1
|
Fabra MA, Paredes-Fuentes AJ, Torralba Carnerero M, Moreno Férnandez de Ayala DJ, Arroyo Luque A, Sánchez Cuesta A, Staiano C, Sanchez-Pintos P, Luz Couce M, Tomás M, Marco-Hernández AV, Orellana C, Martínez F, Roselló M, Caro A, Oltra Soler JS, Monfort S, Sánchez A, Rausell D, Vitoria I, Del Toro M, Garcia-Cazorla A, Julia-Palacios NA, Jou C, Yubero D, López LC, Hernández Camacho JD, López Lluch G, Ballesteros Simarro M, Rodríguez Aguilera JC, Calvo GB, Cascajo Almenara MV, Artuch R, Santos-Ocaña C. New variants expand the neurological phenotype of COQ7 deficiency. J Inherit Metab Dis 2024; 47:1047-1068. [PMID: 38973597 DOI: 10.1002/jimd.12776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
The protein encoded by COQ7 is required for CoQ10 synthesis in humans, hydroxylating 3-demethoxyubiquinol (DMQ10) in the second to last steps of the pathway. COQ7 mutations lead to a primary CoQ10 deficiency syndrome associated with a pleiotropic neurological disorder. This study shows the clinical, physiological, and molecular characterization of four new cases of CoQ10 primary deficiency caused by five mutations in COQ7, three of which have not yet been described, inducing mitochondrial dysfunction in all patients. However, the specific combination of the identified variants in each patient generated precise pathophysiological and molecular alterations in fibroblasts, which would explain the differential in vitro response to supplementation therapy. Our results suggest that COQ7 dysfunction could be caused by specific structural changes that affect the interaction with COQ9 required for the DMQ10 presentation to COQ7, the substrate access to the active site, and the maintenance of the active site structure. Remarkably, patients' fibroblasts share transcriptional remodeling, supporting a modification of energy metabolism towards glycolysis, which could be an adaptive mechanism against CoQ10 deficiency. However, transcriptional analysis of mitochondria-associated pathways showed distinct and dramatic differences between patient fibroblasts, which correlated with the extent of pathophysiological and neurological alterations observed in the probands. Overall, this study suggests that the combination of precise genetic diagnostics and the availability of new structural models of human proteins could help explain the origin of phenotypic pleiotropy observed in some genetic diseases and the different responses to available therapies.
Collapse
Affiliation(s)
- María Alcázar Fabra
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Abraham J Paredes-Fuentes
- Hospital San Joan de Deu, Barcelona, Spain
- Unidad U703 CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Manuel Torralba Carnerero
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
| | - Daniel J Moreno Férnandez de Ayala
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Antonio Arroyo Luque
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Ana Sánchez Cuesta
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Carmine Staiano
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Paula Sanchez-Pintos
- Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Hospital de Santiago de Compostela, IDIS, CIBERER, MetabERN, Santiago de Compostela, Spain
- GCV14/ER/5 CIBERER, Instituto de Salud Carlos III, Santiago de Compostela, Spain
| | - María Luz Couce
- Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Hospital de Santiago de Compostela, IDIS, CIBERER, MetabERN, Santiago de Compostela, Spain
- GCV14/ER/5 CIBERER, Instituto de Salud Carlos III, Santiago de Compostela, Spain
| | - Miguel Tomás
- Hospital Universitari i Politècnic La Fe, Servicio de Neuropediatría, Valencia, Spain
| | | | - Carmen Orellana
- Hospital Universitari i Politècnic La Fe, Unidad de Genética, Valencia, Spain
| | - Francisco Martínez
- Hospital Universitari i Politècnic La Fe, Unidad de Genética, Valencia, Spain
| | - Mónica Roselló
- Hospital Universitari i Politècnic La Fe, Unidad de Genética, Valencia, Spain
| | - Alfonso Caro
- Hospital Universitari i Politècnic La Fe, Unidad de Genética, Valencia, Spain
| | | | - Sandra Monfort
- Hospital Universitari i Politècnic La Fe, Unidad de Genética, Valencia, Spain
| | - Alejandro Sánchez
- Hospital Universitari i Politècnic La Fe, Unidad de Genética, Valencia, Spain
| | - Dolores Rausell
- Hospital Universitari i Politècnic La Fe, Servicio de Análisis Clínicos, Valencia, Spain
| | - Isidro Vitoria
- Hospital Universitari i Politècnic La Fe, Unidad de Metabolopatías, Valencia, Spain
| | - Mireia Del Toro
- Pediatric Neurology Unit, Hospital Universitari Vall d'Hebron, CIBERER, MetabERN, Barcelona, Spain
- Instituto de Salud Carlos III, Barcelona, Spain
| | - Angels Garcia-Cazorla
- Hospital San Joan de Deu, Barcelona, Spain
- Unidad U703 CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Natalia A Julia-Palacios
- Hospital San Joan de Deu, Barcelona, Spain
- Unidad U703 CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Cristina Jou
- Hospital San Joan de Deu, Barcelona, Spain
- Unidad U703 CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Delia Yubero
- Hospital San Joan de Deu, Barcelona, Spain
- Unidad U703 CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Luis Carlos López
- Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Juan Diego Hernández Camacho
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Guillermo López Lluch
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Manuel Ballesteros Simarro
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Juan Carlos Rodríguez Aguilera
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Gloria Brea Calvo
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - María Victoria Cascajo Almenara
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Rafael Artuch
- Hospital San Joan de Deu, Barcelona, Spain
- Unidad U703 CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Carlos Santos-Ocaña
- Departamento de Fisiología, Anatomía y Biología Celular, CABD, Universidad Pablo de Olavide, Sevilla, Spain
- Unidad U729 CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| |
Collapse
|
2
|
Herrero Martín JC, Salegi Ansa B, Álvarez-Rivera G, Domínguez-Zorita S, Rodríguez-Pombo P, Pérez B, Calvo E, Paradela A, Miguez DG, Cifuentes A, Cuezva JM, Formentini L. An ETFDH-driven metabolon supports OXPHOS efficiency in skeletal muscle by regulating coenzyme Q homeostasis. Nat Metab 2024; 6:209-225. [PMID: 38243131 PMCID: PMC10896730 DOI: 10.1038/s42255-023-00956-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Coenzyme Q (Q) is a key lipid electron transporter, but several aspects of its biosynthesis and redox homeostasis remain undefined. Various flavoproteins reduce ubiquinone (oxidized form of Q) to ubiquinol (QH2); however, in eukaryotes, only oxidative phosphorylation (OXPHOS) complex III (CIII) oxidizes QH2 to Q. The mechanism of action of CIII is still debated. Herein, we show that the Q reductase electron-transfer flavoprotein dehydrogenase (ETFDH) is essential for CIII activity in skeletal muscle. We identify a complex (comprising ETFDH, CIII and the Q-biosynthesis regulator COQ2) that directs electrons from lipid substrates to the respiratory chain, thereby reducing electron leaks and reactive oxygen species production. This metabolon maintains total Q levels, minimizes QH2-reductive stress and improves OXPHOS efficiency. Muscle-specific Etfdh-/- mice develop myopathy due to CIII dysfunction, indicating that ETFDH is a required OXPHOS component and a potential therapeutic target for mitochondrial redox medicine.
