1
|
Hao R, Li F, Sun-Waterhouse D, Li D. The roles of MicroRNAs in cadmium toxicity and in the protection offered by plant food-derived dietary phenolic bioactive substances against cadmium-induced toxicity. Food Chem 2024; 460:140483. [PMID: 39032304 DOI: 10.1016/j.foodchem.2024.140483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Cadmium, a harmful food contaminant, poses severe health risks. There are ongoing efforts to reduce cadmium pollution and alleviate its toxicity, including plant-based dietary intervention. This review hypothesizes that microRNAs (miRNAs), as regulatory eukaryotic transcripts, play crucial roles in modulating cadmium-induced organ damage, and plant food-derived bioactive compounds provide protective effects via miRNA-mediated mechanisms. The review reveals that there are interplays between certain miRNAs and plant food-derived dietary bioactive substances when these bioactives, especially phenolics, counteract cadmium toxicity through regulating physiologic and pathologic events (including oxidative stress, apoptosis, autophagy and inflammation). The review discusses common miRNA-associated physiologic/pathologic events and signal pathways shared by the cadmium toxicity and dietary intervention processes. This paper identifies the existing knowledge gaps and potential future work (e.g. joint actions between miRNAs and other noncoding RNAs in the fights against cadmium). The insights provided by this review can improve food safety strategies and public health outcomes.
Collapse
Affiliation(s)
- Rili Hao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China.
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China.
| |
Collapse
|
2
|
Chen X, Yuan Y, Zhou F, Li L, Pu J, Jiang X. RNA modification in normal hematopoiesis and hematologic malignancies. MedComm (Beijing) 2024; 5:e787. [PMID: 39445003 PMCID: PMC11496571 DOI: 10.1002/mco2.787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotic cells. Previous studies have shown that m6A plays a critical role under both normal physiological and pathological conditions. Hematopoiesis and differentiation are highly regulated processes, and recent studies on m6A mRNA methylation have revealed how this modification controls cell fate in both normal and malignant hematopoietic states. However, despite these insights, a comprehensive understanding of its complex roles between normal hematopoietic development and malignant hematopoietic diseases remains elusive. This review first provides an overview of the components and biological functions of m6A modification regulators. Additionally, it highlights the origin, differentiation process, biological characteristics, and regulatory mechanisms of hematopoietic stem cells, as well as the features, immune properties, and self-renewal pathways of leukemia stem cells. Last, the article systematically reviews the latest research advancements on the roles and mechanisms of m6A regulatory factors in normal hematopoiesis and related malignant diseases. More importantly, this review explores how targeting m6A regulators and various signaling pathways could effectively intervene in the development of leukemia, providing new insights and potential therapeutic targets. Targeting m6A modification may hold promise for achieving more precise and effective leukemia treatments.
Collapse
Affiliation(s)
- Xi Chen
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Yixiao Yuan
- Department of MedicineUF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
- Department of Medicine and Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Fan Zhou
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Jun Pu
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Xiulin Jiang
- Department of MedicineUF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
- Department of Medicine and Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
3
|
Long D, Deng Z, Zhao X, Xu Y, Li W, Mo X, Zhong Y, Li M, He A, Zhang Z, Kang Y, Mao G. m 7G-modified mt-tRF3b-LeuTAA regulates mitophagy and metabolic reprogramming via SUMOylation of SIRT3 in chondrocytes. Biomaterials 2024; 314:122903. [PMID: 39454503 DOI: 10.1016/j.biomaterials.2024.122903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/10/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
N7-methylguanosine (m7G) modification is one of the most prevalent RNA modifications, and methyltransferase-like protein-1 (METTL1) is a key component of the m7G methyltransferase complex. METTL1-catalyzed m7G as a new RNA modification pathway that regulates RNA structure, biogenesis, and cell migration. Increasing evidence indicates that m7G modification has been implicated in the pathophysiological process of osteoarthritis (OA). However, the underlying molecular mechanisms of m7G modification remains incompletely elucidated during the progression of OA. Here we found that METTL1 and m7G levels were markedly increased in OA chondrocytes. In addition, METTL1-mediated m7G modification upregulated mt-tRF3b-LeuTAA expression to exacerbate chondrocyte degeneration. Mechanistically, mt-tRF3b-LeuTAA decreased the SUMO-specific protease 1 (SENP1) protein expression and upregulated the level of sirtuin 3 (SIRT3) SUMOylation to inhibit PTEN induced kinase 1 (PINK1)/Parkin-mediated mitochondrial mitophagy. Intra-articular injection of PMC-tRF3b-LeuTAA inhibitor (Polyamidoamine-polyethylene glycol surface-modified with Minimal self-peptides and Chondrocyte-affinity peptides, PMC) attenuated destabilization of the medial meniscus (DMM) mouse cartilage degeneration in vivo. Our study demonstrates that METTL1/m7G/mt-tRF3b-LeuTAA axis accelerate cartilage degradation by inhibiting mitophagy and promoting mitochondrial dysfunction through SIRT3 SUMOylation, and suggest that targeting METTL1 and its downstream signaling axis could be a promising therapeutic target for OA treatment.
