservation, expression, and genetic visibility of lncRNAs, demonstrating their cell-specific roles in cell and developmental biology, and their association with chromatin-modifying complexes and phase-separated domains. The emerging picture is that most lncRNAs are the products of genetic loci termed 'enhancers', which marshal generic effector proteins to their sites of action to control cell fate decisions during development.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia; UNSW RNA Institute, UNSW, Sydney, NSW 2052, Australia.
| |
Collapse
|
35
|
Zhang J, Chen B, Fang X. 3D Structural Analysis of Long Noncoding RNA by Small Angle X-ray Scattering and Computational Modeling. Methods Mol Biol 2023; 2568:147-163. [PMID: 36227567 DOI: 10.1007/978-1-0716-2687-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Small angle X-ray scattering (SAXS) has been widely applied as an enabling integrative technique for comprehensive analysis of the structure of biomacromolecules by multiple, complementary techniques in solution. SAXS in combination with computational modeling can be a powerful strategy bridging the secondary and 3D structural analysis of large RNAs, including the long noncoding RNAs (lncRNA). Here, we outline the major procedures and techniques in the combined use of SAXS and computational modeling for 3D structural characterization of a lncRNA, the subgenomic flaviviral RNA from Zika virus. lncRNA production and purification, RNA buffer and sample preparation for SAXS experiments, SAXS data collection and analysis, SAXS-aided RNA 3D structure prediction, and computational modeling are described.
Collapse
Affiliation(s)
- Jie Zhang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Binxian Chen
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
36
|
Siri G, Yazdani O, Esbati R, Akhavanfar R, Asadi F, Adili A, Ebrahimzadeh F, Hosseini SME. A comprehensive review of the role of lncRNAs in gastric cancer (GC) pathogenesis, immune regulation, and their clinical applications. Pathol Res Pract 2023; 241:154221. [PMID: 36563559 DOI: 10.1016/j.prp.2022.154221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
Gastric cancer (GC) is the fifth most common malignant tumor and the third leading cause of cancer-related deaths worldwide. Although numerous studies have been conducted on advanced GC, the molecular mechanisms behind it remain obscure. Long non-coding RNAs (lncRNAs) are a family of RNA transcripts capable of regulating target genes at transcriptional, post-transcriptional, and translational stages. They do this by modifying mRNAs, miRNAs, and proteins. These RNAs are critical regulators of many biological processes, including gene epigenetics, transcription, and post-transcriptional levels. This article highlights recent results on lncRNAs involved in drug resistance, proliferation, migration, angiogenesis, apoptosis, autophagy, and immune response in GC. The potential clinical implications of lncRNAs as biomarkers and therapeutic targets in GC are also discussed.
Collapse
Affiliation(s)
- Goli Siri
- Department of Internal Medicine, Amir Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Yazdani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Romina Esbati
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Asadi
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, FL, USA; Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | |
Collapse
|
37
|
Sapkota KP, Li S, Zhang J. Cotranscriptional Assembly and Native Purification of Large RNA-RNA Complexes for Structural Analyses. Methods Mol Biol 2023; 2568:1-12. [PMID: 36227558 PMCID: PMC11275850 DOI: 10.1007/978-1-0716-2687-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recent technological developments such as cryogenic electron microscopy (Cryo-EM) and X-ray free electron lasers (XFEL) have significantly expanded the available toolkit to visualize large, complex noncoding RNAs and their complexes. Consequently, the quality of the RNA sample, as measured by its chemical monodispersity and conformational homogeneity, has become the bottleneck that frequently precludes effective structural analyses. Here we describe a general RNA sample preparation protocol that combines cotranscriptional RNA folding and RNA-RNA complex assembly, followed by native purification of stoichiometric complexes. We illustrate and discuss the utility of this versatile method in overcoming RNA misfolding and enabling the structural and mechanistic elucidations of the T-box riboswitch-tRNA complexes.