Collapse
Affiliation(s)
- Juan Cruz Herrero Martín
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Beñat Salegi Ansa
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Gerardo Álvarez-Rivera
- Laboratorio Foodomics, Instituto de Investigación en Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sonia Domínguez-Zorita
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Pilar Rodríguez-Pombo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigación Universitaria La Paz (IDIPAZ), Madrid, Spain
| | - Belén Pérez
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigación Universitaria La Paz (IDIPAZ), Madrid, Spain
| | - Enrique Calvo
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
| | - Alberto Paradela
- Proteomics Unit, Centro Nacional de Biotecnología (CNB)-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - David G Miguez
- Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Departamento de Física de la Materia Condensada, IFIMAC, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Alejandro Cifuentes
- Laboratorio Foodomics, Instituto de Investigación en Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Laura Formentini
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.
- Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
3
|
Nicoll CR, Alvigini L, Gottinger A, Cecchini D, Mannucci B, Corana F, Mascotti ML, Mattevi A. In vitro construction of the COQ metabolon unveils the molecular determinants of coenzyme Q biosynthesis. Nat Catal 2024; 7:148-160. [PMID: 38425362 PMCID: PMC7615680 DOI: 10.1038/s41929-023-01087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/20/2023] [Indexed: 03/02/2024]
Abstract
Metabolons are protein assemblies that perform a series of reactions in a metabolic pathway. However, the general importance and aptitude of metabolons for enzyme catalysis remain poorly understood. In animals, biosynthesis of coenzyme Q is currently attributed to ten different proteins, with COQ3, COQ4, COQ5, COQ6, COQ7 and COQ9 forming the iconic COQ metabolon. Yet several reaction steps conducted by the metabolon remain enigmatic. To elucidate the prerequisites for animal coenzyme Q biosynthesis, we sought to construct the entire metabolon in vitro. Here we show that this approach, rooted in ancestral sequence reconstruction, reveals the enzymes responsible for the uncharacterized steps and captures the biosynthetic pathway in vitro. We demonstrate that COQ8, a kinase, increases and streamlines coenzyme Q production. Our findings provide crucial insight into how biocatalytic efficiency is regulated and enhanced by these biosynthetic engines in the context of the cell.
Collapse
Affiliation(s)
- Callum R. Nicoll
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Laura Alvigini
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Andrea Gottinger
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Domiziana Cecchini
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | | | - Federica Corana
- ’Centro Grandi Strumenti’, University of Pavia, Pavia, Italy
| | - María Laura Mascotti
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
- IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Andrea Mattevi
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| |
Collapse
|
4
|
Rebelo AP, Tomaselli PJ, Medina J, Wang Y, Dohrn MF, Nyvltova E, Danzi MC, Garrett M, Smith SE, Pestronk A, Li C, Ruiz A, Jacobs E, Feely SME, França MC, Gomes MV, Santos DF, Kumar S, Lombard DB, Saporta M, Hekimi S, Barrientos A, Weihl C, Shy ME, Marques W, Zuchner S. Biallelic variants in COQ7 cause distal hereditary motor neuropathy with upper motor neuron signs. Brain 2023; 146:4191-4199. [PMID: 37170631 PMCID: PMC10545612 DOI: 10.1093/brain/awad158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 05/13/2023] Open
Abstract
COQ7 encodes a hydroxylase responsible for the penultimate step of coenzyme Q10 (CoQ10) biosynthesis in mitochondria. CoQ10 is essential for multiple cellular functions, including mitochondrial oxidative phosphorylation, lipid metabolism, and reactive oxygen species homeostasis. Mutations in COQ7 have been previously associated with primary CoQ10 deficiency, a clinically heterogeneous multisystemic mitochondrial disorder. We identified COQ7 biallelic variants in nine families diagnosed with distal hereditary motor neuropathy with upper neuron involvement, expending the clinical phenotype associated with defects in this gene. A recurrent p.Met1? change was identified in five families from Brazil with evidence of a founder effect. Fibroblasts isolated from patients revealed a substantial depletion of COQ7 protein levels, indicating protein instability leading to loss of enzyme function. High-performance liquid chromatography assay showed that fibroblasts from patients had reduced levels of CoQ10, and abnormal accumulation of the biosynthetic precursor DMQ10. Accordingly, fibroblasts from patients displayed significantly decreased oxygen consumption rates in patients, suggesting mitochondrial respiration deficiency. Induced pluripotent stem cell-derived motor neurons from patient fibroblasts showed significantly increased levels of extracellular neurofilament light protein, indicating axonal degeneration. Our findings indicate a molecular pathway involving CoQ10 biosynthesis deficiency and mitochondrial dysfunction in patients with distal hereditary motor neuropathy. Further studies will be important to evaluate the potential benefits of CoQ10 supplementation in the clinical outcome of the disease.
Collapse
Affiliation(s)
- Adriana P Rebelo
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Pedro J Tomaselli
- Department of Neurology, University of São Paulo, Ribeirão Preto, 14048-900, Brazil
| | - Jessica Medina
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Ying Wang
- Department of Biology, McGill University, Montreal, QC, H3A 1A1, Canada
| | - Maike F Dohrn
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen 52074, Germany
| | - Eva Nyvltova
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Matt C Danzi
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Mark Garrett
- Department of Neurology, Washington University, St. Louis, MO 63112, USA
| | - Sean E Smith
- Department of Neurology, Washington University, St. Louis, MO 63112, USA
| | - Alan Pestronk
- Department of Neurology, Washington University, St. Louis, MO 63112, USA
| | - Chengcheng Li
- Department of Neurology, Washington University, St. Louis, MO 63112, USA
| | - Ariel Ruiz
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Elizabeth Jacobs
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Shawna M E Feely
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Marcondes C França
- Department of Neurology, University of São Paulo, Ribeirão Preto, 14048-900, Brazil
| | - Marcus V Gomes
- Department of Neurology, University of São Paulo, Ribeirão Preto, 14048-900, Brazil
| | - Diogo F Santos
- Department of Neurology, Federal University of Uberlândia, Uberlândia, MG 38405-320, Brazil
| | - Surinder Kumar
- Department of Pathology & Laboratory Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David B Lombard
- Department of Pathology & Laboratory Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Saporta
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, QC, H3A 1A1, Canada
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Conrad Weihl
- Department of Neurology, Washington University, St. Louis, MO 63112, USA
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Wilson Marques
- Department of Neurology, University of São Paulo, Ribeirão Preto, 14048-900, Brazil
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Diquigiovanni C, Rizzardi N, Kampmeier A, Liparulo I, Bianco F, De Nicolo B, Cataldi-Stagetti E, Cuna E, Severi G, Seri M, Bertrand M, Haack TB, Marina AD, Braun F, Fato R, Kuechler A, Bergamini C, Bonora E. Mutant SPART causes defects in mitochondrial protein import and bioenergetics reversed by Coenzyme Q. Open Biol 2023; 13:230040. [PMID: 37433330 PMCID: PMC10335854 DOI: 10.1098/rsob.230040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
Pathogenic variants in SPART cause Troyer syndrome, characterized by lower extremity spasticity and weakness, short stature and cognitive impairment, and a severe mitochondrial impairment. Herein, we report the identification of a role of Spartin in nuclear-encoded mitochondrial proteins. SPART biallelic missense variants were detected in a 5-year-old boy with short stature, developmental delay and muscle weakness with impaired walking distance. Patient-derived fibroblasts showed an altered mitochondrial network, decreased mitochondrial respiration, increased mitochondrial reactive oxygen species and altered Ca2+ versus control cells. We investigated the mitochondrial import of nuclear-encoded proteins in these fibroblasts and in another cell model carrying a SPART loss-of-function mutation. In both cell models the mitochondrial import was impaired, leading to a significant decrease in different proteins, including two key enzymes involved in CoQ10 (CoQ) synthesis, COQ7 and COQ9, with a severe reduction in CoQ content, versus control cells. CoQ supplementation restored cellular ATP levels to the same extent shown by the re-expression of wild-type SPART, suggesting CoQ treatment as a promising therapeutic approach for patients carrying mutations in SPART.