Collapse
Affiliation(s)
- Dianbo Long
- Department of Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zengfa Deng
- Department of Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaoyi Zhao
- Department of Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yiyang Xu
- Department of Orthopaedics, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian Province, 350001, China
| | - Wei Li
- Department of Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaolin Mo
- Department of Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yanlin Zhong
- Department of Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ming Li
- Department of Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Aishan He
- Department of Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Ziji Zhang
- Department of Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Yan Kang
- Department of Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Guping Mao
- Department of Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
4
|
Tang L, Tian H, Min Q, You H, Yin M, Yang L, Zhao Y, Wu X, Li M, Du F, Chen Y, Deng S, Li X, Chen M, Gu L, Sun Y, Xiao Z, Li W, Shen J. Decoding the epitranscriptome: a new frontier for cancer therapy and drug resistance. Cell Commun Signal 2024; 22:513. [PMID: 39434167 PMCID: PMC11492518 DOI: 10.1186/s12964-024-01854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
As the role of RNA modification in gene expression regulation and human diseases, the "epitranscriptome" has been shown to be an important player in regulating many physiological and pathological processes. Meanwhile, the phenomenon of cancer drug resistance is becoming more and more frequent, especially in the case of cancer chemotherapy resistance. In recent years, research on relationship between post-transcriptional modification and cancer including drug resistance has become a hot topic, especially the methylation of the sixth nitrogen site of RNA adenosine-m6A (N6-methyladenosine). m6A modification is the most common post-transcriptional modification of eukaryotic mRNA, accounting for 80% of RNA methylation modifications. At the same time, several other modifications of RNA, such as N1-methyladenosine (m1A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), pseudouridine (Ψ) and N7-methylguanosine (m7G) have also been demonstrated to be involved in cancer and drug resistance. This review mainly discusses the research progress of RNA modifications in the field of cancer and drug resistance and targeting of m6A regulators by small molecule modulators, providing reference for future study and development of combination therapy to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Lu Tang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Scientific Research and Experimental Training Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Hua Tian
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, 401520, China
| | - Qi Min
- Department of Pharmacy, Mianyang Hospital of TCM, Sichuan Mianyang, 621000, China
| | - Huili You
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mengshuang Yin
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Liqiong Yang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yueshui Zhao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xu Wu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mingxing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Fukuan Du
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yu Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Shuai Deng
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xiaobing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Meijuan Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Li Gu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yuhong Sun
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhangang Xiao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Wanping Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Jing Shen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
5
|
Khadgi B, Nam Y. Effects of METTL3-METTL14 on primary microRNA processing by Drosha-DGCR8. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618347. [PMID: 39464105 PMCID: PMC11507685 DOI: 10.1101/2024.10.15.618347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
MicroRNAs modulate most protein-coding genes, and many are regulated during maturation. Chemical modifications of primary transcripts containing microRNAs have been implicated in altering Microprocessor processing efficiency, a key initiating endonucleolytic step performed by Drosha and DGCR8. METTL3-METTL14 produces N 6 -methyladenosine which is the most common methylation for mRNAs. Genetic experiments suggested that METTL3-METTL14 promotes primary microRNA processing by Microprocessor, but the molecular mechanism still needs to be elucidated. We tested the hypothesis that METTL3-METTL14 or m 6 A may directly impact Drosha or DGCR8 function during primary microRNA processing. After reconstituting the methyltransferase and processing activities, we show that the presence of METTL3-METTL14 complexes does not affect the processing efficiency of Drosha-DGCR8. We also established a method to prepare m 6 A-modified primary microRNAs and used them to show that the processing of the transcripts with m 6 A is similar to those without any modification. Recombinant METTL3-METTL14 and DGCR8 do not form stable complexes, challenging the previous model that depends on enhanced DGCR8 recruitment. Therefore, METTL3-METTL14 or m 6 A modification does not generally promote Microprocessor-mediated microRNA processing, although they may impact certain cases.
Collapse
|
6
|
Zhu Z, Xie Y, Yin M, Peng L, Zhu H. A novel m7G-related miRNA prognostic signature for predicting clinical outcome and immune microenvironment in colon cancer. J Cancer 2024; 15:6086-6102. [PMID: 39440054 PMCID: PMC11493006 DOI: 10.7150/jca.99173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Background: Colon cancer (CC) is a highly prevalent malignancy worldwide, characterized by elevated mortality rates and poor prognosis. N7-methylguanosine (m7G) methylation is an emerging RNA modification type and involved in the development of many tumors. Despite this, the correlation between m7G-related miRNAs and CC remains to be elucidated. This research aimed to investigate the clinical significance of m7G-related miRNAs in predicting both the prognosis and tumor microenvironment (TME) of CC. Method: We retrieved transcriptome data and associated clinical information from a publicly accessible database. Using univariate Cox and LASSO regression analyses, we established a signature of m7G-related miRNAs. Additionally, we used CIBERSORT and ssGSEA algorithms to explore the association between the prognostic risk score and the TME in CC patients. By considering the risk signature and immune infiltration, we identified differentially expressed genes that contribute to the prognosis of CC. Finally, the expression patterns of prognostic miRNAs were verified using quantitative reverse transcriptase PCR (qRT-PCR) in cell lines. Results: We constructed a prognostic risk signature based on seven m7G-related miRNAs (miR-136-5p, miR-6887-3p, miR-195-5p, miR-149-3p, miR-4433a-5p, miR-31-5p, and miR-129-2-3p). Subsequently, we observed remarkable differences in patient outcomes between the high- and low-risk groups. The area under the curve (AUC) for 1-, 3-, and 5-year survivals in the ROC curve were 0.735, 0.707, and 0.632, respectively. Furthermore, our results showed that the risk score can serve as an independent prognostic biomarker for overall survival prediction. In terms of immune analysis, the results revealed a significant association between the risk signature and immune infiltration, as well as immune checkpoint expression. Finally, our study showed that CCDC160 and RLN3 is the gene most relevant to immune cells and function in CC. Conclusion: Our study conducted a comprehensive and systematic analysis of m7G-associated miRNAs to construct prognostic profiles of CC. We developed a prognostic risk model based on m7G-miRNAs, with the resulting risk scores demonstrating considerable potential as prognostic biomarkers. These findings provide substantial evidence for the critical role of m7G-related miRNAs in colon cancer and may offer new immunotherapeutic targets for patients with this disease.
Collapse
Affiliation(s)
| | | | | | - Lei Peng
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Jiang H, Liu G, Gao Y, Gan J, Chen D, Murchie AIH. Cofactor binding triggers rapid conformational remodelling of the active site of a methyltransferase ribozyme. J Biol Chem 2024; 300:107863. [PMID: 39374779 DOI: 10.1016/j.jbc.2024.107863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The methyltransferase ribozyme SMRZ-1 utilizes S-adenosyl-methionine (SAM) and Cu (II) ions to methylate RNA. A comparison of the SAM-bound and unbound RNA structures has shown a conformational change in the RNA. However, the contribution of specific interactions and the role of a pseudo-triplex motif in the catalytic center on the methylation reaction is not completely understood. In this study, we have used atomic substitutions and mutational analysis to investigate the reaction specificity and the key interactions required for catalysis. Substitution of the fluorescent nucleotide 2-aminopurine within the active ribozyme enabled the conformational dynamics of the RNA upon co-factor binding to be explored using fluorescence spectroscopy. We show that fast co-factor binding (t1/2 ∼ 0.7 s) drives a conformational change in the RNA to facilitate methyl group transfer. The importance of stacking interactions at the pseudo-triplex motif and chelation of the Cu (II) ion were shown to be essential for SAM binding.