Collapse
Affiliation(s)
- Krishna P Sapkota
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Shuang Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
- Structural Biochemistry Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
38
|
rMSA: a sequence search and alignment algorithm to improve RNA structure modeling. J Mol Biol 2022. [DOI: 10.1016/j.jmb.2022.167904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
39
|
Porman AM, Roberts JT, Duncan ED, Chrupcala ML, Levine AA, Kennedy MA, Williams MM, Richer JK, Johnson AM. A single N6-methyladenosine site regulates lncRNA HOTAIR function in breast cancer cells. PLoS Biol 2022; 20:e3001885. [PMID: 36441764 PMCID: PMC9731500 DOI: 10.1371/journal.pbio.3001885] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/08/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
N6-methyladenosine (m6A) modification of RNA regulates normal and cancer biology, but knowledge of its function on long noncoding RNAs (lncRNAs) remains limited. Here, we reveal that m6A regulates the breast cancer-associated human lncRNA HOTAIR. Mapping m6A in breast cancer cell lines, we identify multiple m6A sites on HOTAIR, with 1 single consistently methylated site (A783) that is critical for HOTAIR-driven proliferation and invasion of triple-negative breast cancer (TNBC) cells. Methylated A783 interacts with the m6A "reader" YTHDC1, promoting chromatin association of HOTAIR, proliferation and invasion of TNBC cells, and gene repression. A783U mutant HOTAIR induces a unique antitumor gene expression profile and displays loss-of-function and antimorph behaviors by impairing and, in some cases, causing opposite gene expression changes induced by wild-type (WT) HOTAIR. Our work demonstrates how modification of 1 base in an lncRNA can elicit a distinct gene regulation mechanism and drive cancer-associated phenotypes.
Collapse
Affiliation(s)
- Allison M. Porman
- University of Colorado Anschutz Medical Campus, Biochemistry and Molecular Genetics Department, Aurora, Colorado, United States of America
| | - Justin T. Roberts
- University of Colorado Anschutz Medical Campus, Biochemistry and Molecular Genetics Department, Aurora, Colorado, United States of America
- University of Colorado Anschutz Medical Campus, Molecular Biology Graduate Program, Aurora, Colorado, United States of America
| | - Emily D. Duncan
- University of Colorado Anschutz Medical Campus, Molecular Biology Graduate Program, Aurora, Colorado, United States of America
- University of Colorado Anschutz Medical Campus, Cell and Developmental Biology Department, Aurora, Colorado, United States of America
| | - Madeline L. Chrupcala
- University of Colorado Anschutz Medical Campus, Biochemistry and Molecular Genetics Department, Aurora, Colorado, United States of America
- University of Colorado Anschutz Medical Campus, RNA Bioscience Initiative, Aurora, Colorado, United States of America
| | - Ariel A. Levine
- University of Colorado Anschutz Medical Campus, Biochemistry and Molecular Genetics Department, Aurora, Colorado, United States of America
- University of Colorado Anschutz Medical Campus, RNA Bioscience Initiative, Aurora, Colorado, United States of America
| | - Michelle A. Kennedy
- University of Colorado Anschutz Medical Campus, Biochemistry and Molecular Genetics Department, Aurora, Colorado, United States of America
| | - Michelle M. Williams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jennifer K. Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Aaron M. Johnson
- University of Colorado Anschutz Medical Campus, Biochemistry and Molecular Genetics Department, Aurora, Colorado, United States of America
- University of Colorado Anschutz Medical Campus, Molecular Biology Graduate Program, Aurora, Colorado, United States of America
- University of Colorado Anschutz Medical Campus, RNA Bioscience Initiative, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
40
|
Steiner H, Lammer NC, Batey RT, Wuttke DS. An Extended DNA Binding Domain of the Estrogen Receptor Alpha Directly Interacts with RNAs in Vitro. Biochemistry 2022; 61:2490-2494. [PMID: 36239332 PMCID: PMC9798703 DOI: 10.1021/acs.biochem.2c00536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Indexed: 01/31/2023]
Abstract
Estrogen receptor alpha (ERα) is a ligand-responsive transcription factor critical for sex determination and development. Recent reports challenge the canonical view of ERα function by suggesting an activity beyond binding dsDNA at estrogen-responsive promotor elements: association with RNAs in vivo. Whether these interactions are direct or indirect remains unknown, which limits the ability to understand the extent, specificity, and biological role of ERα-RNA binding. Here we demonstrate that an extended DNA-binding domain of ERα directly binds a wide range of RNAs in vitro with structural specificity. ERα binds RNAs that adopt a range of hairpin-derived structures independent of sequence, while interacting poorly with single- and double-stranded RNA. RNA affinities are only 4-fold weaker than consensus dsDNA and significantly tighter than nonconsensus dsDNA sequences. Moreover, RNA binding is competitive with DNA binding. Together, these data show that ERα utilizes an extended DNA-binding domain to achieve a high-affinity/low-specificity mode for interacting with RNA.