Collapse
Affiliation(s)
- Chiara Diquigiovanni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna 40138, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Nicola Rizzardi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Antje Kampmeier
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen 45122, Germany
| | - Irene Liparulo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Francesca Bianco
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Department of Veterinary Sciences, University of Bologna, Bologna 40064, Italy
| | - Bianca De Nicolo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Erica Cataldi-Stagetti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Elisabetta Cuna
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Giulia Severi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Marco Seri
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Miriam Bertrand
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
- Center for Rare Diseases, University of Tübingen, Tübingen 72076, Germany
| | - Adela Della Marina
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen 45122, Germany
| | - Frederik Braun
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen 45122, Germany
| | - Romana Fato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen 45122, Germany
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Elena Bonora
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| |
Collapse
|
6
|
Hu M, Jiang Y, Xu JJ. Characterization of Arabidopsis thaliana Coq9 in the CoQ Biosynthetic Pathway. Metabolites 2023; 13:813. [PMID: 37512520 PMCID: PMC10385794 DOI: 10.3390/metabo13070813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Coenzyme Q, also known as ubiquinone, is a fat-soluble isoprene quinone that serves as a cofactor for numerous enzymes across all domains of life. However, the biosynthetic pathway for this important molecule in plants has been examined in only a limited number of studies. In yeast and mammals, Coq9, an isoprenoid-lipid-binding protein, is essential for CoQ biosynthesis. Previous studies showed that Arabidopsis thaliana Coq9 failed to complement the fission yeast Schizosaccharomyces pombe coq9 null mutant, and its function in plants remains unknown. In this study, we demonstrated that expression of Arabidopsis Coq9 rescued the growth of a yeast temperature-sensitive coq9 mutant and increased CoQ content. Phylogenetic analysis revealed that Coq9 is widely present in green plants. Green fluorescent protein (GFP) fusion experiments showed that Arabidopsis Coq9 is targeted to mitochondria. Disruption of the Coq9 gene in Arabidopsis results in lower amounts of CoQ. Our work suggests that plant Coq9 is required for efficient CoQ biosynthesis. These findings provide new insights into the evolution of CoQ biosynthesis in plants. The identification of Coq9 as a key player in CoQ biosynthesis in plants opens up new avenues for understanding the regulation of this important metabolic pathway.
Collapse
Affiliation(s)
- Mei Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yan Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- School of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jing-Jing Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| |
Collapse
|
7
|
Guerra RM, Pagliarini DJ. Coenzyme Q biochemistry and biosynthesis. Trends Biochem Sci 2023; 48:463-476. [PMID: 36702698 PMCID: PMC10106368 DOI: 10.1016/j.tibs.2022.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023]
Abstract
Coenzyme Q (CoQ) is a remarkably hydrophobic, redox-active lipid that empowers diverse cellular processes. Although most known for shuttling electrons between mitochondrial electron transport chain (ETC) complexes, the roles for CoQ are far more wide-reaching and ever-expanding. CoQ serves as a conduit for electrons from myriad pathways to enter the ETC, acts as a cofactor for biosynthetic and catabolic reactions, detoxifies damaging lipid species, and engages in cellular signaling and oxygen sensing. Many open questions remain regarding the biosynthesis, transport, and metabolism of CoQ, which hinders our ability to treat human CoQ deficiency. Here, we recount progress in filling these knowledge gaps, highlight unanswered questions, and underscore the need for novel tools to enable discoveries and improve the treatment of CoQ-related diseases.
Collapse
Affiliation(s)
- Rachel M Guerra
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David J Pagliarini
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Departament of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Departament of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Marcheggiani F, Orlando P, Silvestri S, Cirilli I, Riva A, Petrangolini G, Orsini F, Tiano L. CoQ 10Phytosomes Improve Cellular Ubiquinone Uptake in Skeletal Muscle Cells: An Ex Vivo Study Using CoQ 10-Enriched Low-Density Lipoproteins Obtained in a Randomized Crossover Study. Antioxidants (Basel) 2023; 12:antiox12040964. [PMID: 37107339 PMCID: PMC10135710 DOI: 10.3390/antiox12040964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Coenzyme Q10 (CoQ10) bioavailability in vivo is limited due to its lipophilic nature. Moreover, a large body of evidence in the literature shows that muscle CoQ10 uptake is limited. In order to address cell specific differences in CoQ uptake, we compared cellular CoQ10 content in cultured human dermal fibroblasts and murine skeletal muscle cells that were incubated with lipoproteins from healthy volunteers and enriched with different formulations of CoQ10 following oral supplementation. Using a crossover design, eight volunteers were randomized to supplement 100 mg/daily CoQ10 for two weeks, delivered both in phytosome form (UBQ) as a lecithin formulation and in CoQ10 crystalline form. After supplementation, plasma was collected for CoQ10 determination. In the same samples, low density lipoproteins (LDL) were extracted and normalized for CoQ10 content, and 0.5 µg/mL in the medium were incubated with the two cell lines for 24 h. The results show that while both formulations were substantially equivalent in terms of plasma bioavailability in vivo, UBQ-enriched lipoproteins showed a higher bioavailability compared with crystalline CoQ10-enriched ones both in human dermal fibroblasts (+103%) and in murine skeletal myoblasts (+48%). Our data suggest that phytosome carriers might provide a specific advantage in delivering CoQ10 to skin and muscle tissues.
Collapse
Affiliation(s)
- Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | | | | | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
9
|
Wang S, Jain A, Novales NA, Nashner AN, Tran F, Clarke CF. Predicting and Understanding the Pathology of Single Nucleotide Variants in Human COQ Genes. Antioxidants (Basel) 2022; 11:antiox11122308. [PMID: 36552517 PMCID: PMC9774615 DOI: 10.3390/antiox11122308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Coenzyme Q (CoQ) is a vital lipid that functions as an electron carrier in the mitochondrial electron transport chain and as a membrane-soluble antioxidant. Deficiencies in CoQ lead to metabolic diseases with a wide range of clinical manifestations. There are currently few treatments that can slow or stop disease progression. Primary CoQ10 deficiency can arise from mutations in any of the COQ genes responsible for CoQ biosynthesis. While many mutations in these genes have been identified, the clinical significance of most of them remains unclear. Here we analyzed the structural and functional impact of 429 human missense single nucleotide variants (SNVs) that give rise to amino acid substitutions in the conserved and functional regions of human genes encoding a high molecular weight complex known as the CoQ synthome (or Complex Q), consisting of the COQ3-COQ7 and COQ9 gene products. Using structures of COQ polypeptides, close homologs, and AlphaFold models, we identified 115 SNVs that are potentially pathogenic. Further biochemical characterizations in model organisms such as Saccharomyces cerevisiae are required to validate the pathogenicity of the identified SNVs. Collectively, our results will provide a resource for clinicians during patient diagnosis and guide therapeutic efforts toward combating primary CoQ10 deficiency.