Collapse
Affiliation(s)
- Hengyi Jiang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Getong Liu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanqing Gao
- Department of Physiology and Biophysics, Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianhua Gan
- Department of Physiology and Biophysics, Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Dongrong Chen
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Alastair I H Murchie
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Yang W, Zhao Y, Yang Y. Dynamic RNA methylation modifications and their regulatory role in mammalian development and diseases. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2084-2104. [PMID: 38833084 DOI: 10.1007/s11427-023-2526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/15/2023] [Indexed: 06/06/2024]
Abstract
Among over 170 different types of chemical modifications on RNA nucleobases identified so far, RNA methylation is the major type of epitranscriptomic modifications existing on almost all types of RNAs, and has been demonstrated to participate in the entire process of RNA metabolism, including transcription, pre-mRNA alternative splicing and maturation, mRNA nucleus export, mRNA degradation and stabilization, mRNA translation. Attributing to the development of high-throughput detection technologies and the identification of both dynamic regulators and recognition proteins, mechanisms of RNA methylation modification in regulating the normal development of the organism as well as various disease occurrence and developmental abnormalities upon RNA methylation dysregulation have become increasingly clear. Here, we particularly focus on three types of RNA methylations: N6-methylcytosine (m6A), 5-methylcytosine (m5C), and N7-methyladenosine (m7G). We summarize the elements related to their dynamic installment and removal, specific binding proteins, and the development of high-throughput detection technologies. Then, for a comprehensive understanding of their biological significance, we also overview the latest knowledge on the underlying mechanisms and key roles of these three mRNA methylation modifications in gametogenesis, embryonic development, immune system development, as well as disease and tumor progression.
Collapse
Affiliation(s)
- Wenlan Yang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Yongliang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Yungui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
9
|
Mangiapane G, D'Agostino VG, Tell G. Emerging roles of bases modifications and DNA repair proteins in onco-miRNA processing: novel insights in cancer biology. Cancer Gene Ther 2024:10.1038/s41417-024-00836-x. [PMID: 39322751 DOI: 10.1038/s41417-024-00836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Onco-microRNAs (onco-miRNAs) are essential players in the post-transcriptional regulation of gene expression and exert a crucial role in tumorigenesis. Novel information about the epitranscriptomic modifications, involved in onco-miRNAs biogenesis, and in the modulation of their interplay with regulatory factors responsible for their processing and sorting are emerging. In this review, we highlight the contribution of bases modifications, sequence motifs, and secondary structures on miRNAs processing and sorting. We focus on several modes of action of RNA binding proteins (RBPs) on these processes. Moreover, we describe the new emerging scenario that shows an unexpected though essential role of selected DNA repair proteins in actively participating in these events, highlighting the original intervention represented by the non-canonical functions of Apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1), a central player in Base Excision Repair (BER) pathway of DNA lesions. Taking advantage of this new knowledge will help in prospecting new cancer diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Vito Giuseppe D'Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DMED), University of Udine, Udine, Italy.
| |
Collapse
|
10
|
Kaneko S, Miyoshi K, Tomuro K, Terauchi M, Tanaka R, Kondo S, Tani N, Ishiguro KI, Toyoda A, Kamikouchi A, Noguchi H, Iwasaki S, Saito K. Mettl1-dependent m 7G tRNA modification is essential for maintaining spermatogenesis and fertility in Drosophila melanogaster. Nat Commun 2024; 15:8147. [PMID: 39317727 PMCID: PMC11422498 DOI: 10.1038/s41467-024-52389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Modification of guanosine to N7-methylguanosine (m7G) in the variable loop region of tRNA is catalyzed by the METTL1/WDR4 heterodimer and stabilizes target tRNA. Here, we reveal essential functions of Mettl1 in Drosophila fertility. Knockout of Mettl1 (Mettl1-KO) causes no major effect on the development of non-gonadal tissues, but abolishes the production of elongated spermatids and mature sperm, which is fully rescued by expression of a Mettl1-transgene, but not a catalytic-dead Mettl1 transgene. This demonstrates that Mettl1-dependent m7G is required for spermatogenesis. Mettl1-KO results in a loss of m7G modification on a subset of tRNAs and decreased tRNA abundance. Ribosome profiling shows that Mettl1-KO led to ribosomes stalling at codons decoded by tRNAs that were reduced in abundance. Mettl1-KO also significantly reduces the translation efficiency of genes involved in elongated spermatid formation and sperm stability. Germ cell-specific expression of Mettl1 rescues disrupted m7G tRNA modification and tRNA abundance in Mettl1-KO testes but not in non-gonadal tissues. Ribosome stalling is much less detectable in non-gonadal tissues than in Mettl1-KO testes. These findings reveal a developmental role for m7G tRNA modification and indicate that m7G modification-dependent tRNA abundance differs among tissues.
Collapse
Affiliation(s)
- Shunya Kaneko
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan
| | - Keita Miyoshi
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan
| | - Kotaro Tomuro
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Makoto Terauchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
| | - Ryoya Tanaka
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Naoki Tani
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kuniaki Saito
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan.
| |
Collapse
|
11
|
Zhao Q, Li X, Wu J, Zhang R, Chen S, Cai D, Xu H, Peng W, Li G, Nan A. TRMT10C-mediated m7G modification of circFAM126A inhibits lung cancer growth by regulating cellular glycolysis. Cell Biol Toxicol 2024; 40:78. [PMID: 39289194 PMCID: PMC11408563 DOI: 10.1007/s10565-024-09918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
The N7-methylguanosine (m7G) modification and circular RNAs (circRNAs) have been shown to play important roles in the development of lung cancer. However, the m7G modification of circRNAs has not been fully elucidated. This study revealed the presence of the m7G modification in circFAM126A. We propose the novel hypothesis that the methyltransferase TRMT10C mediates the m7G modification of circFAM126A and that the stability of m7G-modified circFAM126A is reduced. circFAM126A is downregulated in lung cancer and significantly inhibits lung cancer growth both in vitro and in vivo. The expression of circFAM126A correlates with the stage of lung cancer and with the tumour diameter, and circFAM126A can be used as a potential molecular target for lung cancer. The molecular mechanism by which circFAM126A increases HSP90 ubiquitination and suppresses AKT1 expression to regulate cellular glycolysis, ultimately inhibiting the progression of lung cancer, is elucidated. This study not only broadens the knowledge regarding the expression and regulatory mode of circRNAs but also provides new insights into the molecular mechanisms that regulate tumour cell metabolism and affect tumour cell fate from an epigenetic perspective. These findings will facilitate the development of new strategies for lung cancer prevention and treatment.