Collapse
Affiliation(s)
- Halley
R. Steiner
- Department of Biochemistry,
UCB 596, University of Colorado Boulder, Boulder, Colorado80309-0596, United States
| | - Nickolaus C. Lammer
- Department of Biochemistry,
UCB 596, University of Colorado Boulder, Boulder, Colorado80309-0596, United States
| | - Robert T. Batey
- Department of Biochemistry,
UCB 596, University of Colorado Boulder, Boulder, Colorado80309-0596, United States
| | - Deborah S. Wuttke
- Department of Biochemistry,
UCB 596, University of Colorado Boulder, Boulder, Colorado80309-0596, United States
| |
Collapse
|
41
|
Andrews RJ, Rouse WB, O’Leary CA, Booher NJ, Moss WN. ScanFold 2.0: a rapid approach for identifying potential structured RNA targets in genomes and transcriptomes. PeerJ 2022; 10:e14361. [PMID: 36389431 PMCID: PMC9651051 DOI: 10.7717/peerj.14361] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
A major limiting factor in target discovery for both basic research and therapeutic intervention is the identification of structural and/or functional RNA elements in genomes and transcriptomes. This was the impetus for the original ScanFold algorithm, which provides maps of local RNA structural stability, evidence of sequence-ordered (potentially evolved) structure, and unique model structures comprised of recurring base pairs with the greatest structural bias. A key step in quantifying this propensity for ordered structure is the prediction of secondary structural stability for randomized sequences which, in the original implementation of ScanFold, is explicitly evaluated. This slow process has limited the rapid identification of ordered structures in large genomes/transcriptomes, which we seek to overcome in this current work introducing ScanFold 2.0. In this revised version of ScanFold, we no longer explicitly evaluate randomized sequence folding energy, but rather estimate it using a machine learning approach. For high randomization numbers, this can increase prediction speeds over 100-fold compared to ScanFold 1.0, allowing for the analysis of large sequences, as well as the use of additional folding algorithms that may be computationally expensive. In the testing of ScanFold 2.0, we re-evaluate the Zika, HIV, and SARS-CoV-2 genomes and compare both the consistency of results and the time of each run to ScanFold 1.0. We also re-evaluate the SARS-CoV-2 genome to assess the quality of ScanFold 2.0 predictions vs several biochemical structure probing datasets and compare the results to those of the original ScanFold program.
Collapse
Affiliation(s)
- Ryan J. Andrews
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| | - Warren B. Rouse
- The Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States
| | - Collin A. O’Leary
- The Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States
| | - Nicholas J. Booher
- Infrastructure and Research IT Services, Iowa State University, Ames, IA, United States
| | - Walter N. Moss
- The Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States
| |
Collapse
|
42
|
Childs-Disney JL, Yang X, Gibaut QMR, Tong Y, Batey RT, Disney MD. Targeting RNA structures with small molecules. Nat Rev Drug Discov 2022; 21:736-762. [PMID: 35941229 PMCID: PMC9360655 DOI: 10.1038/s41573-022-00521-4] [Citation(s) in RCA: 232] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 01/07/2023]
Abstract
RNA adopts 3D structures that confer varied functional roles in human biology and dysfunction in disease. Approaches to therapeutically target RNA structures with small molecules are being actively pursued, aided by key advances in the field including the development of computational tools that predict evolutionarily conserved RNA structures, as well as strategies that expand mode of action and facilitate interactions with cellular machinery. Existing RNA-targeted small molecules use a range of mechanisms including directing splicing - by acting as molecular glues with cellular proteins (such as branaplam and the FDA-approved risdiplam), inhibition of translation of undruggable proteins and deactivation of functional structures in noncoding RNAs. Here, we describe strategies to identify, validate and optimize small molecules that target the functional transcriptome, laying out a roadmap to advance these agents into the next decade.