Collapse
|
10
|
Manicki M, Aydin H, Abriata LA, Overmyer KA, Guerra RM, Coon JJ, Dal Peraro M, Frost A, Pagliarini DJ. Structure and functionality of a multimeric human COQ7:COQ9 complex. Mol Cell 2022; 82:4307-4323.e10. [PMID: 36306796 PMCID: PMC10058641 DOI: 10.1016/j.molcel.2022.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 07/01/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022]
Abstract
Coenzyme Q (CoQ) is a redox-active lipid essential for core metabolic pathways and antioxidant defense. CoQ is synthesized upon the mitochondrial inner membrane by an ill-defined "complex Q" metabolon. Here, we present structure-function analyses of a lipid-, substrate-, and NADH-bound complex comprising two complex Q subunits: the hydroxylase COQ7 and the lipid-binding protein COQ9. We reveal that COQ7 adopts a ferritin-like fold with a hydrophobic channel whose substrate-binding capacity is enhanced by COQ9. Using molecular dynamics, we further show that two COQ7:COQ9 heterodimers form a curved tetramer that deforms the membrane, potentially opening a pathway for the CoQ intermediates to translocate from the bilayer to the proteins' lipid-binding sites. Two such tetramers assemble into a soluble octamer with a pseudo-bilayer of lipids captured within. Together, these observations indicate that COQ7 and COQ9 cooperate to access hydrophobic precursors within the membrane and coordinate subsequent synthesis steps toward producing CoQ.
Collapse
Affiliation(s)
- Mateusz Manicki
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Morgridge Institute for Research, Madison, WI 53715, USA
| | - Halil Aydin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Luciano A Abriata
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Protein Production and Structure Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, WI 53715, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53562, USA
| | - Rachel M Guerra
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Morgridge Institute for Research, Madison, WI 53715, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI 53715, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53562, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53506, USA
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub and Altos Labs Bay Area Institute of Science, San Francisco, CA, USA.
| | - David J Pagliarini
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Diessl J, Berndtsson J, Broeskamp F, Habernig L, Kohler V, Vazquez-Calvo C, Nandy A, Peselj C, Drobysheva S, Pelosi L, Vögtle FN, Pierrel F, Ott M, Büttner S. Manganese-driven CoQ deficiency. Nat Commun 2022; 13:6061. [PMID: 36229432 PMCID: PMC9563070 DOI: 10.1038/s41467-022-33641-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
Overexposure to manganese disrupts cellular energy metabolism across species, but the molecular mechanism underlying manganese toxicity remains enigmatic. Here, we report that excess cellular manganese selectively disrupts coenzyme Q (CoQ) biosynthesis, resulting in failure of mitochondrial bioenergetics. While respiratory chain complexes remain intact, the lack of CoQ as lipophilic electron carrier precludes oxidative phosphorylation and leads to premature cell and organismal death. At a molecular level, manganese overload causes mismetallation and proteolytic degradation of Coq7, a diiron hydroxylase that catalyzes the penultimate step in CoQ biosynthesis. Coq7 overexpression or supplementation with a CoQ headgroup analog that bypasses Coq7 function fully corrects electron transport, thus restoring respiration and viability. We uncover a unique sensitivity of a diiron enzyme to mismetallation and define the molecular mechanism for manganese-induced bioenergetic failure that is conserved across species.
Collapse
Affiliation(s)
- Jutta Diessl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Jens Berndtsson
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Filomena Broeskamp
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Lukas Habernig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Carmela Vazquez-Calvo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Arpita Nandy
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Carlotta Peselj
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Sofia Drobysheva
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Ludovic Pelosi
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - F-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Network Aging Research, Heidelberg University, 69120, Heidelberg, Germany
| | - Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
12
|
Xu JJ, Hu M, Yang L, Chen XY. How plants synthesize coenzyme Q. PLANT COMMUNICATIONS 2022; 3:100341. [PMID: 35614856 PMCID: PMC9483114 DOI: 10.1016/j.xplc.2022.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Coenzyme Q (CoQ) is a conserved redox-active lipid that has a wide distribution across the domains of life. CoQ plays a key role in the oxidative electron transfer chain and serves as a crucial antioxidant in cellular membranes. Our understanding of CoQ biosynthesis in eukaryotes has come mostly from studies of yeast. Recently, significant advances have been made in understanding CoQ biosynthesis in plants. Unique mitochondrial flavin-dependent monooxygenase and benzenoid ring precursor biosynthetic pathways have been discovered, providing new insights into the diversity of CoQ biosynthetic pathways and the evolution of phototrophic eukaryotes. We summarize research progress on CoQ biosynthesis and regulation in plants and recent efforts to increase the CoQ content in plant foods.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Chenshan Plant Science Research Center, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| | - Mei Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Chenshan Plant Science Research Center, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Xiao-Ya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
13
|
Laugwitz L, Seibt A, Herebian D, Peralta S, Kienzle I, Buchert R, Falb R, Gauck D, Müller A, Grimmel M, Beck-Woedel S, Kern J, Daliri K, Katibeh P, Danhauser K, Leiz S, Alesi V, Baertling F, Vasco G, Steinfeld R, Wagner M, Caglayan AO, Gumus H, Burmeister M, Mayatepek E, Martinelli D, Tamhankar PM, Tamhankar V, Joset P, Steindl K, Rauch A, Bonnen PE, Froukh T, Groeschel S, Krägeloh-Mann I, Haack TB, Distelmaier F. Human COQ4 deficiency: delineating the clinical, metabolic and neuroimaging phenotypes. J Med Genet 2022; 59:878-887. [PMID: 34656997 PMCID: PMC9807242 DOI: 10.1136/jmedgenet-2021-107729] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/26/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Human coenzyme Q4 (COQ4) is essential for coenzyme Q10 (CoQ10) biosynthesis. Pathogenic variants in COQ4 cause childhood-onset neurodegeneration. We aimed to delineate the clinical spectrum and the cellular consequences of COQ4 deficiency. METHODS Clinical course and neuroradiological findings in a large cohort of paediatric patients with COQ4 deficiency were analysed. Functional studies in patient-derived cell lines were performed. RESULTS We characterised 44 individuals from 36 families with COQ4 deficiency (16 newly described). A total of 23 different variants were identified, including four novel variants in COQ4. Correlation analyses of clinical and neuroimaging findings revealed three disease patterns: type 1: early-onset phenotype with neonatal brain anomalies and epileptic encephalopathy; type 2: intermediate phenotype with distinct stroke-like lesions; and type 3: moderate phenotype with non-specific brain pathology and a stable disease course. The functional relevance of COQ4 variants was supported by in vitro studies using patient-derived fibroblast lines. Experiments revealed significantly decreased COQ4 protein levels, reduced levels of cellular CoQ10 and elevated levels of the metabolic intermediate 6-demethoxyubiquinone. CONCLUSION Our study describes the heterogeneous clinical presentation of COQ4 deficiency and identifies phenotypic subtypes. Cell-based studies support the pathogenic characteristics of COQ4 variants. Due to the insufficient clinical response to oral CoQ10 supplementation, alternative treatment strategies are warranted.