Collapse
Affiliation(s)
- Qingyun Zhao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Xiaofei Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Jiaxi Wu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Ruirui Zhang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Sixian Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Dunyu Cai
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Haotian Xu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Wenyi Peng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Gang Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| | - Aruo Nan
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
12
|
Zhang H, Sun F, Jiang S, Yang F, Dong X, Liu G, Wang M, Li Y, Su M, Wen Z, Yu C, Fan C, Li X, Zhang Z, Yang L, Li B. METTL protein family: focusing on the occurrence, progression and treatment of cancer. Biomark Res 2024; 12:105. [PMID: 39289775 PMCID: PMC11409517 DOI: 10.1186/s40364-024-00652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
Methyltransferase-like protein is a ubiquitous enzyme-like protein in the human body, with binding domains for nucleic acids, proteins and other small molecules, and plays an important role in a variety of biological behaviours in normal organisms and diseases, characterised by the presence of a methyltransferase-like structural domain and a structurally conserved SAM-binding domain formed by the seven-stranded β-fold structure in the center of the protein. With the deepening of research, the METTL protein family has been found to be abnormally expressed in a variety of tumor diseases, and the clarification of its relationship with tumor diseases can be used as a molecular therapeutic target and has an important role in the prognosis of tumors. In this paper, we review the structure, biological process, immunotherapy, drug-targeted therapy, and markers of the METTL protein family to provide new ideas for the diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Fulin Sun
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Shuyao Jiang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Guoxiang Liu
- Department of Clinical Laboratory, Weifang People's Hospital, 151, Guangwen Streer, Weifang, 261041, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mohan Su
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ziyuan Wen
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunjuan Yu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chenkai Fan
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Lina Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
13
|
Li Q, Jiang S, Lei K, Han H, Chen Y, Lin W, Xiong Q, Qi X, Gan X, Sheng R, Wang Y, Zhang Y, Ma J, Li T, Lin S, Zhou C, Chen D, Yuan Q. Metabolic rewiring during bone development underlies tRNA m7G-associated primordial dwarfism. J Clin Invest 2024; 134:e177220. [PMID: 39255038 PMCID: PMC11473147 DOI: 10.1172/jci177220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
Translation of mRNA to protein is tightly regulated by transfer RNAs (tRNAs), which are subject to various chemical modifications that maintain structure, stability, and function. Deficiency of tRNA N7-methylguanosine (m7G) modification in patients causes a type of primordial dwarfism, but the underlying mechanism remains unknown. Here we report that the loss of m7G rewires cellular metabolism, leading to the pathogenesis of primordial dwarfism. Conditional deletion of the catalytic enzyme Mettl1 or missense mutation of the scaffold protein Wdr4 severely impaired endochondral bone formation and bone mass accrual. Mechanistically, Mettl1 knockout decreased abundance of m7G-modified tRNAs and inhibited translation of mRNAs relating to cytoskeleton and Rho GTPase signaling. Meanwhile, Mettl1 knockout enhanced cellular energy metabolism despite incompetent proliferation and osteogenic commitment. Further exploration revealed that impairment of Rho GTPase signaling upregulated the level of branched-chain amino acid transaminase 1 (BCAT1) that rewired cell metabolism and restricted intracellular α-ketoglutarate (αKG). Supplementation of αKG ameliorated the skeletal defect of Mettl1-deficient mice. In addition to the selective translation of metabolism-related mRNAs, we further revealed that Mettl1 knockout globally regulated translation via integrated stress response (ISR) and mammalian target of rapamycin complex 1 (mTORC1) signaling. Restoring translation by targeting either ISR or mTORC1 aggravated bone defects of Mettl1-deficient mice. Overall, our study unveils a critical role of m7G tRNA modification in bone development by regulation of cellular metabolism and indicates suspension of translation initiation as a quality control mechanism in response to tRNA dysregulation.
Collapse
Affiliation(s)
- Qiwen Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kexin Lei
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Han
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaqian Chen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiuchan Xiong
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingying Qi
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyan Gan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Sheng
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yarong Zhang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jieyi Ma
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Li
- West China–Washington Mitochondria and Metabolism Center and Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuibin Lin
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demeng Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Xu Q, Yang C, Wang L, Zhou J. Unveiling the role of RNA methylation in glioma: Mechanisms, prognostic biomarkers, and therapeutic targets. Cell Signal 2024; 124:111380. [PMID: 39236835 DOI: 10.1016/j.cellsig.2024.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Gliomas, the most prevalent malignant brain tumors in the central nervous system, are marked by rapid growth, high recurrence rates, and poor prognosis. Glioblastoma (GBM) stands out as the most aggressive subtype, characterized by significant heterogeneity. The etiology of gliomas remains elusive. RNA modifications, particularly reversible methylation, play a crucial role in regulating transcription and translation throughout the RNA lifecycle. Increasing evidence highlights the prevalence of RNA methylation in primary central nervous system malignancies, underscoring its pivotal role in glioma pathogenesis. This review focuses on recent findings regarding changes in RNA methylation expression and their effects on glioma development and progression, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G). Given the extensive roles of RNA methylation in gliomas, the potential of RNA methylation-related regulators as prognostic markers and therapeutic targets was also explored, aiming to enhance clinical management and improve patient outcomes.