Collapse
Affiliation(s)
| | - Xueyi Yang
- Department of Chemistry, Scripps Research, Jupiter, FL, USA
| | | | - Yuquan Tong
- Department of Chemistry, Scripps Research, Jupiter, FL, USA
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO, USA.
| | | |
Collapse
|
43
|
Matarrese MAG, Loppini A, Nicoletti M, Filippi S, Chiodo L. Assessment of tools for RNA secondary structure prediction and extraction: a final-user perspective. J Biomol Struct Dyn 2022:1-20. [DOI: 10.1080/07391102.2022.2116110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Margherita A. G. Matarrese
- Engineering Department, Campus Bio-Medico University of Rome, Rome, Italy
- Jane and John Justin Neurosciences Center, Cook Children’s Health Care System, TX, USA
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Alessandro Loppini
- Engineering Department, Campus Bio-Medico University of Rome, Rome, Italy
- Center for Life Nano & Neuroscience, Italian Institute of Technology, Rome, Italy
| | - Martina Nicoletti
- Engineering Department, Campus Bio-Medico University of Rome, Rome, Italy
- Center for Life Nano & Neuroscience, Italian Institute of Technology, Rome, Italy
| | - Simonetta Filippi
- Engineering Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Letizia Chiodo
- Engineering Department, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
44
|
Reactive Oxygen Species and Long Non-Coding RNAs, an Unexpected Crossroad in Cancer Cells. Int J Mol Sci 2022; 23:ijms231710133. [PMID: 36077530 PMCID: PMC9456385 DOI: 10.3390/ijms231710133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Long non-coding RNAs (lncRNA) have recently been identified as key regulators of oxidative stress in several malignancies. The level of reactive oxygen species (ROS) must be constantly regulated to maintain cancer cell proliferation and chemoresistance and to prevent apoptosis. This review will discuss how lncRNAs alter the ROS level in cancer cells. We will first describe the role of lncRNAs in the nuclear factor like 2 (Nrf-2) coordinated antioxidant response of cancer cells. Secondly, we show how lncRNAs can promote the Warburg effect in cancer cells, thus shifting the cancer cell’s “building blocks” towards molecules important in oxidative stress regulation. Lastly, we explain the role that lncRNAs play in ROS-induced cancer cell apoptosis and proliferation.
Collapse
|
45
|
Devadoss D, Acharya A, Manevski M, Houserova D, Cioffi MD, Pandey K, Nair M, Chapagain P, Mirsaeidi M, Borchert GM, Byrareddy SN, Chand HS. Immunomodulatory LncRNA on antisense strand of ICAM-1 augments SARS-CoV-2 infection-associated airway mucoinflammatory phenotype. iScience 2022; 25:104685. [PMID: 35789750 PMCID: PMC9242679 DOI: 10.1016/j.isci.2022.104685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/25/2022] [Accepted: 06/23/2022] [Indexed: 01/20/2023] Open
Abstract
Noncoding RNAs are important regulators of mucoinflammatory response, but little is known about the contribution of airway long noncoding RNAs (lncRNAs) in COVID-19. RNA-seq analysis showed a more than 4-fold increased expression of IL-6, ICAM-1, CXCL-8, and SCGB1A1 inflammatory factors; MUC5AC and MUC5B mucins; and SPDEF, FOXA3, and FOXJ1 transcription factors in COVID-19 patient nasal samples compared with uninfected controls. A lncRNA on antisense strand to ICAM-1 or LASI was induced 2-fold in COVID-19 patients, and its expression was directly correlated with viral loads. A SARS-CoV-2-infected 3D-airway model largely recapitulated these clinical findings. RNA microscopy and molecular modeling indicated a possible interaction between viral RNA and LASI lncRNA. Notably, blocking LASI lncRNA reduced the SARS-CoV-2 replication and suppressed MUC5AC mucin levels and associated inflammation, and select LASI-dependent miRNAs (e.g., let-7b-5p and miR-200a-5p) were implicated. Thus, LASI lncRNA represents an essential facilitator of SARS-CoV-2 infection and associated airway mucoinflammatory response.