Collapse
Affiliation(s)
- Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany,Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen, Germany
| | - Annette Seibt
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Susana Peralta
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Imke Kienzle
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen, Germany
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ruth Falb
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Darja Gauck
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Amelie Müller
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Stefanie Beck-Woedel
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Jan Kern
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen, Germany
| | - Karim Daliri
- Child Developmental Center, Shiraz University of Medical Sciences, Shiraz, Iran,Institute for Neurophysiology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Pegah Katibeh
- Child Developmental Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Katharina Danhauser
- Institute of Human Genetics, Technische Universität München, Munich, Germany,Helmholtz Zentrum Muenchen, Deutsches Forschungszentrum fuer Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Steffen Leiz
- Pediatric Neurology, Department of Pediatrics, Klinikum Dritter Orden, Munich, Germany
| | - Viola Alesi
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Fabian Baertling
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gessica Vasco
- Department of Neuroscience and Neurorehabilitation, Unit of Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | | | - Matias Wagner
- Institute of Human Genetics, Technische Universität München, Munich, Germany,Helmholtz Zentrum Muenchen, Deutsches Forschungszentrum fuer Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Ahmet Okay Caglayan
- Department of Medical Genetics, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Hakan Gumus
- Department of Pediatrics, Erciyes University School of Medicine, Kayseri, Turkey
| | - Margit Burmeister
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | | | | | - Pascal Joset
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, 4056 Basel, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Penelope E Bonnen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Tawfiq Froukh
- Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman, Jordan
| | - Samuel Groeschel
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen, Germany
| | - Ingeborg Krägeloh-Mann
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany,Center for Rare Disease, University of Tübingen, Tübingen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
14
|
Pierrel F, Burgardt A, Lee JH, Pelosi L, Wendisch VF. Recent advances in the metabolic pathways and microbial production of coenzyme Q. World J Microbiol Biotechnol 2022; 38:58. [PMID: 35178585 PMCID: PMC8854274 DOI: 10.1007/s11274-022-03242-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/30/2022] [Indexed: 12/13/2022]
Abstract
Coenzyme Q (CoQ) serves as an electron carrier in aerobic respiration and has become an interesting target for biotechnological production due to its antioxidative effect and benefits in supplementation to patients with various diseases. Here, we review discovery of the pathway with a particular focus on its superstructuration and regulation, and we summarize the metabolic engineering strategies for overproduction of CoQ by microorganisms. Studies in model microorganisms elucidated the details of CoQ biosynthesis and revealed the existence of multiprotein complexes composed of several enzymes that catalyze consecutive reactions in the CoQ pathways of Saccharomyces cerevisiae and Escherichia coli. Recent findings indicate that the identity and the total number of proteins involved in CoQ biosynthesis vary between species, which raises interesting questions about the evolution of the pathway and could provide opportunities for easier engineering of CoQ production. For the biotechnological production, so far only microorganisms have been used that naturally synthesize CoQ10 or a related CoQ species. CoQ biosynthesis requires the aromatic precursor 4-hydroxybenzoic acid and the prenyl side chain that defines the CoQ species. Up to now, metabolic engineering strategies concentrated on the overproduction of the prenyl side chain as well as fine-tuning the expression of ubi genes from the ubiquinone modification pathway, resulting in high CoQ yields. With expanding knowledge about CoQ biosynthesis and exploration of new strategies for strain engineering, microbial CoQ production is expected to improve.
Collapse
Affiliation(s)
- Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France.
| | - Arthur Burgardt
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jin-Ho Lee
- Department of Food Science & Biotechnology, Kyungsung University, Busan, South Korea
| | - Ludovic Pelosi
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
15
|
Xu JJ, Zhang XF, Jiang Y, Fan H, Li JX, Li CY, Zhao Q, Yang L, Hu YH, Martin C, Chen XY. A unique flavoenzyme operates in ubiquinone biosynthesis in photosynthesis-related eukaryotes. SCIENCE ADVANCES 2021; 7:eabl3594. [PMID: 34878842 PMCID: PMC8654299 DOI: 10.1126/sciadv.abl3594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Coenzyme Q (CoQ) is an electron transporter in the mitochondrial respiratory chain, yet the biosynthetic pathway in eukaryotes remains only partially resolved. C6-hydroxylation completes the benzoquinone ring full substitution, a hallmark of CoQ. Here, we show that plants use a unique flavin-dependent monooxygenase (CoqF), instead of di-iron enzyme (Coq7) operating in animals and fungi, as a C6-hydroxylase. CoqF evolved early in eukaryotes and became widely distributed in photosynthetic and related organisms ranging from plants, algae, apicomplexans, and euglenids. Independent alternative gene losses in different groups and lateral gene transfer have ramified CoqF across the eukaryotic tree with predominance in green lineages. The exclusive presence of CoqF in Streptophyta hints at an association of the flavoenzyme with photoautotrophy in terrestrial environments. CoqF provides a phylogenetic marker distinguishing eukaryotes and represents a previously unknown target for drug design against parasitic protists.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Xiao-Fan Zhang
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Yan Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- School of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hang Fan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Jian-Xu Li
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chen-Yi Li
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yong-Hong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Cathie Martin
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xiao-Ya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
16
|
González-García P, Barriocanal-Casado E, Díaz-Casado ME, López-Herrador S, Hidalgo-Gutiérrez A, López LC. Animal Models of Coenzyme Q Deficiency: Mechanistic and Translational Learnings. Antioxidants (Basel) 2021; 10:antiox10111687. [PMID: 34829558 PMCID: PMC8614664 DOI: 10.3390/antiox10111687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022] Open
Abstract
Coenzyme Q (CoQ) is a vital lipophilic molecule that is endogenously synthesized in the mitochondria of each cell. The CoQ biosynthetic pathway is complex and not completely characterized, and it involves at least thirteen catalytic and regulatory proteins. Once it is synthesized, CoQ exerts a wide variety of mitochondrial and extramitochondrial functions thank to its redox capacity and its lipophilicity. Thus, low levels of CoQ cause diseases with heterogeneous clinical symptoms, which are not always understood. The decreased levels of CoQ may be primary caused by defects in the CoQ biosynthetic pathway or secondarily associated with other diseases. In both cases, the pathomechanisms are related to the CoQ functions, although further experimental evidence is required to establish this association. The conventional treatment for CoQ deficiencies is the high doses of oral CoQ10 supplementation, but this therapy is not effective for some specific clinical presentations, especially in those involving the nervous system. To better understand the CoQ biosynthetic pathway, the biological functions linked to CoQ and the pathomechanisms of CoQ deficiencies, and to improve the therapeutic outcomes of this syndrome, a variety of animal models have been generated and characterized in the last decade. In this review, we show all the animal models available, remarking on the most important outcomes that each model has provided. Finally, we also comment some gaps and future research directions related to CoQ metabolism and how the current and novel animal models may help in the development of future research studies.