Collapse
Affiliation(s)
- Qichen Xu
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Chunsong Yang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Liyun Wang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Jing Zhou
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China.
| |
Collapse
|
15
|
Kim SY, Na MJ, Yoon S, Shin E, Ha JW, Jeon S, Nam SW. The roles and mechanisms of coding and noncoding RNA variations in cancer. Exp Mol Med 2024; 56:1909-1920. [PMID: 39218979 PMCID: PMC11447202 DOI: 10.1038/s12276-024-01307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024] Open
Abstract
Functional variations in coding and noncoding RNAs are crucial in tumorigenesis, with cancer-specific alterations often resulting from chemical modifications and posttranscriptional processes mediated by enzymes. These RNA variations have been linked to tumor cell proliferation, growth, metastasis, and drug resistance and are valuable for identifying diagnostic or prognostic cancer biomarkers. The diversity of posttranscriptional RNA modifications, such as splicing, polyadenylation, methylation, and editing, is particularly significant due to their prevalence and impact on cancer progression. Additionally, other modifications, including RNA acetylation, circularization, miRNA isomerization, and pseudouridination, are recognized as key contributors to cancer development. Understanding the mechanisms underlying these RNA modifications in cancer can enhance our knowledge of cancer biology and facilitate the development of innovative therapeutic strategies. Targeting these RNA modifications and their regulatory enzymes may pave the way for novel RNA-based therapies, enabling tailored interventions for specific cancer subtypes. This review provides a comprehensive overview of the roles and mechanisms of various coding and noncoding RNA modifications in cancer progression and highlights recent advancements in RNA-based therapeutic applications.
Collapse
Affiliation(s)
- Sang Yean Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- NEORNAT Inc., Seoul, Republic of Korea
| | - Min Jeong Na
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- NEORNAT Inc., Seoul, Republic of Korea
| | - Sungpil Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- NEORNAT Inc., Seoul, Republic of Korea
| | - Eunbi Shin
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Jin Woong Ha
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Soyoung Jeon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea.
- NEORNAT Inc., Seoul, Republic of Korea.
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
16
|
Zhang Y, Xu W, Peng C, Ren S, Mustafe Hidig S, Zhang C. Exploring the role of m7G modification in Cancer: Mechanisms, regulatory proteins, and biomarker potential. Cell Signal 2024; 121:111288. [PMID: 38971569 DOI: 10.1016/j.cellsig.2024.111288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The dysregulation of N(7)-methylguanosine (m7G) modification is increasingly recognized as a key factor in the pathogenesis of cancers. Aberrant expression of these regulatory proteins in various cancers, including lung, liver, and bladder cancers, suggests a universal role in tumorigenesis. Studies have established a strong correlation between the expression levels of m7G regulatory proteins, such as Methyltransferase like 1 (METTL1) and WD repeat domain 4 (WDR4), and clinical parameters including tumor stage, grade, and patient prognosis. For example, in hepatocellular carcinoma, high METTL1 expression is associated with advanced tumor stage and poor prognosis. Similarly, WDR4 overexpression in colorectal cancer correlates with increased tumor invasiveness and reduced patient survival. This correlation underscores the potential of these proteins as valuable biomarkers for cancer diagnosis and prognosis. Additionally, m7G modification regulatory proteins influence cancer progression by modulating the expression of target genes involved in critical biological processes, including cell proliferation, apoptosis, migration, and invasion. Their ability to regulate these processes highlights their significance in the intricate network of molecular interactions driving tumor development and metastasis. Given their pivotal role in cancer biology, m7G modification regulatory proteins are emerging as promising therapeutic targets. Targeting these proteins could offer a novel approach to disrupt the malignant behavior of cancer cells and enhance treatment outcomes. Furthermore, their diagnostic and prognostic value could aid in the early detection of cancer and the selection of appropriate therapeutic strategies, ultimately enhancing patient management and survival rates. This review aims to explore the mechanisms of action of RNA m7G modification regulatory proteins in tumors and their potential applications in cancer progression and treatment. By delving into the roles of these regulatory proteins, we intend to provide a theoretical foundation for the development of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weihao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shenli Ren
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sakarie Mustafe Hidig
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Zhejiang University School of Medicine Fourth Affiliated Hospital, Yiwu, Zhejiang, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Wagner V, Meese E, Keller A. The intricacies of isomiRs: from classification to clinical relevance. Trends Genet 2024; 40:784-796. [PMID: 38862304 DOI: 10.1016/j.tig.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024]
Abstract
MicroRNAs (miRNAs) and isoforms of their archetype, called isomiRs, regulate gene expression via complementary base-pair binding to messenger RNAs (mRNAs). The partially evolutionarily conserved isomiR sequence variations are differentially expressed among tissues, populations, and genders, and between healthy and diseased states. Aiming towards the clinical use of isomiRs as diagnostic biomarkers and for therapeutic purposes, several challenges need to be addressed, including (i) clarification of isomiR definition, (ii) improved annotation in databases with new standardization (such as the mirGFF3 format), and (iii) improved methods of isomiR detection, functional verification, and in silico analysis. In this review we discuss the respective challenges, and highlight the opportunities for clinical use of isomiRs, especially in the light of increasing amounts of next-generation sequencing (NGS) data.
Collapse
Affiliation(s)
- Viktoria Wagner
- Chair for Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, 66123 Saarbrücken, Germany.
| |
Collapse
|
18
|
Huang S, Tan C, Zheng J, Huang Z, Li Z, Lv Z, Chen W, Chen M, Yuan X, Chen C, Yan Q. Identification of RNMT as an immunotherapeutic and prognostic biomarker: From pan-cancer analysis to lung squamous cell carcinoma validation. Immunobiology 2024; 229:152836. [PMID: 39018675 DOI: 10.1016/j.imbio.2024.152836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/23/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Dysregulation of RNA guanine-7 methyltransferase (RNMT) plays a crucial role in the tumor progression and immune responses. However, the detailed role of RNMT in pan-cancer is still unknown. METHODS Bulk transcriptomic data of pan-cancer were obtained from the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Line Encyclopedia (CCLE) databases. Single-cell transcriptomic and proteomics data of lung squamous cell carcinoma (LUSC) were analyzed in the Tumor Immune Single-cell Hub 2 (TISCH2) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases, respectively. The correlation between RNMT expression and cancer prognosis was analyzed by Cox proportional hazards regression and Kaplan-Meier analyses. The correlation of RNMT expression with common immunoregulators, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), and DNA methyltransferase (DNMT) was analyzed. Additionally, the correlation between RNMT expression and immune infiltration level was evaluated. A total of 1287 machine learning combinations were used to construct prognostic models for LUSC. qRT-PCR and Western blot were used to validate the bioinformatics findings of RNMT upregulation in LUSC. RESULTS RNMT was widely expressed across different cancers, with significant correlation to prognosis in cancers such as kidney chromophobe (KICH) (p = 0.0033, HR = 7.12), liver hepatocellular carcinoma (LIHC) (p = 0.01, HR = 1.41), and others. Notably, RNMT participates in the regulation of the tumor microenvironment. RNMT expression positively correlated with immune cell expression (Spearman's rank correlation, p < 0.05). Moreover, RNMT expression was strongly associated with immunoregulators, TMB, MSI, MMR, and DNMT in most cancer types. Notably, RNMT expression displayed excellent prognostic and immunological performance in LUSC. The expression of RNMT was mainly enriched in B cells of LUSC tissues. qRT-PCR and Western blot verified the high expression of RNMT in LUSC. CONCLUSION RNMT expression widely correlated with prognosis and immune infiltration in various tumors, especially LUSC. The RNMT detection may provide a new idea for future tumor immune studies and treatment strategies.