Collapse
Affiliation(s)
- Dinesh Devadoss
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Marko Manevski
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Dominika Houserova
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Michael D. Cioffi
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Mehdi Mirsaeidi
- Miller School of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami, Miami, FL 33136, USA
| | - Glen M. Borchert
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hitendra S. Chand
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
46
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. Signaling by LncRNAs: Structure, Cellular Homeostasis, and Disease Pathology. Cells 2022; 11:2517. [PMID: 36010595 PMCID: PMC9406440 DOI: 10.3390/cells11162517] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/11/2022] Open
Abstract
The cellular signaling network involves co-ordinated regulation of numerous signaling molecules that aid the maintenance of cellular as well as organismal homeostasis. Aberrant signaling plays a major role in the pathophysiology of many diseases. Recent studies have unraveled the superfamily of long non-coding RNAs (lncRNAs) as critical signaling nodes in diverse signaling networks. Defective signaling by lncRNAs is emerging as a causative factor underlying the pathophysiology of many diseases. LncRNAs have been shown to be involved in the multiplexed regulation of diverse pathways through both genetic and epigenetic mechanisms. They can serve as decoys, guides, scaffolds, and effector molecules to regulate cell signaling. In comparison with the other classes of RNAs, lncRNAs possess unique structural modifications that contribute to their diversity in modes of action within the nucleus and cytoplasm. In this review, we summarize the structure and function of lncRNAs as well as their vivid mechanisms of action. Further, we provide insights into the role of lncRNAs in the pathogenesis of four major disease paradigms, namely cardiovascular diseases, neurological disorders, cancers, and the metabolic disease, diabetes mellitus. This review serves as a succinct treatise that could open windows to investigate the role of lncRNAs as novel therapeutic targets.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul 151-921, Korea
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
47
|
Kuo FC, Neville MJ, Sabaratnam R, Wesolowska-Andersen A, Phillips D, Wittemans LBL, van Dam AD, Loh NY, Todorčević M, Denton N, Kentistou KA, Joshi PK, Christodoulides C, Langenberg C, Collas P, Karpe F, Pinnick KE. HOTAIR interacts with PRC2 complex regulating the regional preadipocyte transcriptome and human fat distribution. Cell Rep 2022; 40:111136. [PMID: 35905723 PMCID: PMC10073411 DOI: 10.1016/j.celrep.2022.111136] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/06/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Mechanisms governing regional human adipose tissue (AT) development remain undefined. Here, we show that the long non-coding RNA HOTAIR (HOX transcript antisense RNA) is exclusively expressed in gluteofemoral AT, where it is essential for adipocyte development. We find that HOTAIR interacts with polycomb repressive complex 2 (PRC2) and we identify core HOTAIR-PRC2 target genes involved in adipocyte lineage determination. Repression of target genes coincides with PRC2 promoter occupancy and H3K27 trimethylation. HOTAIR is also involved in modifying the gluteal adipocyte transcriptome through alternative splicing. Gluteal-specific expression of HOTAIR is maintained by defined regions of open chromatin across the HOTAIR promoter. HOTAIR expression levels can be modified by hormonal (estrogen, glucocorticoids) and genetic variation (rs1443512 is a HOTAIR eQTL associated with reduced gynoid fat mass). These data identify HOTAIR as a dynamic regulator of the gluteal adipocyte transcriptome and epigenome with functional importance for human regional AT development.
Collapse
Affiliation(s)
- Feng-Chih Kuo
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK; Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defence Medical Centre, Taipei, Taiwan
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford, UK
| | - Rugivan Sabaratnam
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK; Institute of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark; Steno Diabetes Center Odense, Odense University Hospital, 5000 Odense C, Denmark
| | | | - Daniel Phillips
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK
| | - Laura B L Wittemans
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK; The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Andrea D van Dam
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK
| | - Nellie Y Loh
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK
| | - Marijana Todorčević
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK
| | - Nathan Denton
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK
| | - Katherine A Kentistou
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK; Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| | - Constantinos Christodoulides
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford, UK.
| | - Katherine E Pinnick
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK.