Collapse
Affiliation(s)
- Pilar González-García
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
- Correspondence: (P.G.-G.); (L.C.L.)
| | - Eliana Barriocanal-Casado
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - María Elena Díaz-Casado
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - Sergio López-Herrador
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - Agustín Hidalgo-Gutiérrez
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - Luis C. López
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
- Correspondence: (P.G.-G.); (L.C.L.)
| |
Collapse
|
17
|
Cellular Models for Primary CoQ Deficiency Pathogenesis Study. Int J Mol Sci 2021; 22:ijms221910211. [PMID: 34638552 PMCID: PMC8508219 DOI: 10.3390/ijms221910211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Primary coenzyme Q10 (CoQ) deficiency includes a heterogeneous group of mitochondrial diseases characterized by low mitochondrial levels of CoQ due to decreased endogenous biosynthesis rate. These diseases respond to CoQ treatment mainly at the early stages of the disease. The advances in the next generation sequencing (NGS) as whole-exome sequencing (WES) and whole-genome sequencing (WGS) have increased the discoveries of mutations in either gene already described to participate in CoQ biosynthesis or new genes also involved in this pathway. However, these technologies usually provide many mutations in genes whose pathogenic effect must be validated. To functionally validate the impact of gene variations in the disease’s onset and progression, different cell models are commonly used. We review here the use of yeast strains for functional complementation of human genes, dermal skin fibroblasts from patients as an excellent tool to demonstrate the biochemical and genetic mechanisms of these diseases and the development of human-induced pluripotent stem cells (hiPSCs) and iPSC-derived organoids for the study of the pathogenesis and treatment approaches.
Collapse
|
18
|
UbiB proteins regulate cellular CoQ distribution in Saccharomyces cerevisiae. Nat Commun 2021; 12:4769. [PMID: 34362905 PMCID: PMC8346625 DOI: 10.1038/s41467-021-25084-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 07/22/2021] [Indexed: 11/08/2022] Open
Abstract
Beyond its role in mitochondrial bioenergetics, Coenzyme Q (CoQ, ubiquinone) serves as a key membrane-embedded antioxidant throughout the cell. However, how CoQ is mobilized from its site of synthesis on the inner mitochondrial membrane to other sites of action remains a longstanding mystery. Here, using a combination of Saccharomyces cerevisiae genetics, biochemical fractionation, and lipid profiling, we identify two highly conserved but poorly characterized mitochondrial proteins, Ypl109c (Cqd1) and Ylr253w (Cqd2), that reciprocally affect this process. Loss of Cqd1 skews cellular CoQ distribution away from mitochondria, resulting in markedly enhanced resistance to oxidative stress caused by exogenous polyunsaturated fatty acids, whereas loss of Cqd2 promotes the opposite effects. The activities of both proteins rely on their atypical kinase/ATPase domains, which they share with Coq8-an essential auxiliary protein for CoQ biosynthesis. Overall, our results reveal protein machinery central to CoQ trafficking in yeast and lend insights into the broader interplay between mitochondria and the rest of the cell.
Collapse
|
19
|
Träger S, Tamò G, Aydin D, Fonti G, Audagnotto M, Dal Peraro M. CLoNe: automated clustering based on local density neighborhoods for application to biomolecular structural ensembles. Bioinformatics 2021; 37:921-928. [PMID: 32821900 PMCID: PMC8128458 DOI: 10.1093/bioinformatics/btaa742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/14/2020] [Accepted: 08/18/2020] [Indexed: 11/14/2022] Open
Abstract
Motivation Proteins are intrinsically dynamic entities. Flexibility sampling methods, such as molecular dynamics or those arising from integrative modeling strategies, are now commonplace and enable the study of molecular conformational landscapes in many contexts. Resulting structural ensembles increase in size as technological and algorithmic advancements take place, making their analysis increasingly demanding. In this regard, cluster analysis remains a go-to approach for their classification. However, many state-of-the-art algorithms are restricted to specific cluster properties. Combined with tedious parameter fine-tuning, cluster analysis of protein structural ensembles suffers from the lack of a generally applicable and easy to use clustering scheme. Results We present CLoNe, an original Python-based clustering scheme that builds on the Density Peaks algorithm of Rodriguez and Laio. CLoNe relies on a probabilistic analysis of local density distributions derived from nearest neighbors to find relevant clusters regardless of cluster shape, size, distribution and amount. We show its capabilities on many toy datasets with properties otherwise dividing state-of-the-art approaches and improves on the original algorithm in key aspects. Applied to structural ensembles, CLoNe was able to extract meaningful conformations from membrane binding events and ligand-binding pocket opening as well as identify dominant dimerization motifs or inter-domain organization. CLoNe additionally saves clusters as individual trajectories for further analysis and provides scripts for automated use with molecular visualization software. Availability and implementation www.epfl.ch/labs/lbm/resources, github.com/LBM-EPFL/CLoNe. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sylvain Träger
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1025, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Giorgio Tamò
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1025, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Deniz Aydin
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1025, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Giulia Fonti
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1025, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Martina Audagnotto
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1025, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1025, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| |
Collapse
|
20
|
Villalba JM, Navas P. Regulation of coenzyme Q biosynthesis pathway in eukaryotes. Free Radic Biol Med 2021; 165:312-323. [PMID: 33549646 DOI: 10.1016/j.freeradbiomed.2021.01.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 12/21/2022]
Abstract
Coenzyme Q (CoQ, ubiquinone/ubiquinol) is a ubiquitous and unique molecule that drives electrons in mitochondrial respiratory chain and an obligatory step for multiple metabolic pathways in aerobic metabolism. Alteration of CoQ biosynthesis or its redox stage are causing mitochondrial dysfunctions as hallmark of heterogeneous disorders as mitochondrial/metabolic, cardiovascular, and age-associated diseases. Regulation of CoQ biosynthesis pathway is demonstrated to affect all steps of proteins production of this pathway, posttranslational modifications and protein-protein-lipid interactions inside mitochondria. There is a bi-directional relationship between CoQ and the epigenome in which not only the CoQ status determines the epigenetic regulation of many genes, but CoQ biosynthesis is also a target for epigenetic regulation, which adds another layer of complexity to the many pathways by which CoQ levels are regulated by environmental and developmental signals to fulfill its functions in eukaryotic aerobic metabolism.