Collapse
Affiliation(s)
- Shuqiang Huang
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Cuiyu Tan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Jinzhen Zheng
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Zhugu Huang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhihong Li
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Ziyin Lv
- The First School of Clinical Medicine, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wanru Chen
- The Third School of Clinical Medicine, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Miaoqi Chen
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Xiaojun Yuan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Cairong Chen
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China; Guangdong Engineering Technology Research Center of Urinary Continence and Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China.
| | - Qiuxia Yan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China; Guangdong Engineering Technology Research Center of Urinary Continence and Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China.
| |
Collapse
|
19
|
Sun Z, Xu Y, Si C, Wu X, Guo Y, Chen C, Wang C. Targeting m7G-enriched circKDM1A prevents colorectal cancer progression. Mol Cancer 2024; 23:179. [PMID: 39215345 PMCID: PMC11363613 DOI: 10.1186/s12943-024-02090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Plenty of circRNAs have been reported to play an important role in colorectal cancer (CRC), while the reason of abnormal circRNA expression in cancer still keep elusive. Here, we found that m7G RNA modifications were enriched in some circRNAs, these m7G modifications in circRNAs were catalyzed by METTL1, and the GG motif was the main site preference for m7G modifications in circRNAs. We further confirmed that METTL1 played a cancer-promoting role in CRC. We then screened a highly expressed circRNA, called circKDM1A, and found that METTL1 prevented the degradation of circKDM1A by m7G modification. CircKDM1A was further verified to promote proliferation, invasion and migration of CRC in vivo and in vitro. Its cancer-promoting ability was weakened after the m7G site mutation. CircKDM1A was verified to activate AKT pathway by upregulating PDK1, consequently promoting CRC progression. These results suggest that m7G-modified circRNA promotes CRC progression via activating AKT pathway. Our study uncovers an essential physiological function and mechanism of METTL1-mediated m7G modification in the regulation of circRNA stability and cancer progression.
Collapse
Affiliation(s)
- Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yanxin Xu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chaohua Si
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaoke Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yaxin Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chen Chen
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Chengzeng Wang
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
20
|
Chen D, Gu X, Nurzat Y, Xu L, Li X, Wu L, Jiao H, Gao P, Zhu X, Yan D, Li S, Xue C. Writers, readers, and erasers RNA modifications and drug resistance in cancer. Mol Cancer 2024; 23:178. [PMID: 39215288 PMCID: PMC11363509 DOI: 10.1186/s12943-024-02089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Drug resistance in cancer cells significantly diminishes treatment efficacy, leading to recurrence and metastasis. A critical factor contributing to this resistance is the epigenetic alteration of gene expression via RNA modifications, such as N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), 7-methylguanosine (m7G), pseudouridine (Ψ), and adenosine-to-inosine (A-to-I) editing. These modifications are pivotal in regulating RNA splicing, translation, transport, degradation, and stability. Governed by "writers," "readers," and "erasers," RNA modifications impact numerous biological processes and cancer progression, including cell proliferation, stemness, autophagy, invasion, and apoptosis. Aberrant RNA modifications can lead to drug resistance and adverse outcomes in various cancers. Thus, targeting RNA modification regulators offers a promising strategy for overcoming drug resistance and enhancing treatment efficacy. This review consolidates recent research on the role of prevalent RNA modifications in cancer drug resistance, with a focus on m6A, m1A, m5C, m7G, Ψ, and A-to-I editing. Additionally, it examines the regulatory mechanisms of RNA modifications linked to drug resistance in cancer and underscores the existing limitations in this field.
Collapse
Affiliation(s)
- Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yeltai Nurzat
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Lixin Wu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Peng Gao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Shaohua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
21
|
Wang K, Wang Y, Li Y, Fang B, Li B, Cheng W, Wang K, Yang S. The potential of RNA methylation in the treatment of cardiovascular diseases. iScience 2024; 27:110524. [PMID: 39165846 PMCID: PMC11334793 DOI: 10.1016/j.isci.2024.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
RNA methylation has emerged as a dynamic regulatory mechanism that impacts gene expression and protein synthesis. Among the known RNA methylation modifications, N6-methyladenosine (m6A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), and N7-methylguanosine (m7G) have been studied extensively. In particular, m6A is the most abundant RNA modification and has attracted significant attention due to its potential effect on multiple biological processes. Recent studies have demonstrated that RNA methylation plays an important role in the development and progression of cardiovascular disease (CVD). To identify key pathogenic genes of CVD and potential therapeutic targets, we reviewed several common RNA methylation and summarized the research progress of RNA methylation in diverse CVDs, intending to inspire effective treatment strategies.