| |
Collapse
|
48
|
Guo LT, Olson S, Patel S, Graveley BR, Pyle AM. Direct tracking of reverse-transcriptase speed and template sensitivity: implications for sequencing and analysis of long RNA molecules. Nucleic Acids Res 2022; 50:6980-6989. [PMID: 35713547 PMCID: PMC9262592 DOI: 10.1093/nar/gkac518] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
Although reverse-transcriptase (RT) enzymes are critical reagents for research and biotechnology, their mechanical properties are not well understood. In particular, we know little about their relative speed and response to structural obstacles in the template. Commercial retroviral RTs stop at many positions along mixed sequence templates, resulting in truncated cDNA products that complicate downstream analysis. By contrast, group II intron-encoded RTs appear to copy long RNAs with high processivity and minimal stops. However, their speed, consistency and pausing behavior have not been explored. Here, we analyze RT velocity as the enzyme moves through heterogeneous sequences and structures that are embedded within a long noncoding RNA transcript. We observe that heterogeneities in the template are highly disruptive to primer extension by retroviral RTs. However, sequence composition and template structure have negligible effects on behavior of group II intron RTs, such as MarathonRT (MRT). Indeed, MRT copies long RNAs in a single pass, and displays synchronized primer extension at a constant speed of 25 nt/sec. In addition, it passes through stable RNA structural motifs without perturbation of velocity. Taken together, the results demonstrate that consistent, robust translocative behavior is a hallmark of group II intron-encoded RTs, some of which operate at high velocity.
Collapse
Affiliation(s)
- Li-Tao Guo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Sara Olson
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030-6403, USA
| | - Shivali Patel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030-6403, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
49
|
Ross CJ, Ulitsky I. Discovering functional motifs in long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1708. [PMID: 34981665 DOI: 10.1002/wrna.1708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 12/27/2022]
Abstract
Long noncoding RNAs (lncRNAs) are products of pervasive transcription that closely resemble messenger RNAs on the molecular level, yet function through largely unknown modes of action. The current model is that the function of lncRNAs often relies on specific, typically short, conserved elements, connected by linkers in which specific sequences and/or structures are less important. This notion has fueled the development of both computational and experimental methods focused on the discovery of functional elements within lncRNA genes, based on diverse signals such as evolutionary conservation, predicted structural elements, or the ability to rescue loss-of-function phenotypes. In this review, we outline the main challenges that the different methods need to overcome, describe the recently developed approaches, and discuss their respective limitations. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Caroline Jane Ross
- Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Ulitsky
- Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
50
|
Xu B, Zhu Y, Cao C, Chen H, Jin Q, Li G, Ma J, Yang SL, Zhao J, Zhu J, Ding Y, Fang X, Jin Y, Kwok CK, Ren A, Wan Y, Wang Z, Xue Y, Zhang H, Zhang QC, Zhou Y. Recent advances in RNA structurome. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1285-1324. [PMID: 35717434 PMCID: PMC9206424 DOI: 10.1007/s11427-021-2116-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022]
Abstract
RNA structures are essential to support RNA functions and regulation in various biological processes. Recently, a range of novel technologies have been developed to decode genome-wide RNA structures and novel modes of functionality across a wide range of species. In this review, we summarize key strategies for probing the RNA structurome and discuss the pros and cons of representative technologies. In particular, these new technologies have been applied to dissect the structural landscape of the SARS-CoV-2 RNA genome. We also summarize the functionalities of RNA structures discovered in different regulatory layers-including RNA processing, transport, localization, and mRNA translation-across viruses, bacteria, animals, and plants. We review many versatile RNA structural elements in the context of different physiological and pathological processes (e.g., cell differentiation, stress response, and viral replication). Finally, we discuss future prospects for RNA structural studies to map the RNA structurome at higher resolution and at the single-molecule and single-cell level, and to decipher novel modes of RNA structures and functions for innovative applications.
Collapse
Affiliation(s)
- Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanda Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Changchang Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qiongli Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guangnan Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Junfeng Ma
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Siwy Ling Yang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Jieyu Zhao
- Department of Chemistry, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jianghui Zhu
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Chun Kit Kwok
- Department of Chemistry, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, Singapore.
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Yu Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|