Collapse
Affiliation(s)
- José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla, 41013, Spain.
| |
Collapse
|
21
|
Von Bank H, Hurtado-Thiele M, Oshimura N, Simcox J. Mitochondrial Lipid Signaling and Adaptive Thermogenesis. Metabolites 2021; 11:124. [PMID: 33671745 PMCID: PMC7926967 DOI: 10.3390/metabo11020124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/22/2022] Open
Abstract
Thermogenesis is an energy demanding process by which endotherms produce heat to maintain their body temperature in response to cold exposure. Mitochondria in the brown and beige adipocytes play a key role in thermogenesis, as the site for uncoupling protein 1 (UCP1), which allows for the diffusion of protons through the mitochondrial inner membrane to produce heat. To support this energy demanding process, the mitochondria in brown and beige adipocytes increase oxidation of glucose, amino acids, and lipids. This review article explores the various mitochondria-produced and processed lipids that regulate thermogenesis including cardiolipins, free fatty acids, and acylcarnitines. These lipids play a number of roles in thermogenic adipose tissue including structural support of UCP1, transcriptional regulation, fuel source, and activation of cell signaling cascades.
Collapse
Affiliation(s)
| | | | | | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (H.V.B.); (M.H.-T.); (N.O.)
| |
Collapse
|
22
|
Human Mitochondrial Pathologies of the Respiratory Chain and ATP Synthase: Contributions from Studies of Saccharomyces cerevisiae. Life (Basel) 2020; 10:life10110304. [PMID: 33238568 PMCID: PMC7700678 DOI: 10.3390/life10110304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
The ease with which the unicellular yeast Saccharomyces cerevisiae can be manipulated genetically and biochemically has established this organism as a good model for the study of human mitochondrial diseases. The combined use of biochemical and molecular genetic tools has been instrumental in elucidating the functions of numerous yeast nuclear gene products with human homologs that affect a large number of metabolic and biological processes, including those housed in mitochondria. These include structural and catalytic subunits of enzymes and protein factors that impinge on the biogenesis of the respiratory chain. This article will review what is currently known about the genetics and clinical phenotypes of mitochondrial diseases of the respiratory chain and ATP synthase, with special emphasis on the contribution of information gained from pet mutants with mutations in nuclear genes that impair mitochondrial respiration. Our intent is to provide the yeast mitochondrial specialist with basic knowledge of human mitochondrial pathologies and the human specialist with information on how genes that directly and indirectly affect respiration were identified and characterized in yeast.
Collapse
|
23
|
Prunotto A, Bahr G, González LJ, Vila AJ, Dal Peraro M. Molecular Bases of the Membrane Association Mechanism Potentiating Antibiotic Resistance by New Delhi Metallo-β-lactamase 1. ACS Infect Dis 2020; 6:2719-2731. [PMID: 32865963 DOI: 10.1021/acsinfecdis.0c00341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Resistance to last-resort carbapenem antibiotics is an increasing threat to human health, as it critically limits therapeutic options. Metallo-β-lactamases (MBLs) are the largest family of carbapenemases, enzymes that inactivate these drugs. Among MBLs, New Delhi metallo-β-lactamase 1 (NDM-1) has experienced the fastest and largest worldwide dissemination. This success has been attributed to the fact that NDM-1 is a lipidated protein anchored to the outer membrane of bacteria, while all other MBLs are soluble periplasmic enzymes. By means of a combined experimental and computational approach, we show that NDM-1 interacts with the surface of bacterial membranes in a stable, defined conformation, in which the active site is not occluded by the bilayer. Although the lipidation is required for a long-lasting interaction, the globular domain of NDM-1 is tuned to interact specifically with the outer bacterial membrane. In contrast, this affinity is not observed for VIM-2, a natively soluble MBL. Finally, we identify key residues involved in the membrane interaction with NDM-1, which constitute potential targets for developing therapeutic strategies able to combat resistance granted by this enzyme.
Collapse
Affiliation(s)
- Alessio Prunotto
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Characterization of human mitochondrial PDSS and COQ proteins and their roles in maintaining coenzyme Q10 levels and each other's stability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148192. [DOI: 10.1016/j.bbabio.2020.148192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/22/2022]
|
25
|
Sung AY, Floyd BJ, Pagliarini DJ. Systems Biochemistry Approaches to Defining Mitochondrial Protein Function. Cell Metab 2020; 31:669-678. [PMID: 32268114 PMCID: PMC7176052 DOI: 10.1016/j.cmet.2020.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023]
Abstract
Defining functions for the full complement of proteins is a grand challenge in the post-genomic era and is essential for our understanding of basic biology and disease pathogenesis. In recent times, this endeavor has benefitted from a combination of modern large-scale and classical reductionist approaches-a process we refer to as "systems biochemistry"-that helps surmount traditional barriers to the characterization of poorly understood proteins. This strategy is proving to be particularly effective for mitochondria, whose well-defined proteome has enabled comprehensive analyses of the full mitochondrial system that can position understudied proteins for fruitful mechanistic investigations. Recent systems biochemistry approaches have accelerated the identification of new disease-related mitochondrial proteins and of long-sought "missing" proteins that fulfill key functions. Collectively, these studies are moving us toward a more complete understanding of mitochondrial activities and providing a molecular framework for the investigation of mitochondrial pathogenesis.
Collapse
Affiliation(s)
- Andrew Y Sung
- Morgridge Institute for Research, Madison, WI, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA; School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Brendan J Floyd
- Morgridge Institute for Research, Madison, WI, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA; Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA
| | - David J Pagliarini
- Morgridge Institute for Research, Madison, WI, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
26
|
Wang Y, Hekimi S. The Complexity of Making Ubiquinone. Trends Endocrinol Metab 2019; 30:929-943. [PMID: 31601461 DOI: 10.1016/j.tem.2019.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Ubiquinone (UQ, coenzyme Q) is an essential electron transfer lipid in the mitochondrial respiratory chain. It is a main source of mitochondrial reactive oxygen species (ROS) but also has antioxidant properties. This mix of characteristics is why ubiquinone supplementation is considered a potential therapy for many diseases involving mitochondrial dysfunction. Mutations in the ubiquinone biosynthetic pathway are increasingly being identified in patients. Furthermore, secondary ubiquinone deficiency is a common finding associated with mitochondrial disorders and might exacerbate these conditions. Recent developments have suggested that ubiquinone biosynthesis occurs in discrete domains of the mitochondrial inner membrane close to ER-mitochondria contact sites. This spatial requirement for ubiquinone biosynthesis could be the link between secondary ubiquinone deficiency and mitochondrial dysfunction, which commonly results in loss of mitochondrial structural integrity.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Canada
| | | |
Collapse
|
27
|
Díaz-Casado ME, Quiles JL, Barriocanal-Casado E, González-García P, Battino M, López LC, Varela-López A. The Paradox of Coenzyme Q 10 in Aging. Nutrients 2019; 11:nu11092221. [PMID: 31540029 PMCID: PMC6770889 DOI: 10.3390/nu11092221] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/14/2022] Open
Abstract
Coenzyme Q (CoQ) is an essential endogenously synthesized molecule that links different metabolic pathways to mitochondrial energy production thanks to its location in the mitochondrial inner membrane and its redox capacity, which also provide it with the capability to work as an antioxidant. Although defects in CoQ biosynthesis in human and mouse models cause CoQ deficiency syndrome, some animals models with particular defects in the CoQ biosynthetic pathway have shown an increase in life span, a fact that has been attributed to the concept of mitohormesis. Paradoxically, CoQ levels decline in some tissues in human and rodents during aging and coenzyme Q10 (CoQ10) supplementation has shown benefits as an anti-aging agent, especially under certain conditions associated with increased oxidative stress. Also, CoQ10 has shown therapeutic benefits in aging-related disorders, particularly in cardiovascular and metabolic diseases. Thus, we discuss the paradox of health benefits due to a defect in the CoQ biosynthetic pathway or exogenous supplementation of CoQ10.