Collapse
Affiliation(s)
- Kai Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - YuQin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - YingHui Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Fang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wei Cheng
- Department of Cardiovascular Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Kun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - SuMin Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
22
|
Fang D, Babich JM, Dangelmaier EA, Wall V, Nachtergaele S. A user guide to RT-based mapping of RNA modifications. Methods Enzymol 2024; 705:51-79. [PMID: 39389673 DOI: 10.1016/bs.mie.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Chemical modifications to RNA nucleotides are both a naturally occurring layer of biological regulation and an increasingly prevalent approach to synthetically alter RNA function in therapeutic applications. Detection of their presence, prevalence, and stoichiometry across different RNAs is critical to understanding their underlying functions. However, this remains challenging due to the technical barriers involved in differentiating chemically similar modification species, and in detecting rare or low stoichiometry modifications. Reverse transcription-based techniques rely on the introduction of a predictable mutation, truncation, or deletion signature when a reverse transcriptase encounters a modified nucleotide of interest. Previous studies have shown promise in detecting modifications to single nucleotide resolution, but the low efficiency and processivity of many commercially available reverse transcriptases has resulted in discordant conclusions in some cases. Here, we present guidelines and best practices for applying the highly processive MarathonRT enzyme to reverse transcription-based modification sequencing. These guidelines include recommendations for controls and example protocols to help users plan robust experiments for mapping modification(s) of choice, as well as discussion of the limitations for the methods described.
Collapse
Affiliation(s)
- Dorthy Fang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States
| | - John M Babich
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States
| | - Emily A Dangelmaier
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States
| | - Veronica Wall
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States
| | - Sigrid Nachtergaele
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States.
| |
Collapse
|
23
|
Zhao Y, Jin J, Gao W, Qiao J, Wei L. Moss-m7G: A Motif-Based Interpretable Deep Learning Method for RNA N7-Methlguanosine Site Prediction. J Chem Inf Model 2024; 64:6230-6240. [PMID: 39011571 DOI: 10.1021/acs.jcim.4c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
N-7methylguanosine (m7G) modification plays a crucial role in various biological processes and is closely associated with the development and progression of many cancers. Accurate identification of m7G modification sites is essential for understanding their regulatory mechanisms and advancing cancer therapy. Previous studies often suffered from insufficient research data, underutilization of motif information, and lack of interpretability. In this work, we designed a novel motif-based interpretable method for m7G modification site prediction, called Moss-m7G. This approach enables the analysis of RNA sequences from a motif-centric perspective. Our proposed word-detection module and motif-embedding module within Moss-m7G extract motif information from sequences, transforming the raw sequences from base-level into motif-level and generating embeddings for these motif sequences. Compared with base sequences, motif sequences contain richer contextual information, which is further analyzed and integrated through the Transformer model. We constructed a comprehensive m7G data set to implement the training and testing process to address the data insufficiency noted in prior research. Our experimental results affirm the effectiveness and superiority of Moss-m7G in predicting m7G modification sites. Moreover, the introduction of the word-detection module enhances the interpretability of the model, providing insights into the predictive mechanisms.
Collapse
Affiliation(s)
- Yanxi Zhao
- School of Software, Shandong University, Jinan 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
| | - Junru Jin
- School of Software, Shandong University, Jinan 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
| | - Wenjia Gao
- School of Software, Shandong University, Jinan 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
| | - Jianbo Qiao
- School of Software, Shandong University, Jinan 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
| | - Leyi Wei
- School of Software, Shandong University, Jinan 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
- School of Informatics, Xiamen University, Xiamen 361104, China
| |
Collapse
|
24
|
Santos-Pujol E, Quero-Dotor C, Esteller M. Clinical Perspectives in Epitranscriptomics. Curr Opin Genet Dev 2024; 87:102209. [PMID: 38824905 DOI: 10.1016/j.gde.2024.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024]
Abstract
Epitranscriptomics, the study of reversible and dynamic chemical marks on the RNA, is rapidly emerging as a pivotal field in post-transcriptional gene expression regulation. Increasing knowledge about epitranscriptomic landscapes implicated in disease pathogenesis proves an invaluable opportunity for the identification of epitranscriptomic biomarkers and the development of new potential therapeutic drugs. Hence, recent advances in the characterization of these marks and associated enzymes in both health and disease blaze a trail toward the use of epitranscriptomics approaches for clinical applications. Here, we review the latest studies to provide a wide and comprehensive perspective of clinical epitranscriptomics and emphasize its transformative potential in shaping future health care paradigms.
Collapse
Affiliation(s)
- Eloy Santos-Pujol
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain. https://twitter.com/@EloySantosPujol
| | - Carlos Quero-Dotor
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain; Centro de Investigación Biomédica en Red Cancer (CIBERONC), Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
25
|
Yu S, Sun Z, Ju T, Liu Y, Mei Z, Wang C, Qu Z, Li N, Wu F, Liu K, Lu M, Huang M, Pang X, Jia Y, Li Y, Zhang Y, Dou S, Jiang J, Dong X, Huang C, Li W, zhang Y, Yuan Y, Yang B, Du W. The m7G Methyltransferase Mettl1 Drives Cardiac Hypertrophy by Regulating SRSF9-Mediated Splicing of NFATc4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308769. [PMID: 38810124 PMCID: PMC11304317 DOI: 10.1002/advs.202308769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/11/2024] [Indexed: 05/31/2024]
Abstract
Cardiac hypertrophy is a key factor driving heart failure (HF), yet its pathogenesis remains incompletely elucidated. Mettl1-catalyzed RNA N7-methylguanosine (m7G) modification has been implicated in ischemic cardiac injury and fibrosis. This study aims to elucidate the role of Mettl1 and the mechanism underlying non-ischemic cardiac hypertrophy and HF. It is found that Mettl1 is upregulated in human failing hearts and hypertrophic murine hearts following transverse aortic constriction (TAC) and Angiotensin II (Ang II) infusion. YY1 acts as a transcriptional factor for Mettl1 during cardiac hypertrophy. Mettl1 knockout alleviates cardiac hypertrophy and dysfunction upon pressure overload from TAC or Ang II stimulation. Conversely, cardiac-specific overexpression of Mettl1 results in cardiac remodeling. Mechanically, Mettl1 increases SRSF9 expression by inducing m7G modification of SRSF9 mRNA, facilitating alternative splicing and stabilization of NFATc4, thereby promoting cardiac hypertrophy. Moreover, the knockdown of SRSF9 protects against TAC- or Mettl1-induced cardiac hypertrophic phenotypes in vivo and in vitro. The study identifies Mettl1 as a crucial regulator of cardiac hypertrophy, providing a novel therapeutic target for HF.