Collapse
Affiliation(s)
- M Elena Díaz-Casado
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
| | - Eliana Barriocanal-Casado
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - Pilar González-García
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - Maurizio Battino
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131 Ancona, Italy.
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Luis C López
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - Alfonso Varela-López
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
| |
Collapse
|
28
|
Ugalde CL, Lawson VA, Finkelstein DI, Hill AF. The role of lipids in α-synuclein misfolding and neurotoxicity. J Biol Chem 2019; 294:9016-9028. [PMID: 31064841 DOI: 10.1074/jbc.rev119.007500] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The misfolding and aggregation of α-synuclein (αsyn) in the central nervous system is associated with a group of neurodegenerative disorders referred to as the synucleinopathies. In addition to being a pathological hallmark of disease, it is now well-established that upon misfolding, αsyn acquires pathogenic properties, such as neurotoxicity, that can contribute to disease development. The mechanisms that produce αsyn misfolding and the molecular events underlying the neuronal damage caused by these misfolded species are not well-defined. A consistent observation that may be relevant to αsyn's pathogenicity is its ability to associate with lipids. This appears important not only to how αsyn aggregates, but also to the mechanism by which the misfolded protein causes intracellular damage. This review discusses the current literature reporting a role of lipids in αsyn misfolding and neurotoxicity in various synucleinopathy disorders and provides an overview of current methods to assess protein misfolding and pathogenicity both in vitro and in vivo.
Collapse
Affiliation(s)
- Cathryn L Ugalde
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia, .,the Departments of Microbiology and Immunology and.,the Howard Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia, and
| | | | - David I Finkelstein
- the Howard Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
| | - Andrew F Hill
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia, .,Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia, and
| |
Collapse
|
29
|
Kwong AK, Chiu AT, Tsang MH, Lun K, Rodenburg RJT, Smeitink J, Chung BH, Fung C. A fatal case of COQ7-associated primary coenzyme Q 10 deficiency. JIMD Rep 2019; 47:23-29. [PMID: 31240163 PMCID: PMC6498831 DOI: 10.1002/jmd2.12032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/22/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Primary coenzyme Q10 (CoQ10) deficiencies are clinically and genetically heterogeneous group of disorders associated with defects of genes involved in the CoQ10 biosynthesis pathway. COQ7-associated CoQ10 deficiency is very rare and only two cases have been reported. METHODS AND RESULTS We report a patient with encephalo-myo-nephro-cardiopathy, persistent lactic acidosis, and basal ganglia lesions resulting in early infantile death. Using whole exome sequencing, we identified compound heterozygous variants in the COQ7 gene consisting of a deletion insertion resulting in frameshift [c.599_600delinsTAATGCATC, p.(Lys200Ilefs*56)] and a missense substitution [c.319C>T, p.(Arg107Trp), NM_016138.4]. Skin fibroblast studies showed decreased combined complex II + III activity and reduction in CoQ10 level. CONCLUSION This third patient presenting with lethal encephalo-myo-nephro-cardiopathy represents the severe end of this ultra-rare mitochondrial disease caused by biallelic COQ7 mutations. The response to CoQ10 supplement is poor and alternative treatment strategies should be developed for a more effective management of this disorder.
Collapse
Affiliation(s)
- Anna K.‐Y. Kwong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of MedicineQueen Mary Hospital, The University of Hong KongHong Kong SARChina
| | - Annie T.‐G. Chiu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of MedicineQueen Mary Hospital, The University of Hong KongHong Kong SARChina
| | - Mandy H.‐Y. Tsang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of MedicineQueen Mary Hospital, The University of Hong KongHong Kong SARChina
| | - Kin‐Shing Lun
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of MedicineQueen Mary Hospital, The University of Hong KongHong Kong SARChina
| | - Richard J. T. Rodenburg
- Radboud Centre for Mitochondrial Medicine, Department of Paediatrics, Radboud Institute for Molecular Life SciencesRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
| | - Jan Smeitink
- Radboud Centre for Mitochondrial Medicine, Department of Paediatrics, Radboud Institute for Molecular Life SciencesRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
| | - Brian H.‐Y. Chung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of MedicineQueen Mary Hospital, The University of Hong KongHong Kong SARChina
| | - Cheuk‐Wing Fung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of MedicineQueen Mary Hospital, The University of Hong KongHong Kong SARChina
| |
Collapse
|
30
|
Abstract
Ubiquinone (UQ) is a conserved polyprenylated lipid essential to cellular respiration. Two papers, one in this issue of Cell Chemical Biology (Hajj Chehade et al., 2019) and another in Molecular Cell (Lohman et al., 2019), identify lipid-binding proteins that play crucial roles in chaperoning UQ-intermediates.
Collapse
Affiliation(s)
- Hui S Tsui
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
31
|
Subramanian K, Jochem A, Le Vasseur M, Lewis S, Paulson BR, Reddy TR, Russell JD, Coon JJ, Pagliarini DJ, Nunnari J. Coenzyme Q biosynthetic proteins assemble in a substrate-dependent manner into domains at ER-mitochondria contacts. J Cell Biol 2019; 218:1353-1369. [PMID: 30674579 PMCID: PMC6446851 DOI: 10.1083/jcb.201808044] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/05/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022] Open
Abstract
Coenzyme Q (CoQ) lipids are ancient electron carriers that, in eukaryotes, function in the mitochondrial respiratory chain. In mitochondria, CoQ lipids are built by an inner membrane-associated, multicomponent, biosynthetic pathway via successive steps of isoprenyl tail polymerization, 4-hydroxybenzoate head-to-tail attachment, and head modification, resulting in the production of CoQ. In yeast, we discovered that head-modifying CoQ pathway components selectively colocalize to multiple resolvable domains in vivo, representing supramolecular assemblies. In cells engineered with conditional ON or OFF CoQ pathways, domains were strictly correlated with CoQ production and substrate flux, respectively, indicating that CoQ lipid intermediates are required for domain formation. Mitochondrial CoQ domains were also observed in human cells, underscoring their conserved functional importance. CoQ domains within cells were highly enriched adjacent to ER-mitochondria contact sites. Together, our data suggest that CoQ domains function to facilitate substrate accessibility for processive and efficient CoQ production and distribution in cells.
Collapse
Affiliation(s)
- Kelly Subramanian
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| | - Adam Jochem
- Morgridge Institute for Research, Madison, WI
| | - Maxence Le Vasseur
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| | - Samantha Lewis
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| | | | | | - Jason D Russell
- Morgridge Institute for Research, Madison, WI
- Genome Center of Wisconsin, Madison, WI
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI
- Genome Center of Wisconsin, Madison, WI
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| | - David J Pagliarini
- Morgridge Institute for Research, Madison, WI
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
| | - Jodi Nunnari
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| |
Collapse
|