Collapse
Affiliation(s)
- Shuting Yu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - ZhiYong Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Tiantian Ju
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Yingqi Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Zhongting Mei
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Changhao Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Zhezhe Qu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Na Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Fan Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - KuiWu Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Meixi Lu
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijing100013China
| | - Min Huang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Xiaochen Pang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Yingqiong Jia
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Ying Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Yaozhi Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Shunkang Dou
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Jianhao Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Xianhui Dong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Chuanhao Huang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Wanhong Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Yi zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Ye Yuan
- Department of Pharmacy (The University Key Laboratory of Drug ResearchHeilongjiang Province)The Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Baofeng Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
- Northern Translational Medicine Research and Cooperation CenterHeilongjiang Academy of Medical SciencesHarbin Medical UniversityHarbin150081China
- Research Unit of Noninfectious Chronic Diseases in Frigid ZoneChinese Academy of Medical Sciences2019RU070Harbin150081China
| | - Weijie Du
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
- Northern Translational Medicine Research and Cooperation CenterHeilongjiang Academy of Medical SciencesHarbin Medical UniversityHarbin150081China
- Research Unit of Noninfectious Chronic Diseases in Frigid ZoneChinese Academy of Medical Sciences2019RU070Harbin150081China
| |
Collapse
|
26
|
Abubakar M, Hajjaj M, Naqvi ZEZ, Shanawaz H, Naeem A, Padakanti SSN, Bellitieri C, Ramar R, Gandhi F, Saleem A, Abdul Khader AHS, Faraz MA. Non-Coding RNA-Mediated Gene Regulation in Cardiovascular Disorders: Current Insights and Future Directions. J Cardiovasc Transl Res 2024; 17:739-767. [PMID: 38092987 DOI: 10.1007/s12265-023-10469-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/23/2023] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVDs) pose a significant burden on global health. Developing effective diagnostic, therapeutic, and prognostic indicators for CVDs is critical. This narrative review explores the role of select non-coding RNAs (ncRNAs) and provides an in-depth exploration of the roles of miRNAs, lncRNAs, and circRNAs in different aspects of CVDs, offering insights into their mechanisms and potential clinical implications. The review also sheds light on the diverse functions of ncRNAs, including their modulation of gene expression, epigenetic modifications, and signaling pathways. It comprehensively analyzes the interplay between ncRNAs and cardiovascular health, paving the way for potential novel interventions. Finally, the review provides insights into the methodologies used to investigate ncRNA-mediated gene regulation in CVDs, as well as the implications and challenges associated with translating ncRNA research into clinical applications. Considering the broader implications, this research opens avenues for interdisciplinary collaborations, enhancing our understanding of CVDs across scientific disciplines.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, Punjab, Pakistan.
| | - Mohsin Hajjaj
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Zil E Zehra Naqvi
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Hameed Shanawaz
- Department of Internal Medicine, Windsor University School of Medicine, Cayon, Saint Kitts and Nevis
| | - Ammara Naeem
- Department of Cardiology, Heart & Vascular Institute, Dearborn, Michigan, USA
| | | | | | - Rajasekar Ramar
- Department of Internal Medicine, Rajah Muthiah Medical College, Chidambaram, Tamil Nadu, India
| | - Fenil Gandhi
- Department of Family Medicine, Lower Bucks Hospital, Bristol, PA, USA
| | - Ayesha Saleem
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | | | - Muhammad Ahmad Faraz
- Department of Forensic Medicine, Postgraduate Medical Institute, Lahore, Punjab, Pakistan
| |
Collapse
|
27
|
Wang C, He Y, Fang X, Zhang D, Huang J, Zhao S, Li L, Li G. METTL1-modulated LSM14A facilitates proliferation and migration in glioblastoma via the stabilization of DDX5. iScience 2024; 27:110225. [PMID: 39040050 PMCID: PMC11261005 DOI: 10.1016/j.isci.2024.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024] Open
Abstract
Glioblastoma (GBM) is characterized by aggressive growth, invasiveness, and poor prognosis. Elucidating the molecular mechanisms underlying GBM is crucial. This study explores the role of Sm-like protein 14 homolog A (LSM14A) in GBM. Bioinformatics and clinical tissue samples analysis demonstrated that overexpression of LSM14A in GBM correlates with poorer prognosis. CCK8, EdU, colony formation, and transwell assays revealed that LSM14A promotes proliferation, migration, and invasion in GBM in vitro. In vivo mouse xenograft models confirmed the results of the in vitro experiments. The mechanism of LSM14A modulating GBM cell proliferation was investigated using mass spectrometry, co-immunoprecipitation (coIP), protein half-life, and methylated RNA immunoprecipitation (MeRIP) analyses. The findings indicate that during the G1/S phase, LSM14A stabilizes DDX5 in the cytoplasm, regulating CDK4 and P21 levels. Furthermore, METTL1 modulates LSM14A expression via mRNA m7G methylation. Altogether, our work highlights the METTL1-LSM14A-DDX5 pathway as a potential therapeutic target in GBM.
Collapse
Affiliation(s)
- Changyu Wang
- Department of Neurosurgery, The First Hospital of China Medical University, NO. 155 Nanjing North Street, Heping District, Shenyang 110002, China
| | - Yan He
- Department of Laboratory Animal Science, China Medical University, 110122, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, P.R. China
| | - Xiang Fang
- Department of Neurosurgery, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan, Shandong, People’s Republic of China
| | - Danyang Zhang
- Department of Immunology, College of Basic Medical Sciences of China Medical University, 110122, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, P.R. China
| | - Jinhai Huang
- Department of Neurosurgery, The First Hospital of China Medical University, NO. 155 Nanjing North Street, Heping District, Shenyang 110002, China
| | - Shuxin Zhao
- The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Lun Li
- Department of Neurosurgery, Anshan Hospital of the First Hospital of China Medical University, Anshan, China
| | - Guangyu Li
- Department of Neurosurgery, The First Hospital of China Medical University, NO. 155 Nanjing North Street, Heping District, Shenyang 110002, China
| |
Collapse
|
28
|
Lian P, Cai X, Wang C, Zhai H, Liu K, Yang X, Wu Y, Ma Z, Cao X, Xu Y. Identification and experimental validation of m7G-related molecular subtypes, immune signature, and feature genes in Alzheimer's disease. Heliyon 2024; 10:e33836. [PMID: 39027505 PMCID: PMC11255592 DOI: 10.1016/j.heliyon.2024.e33836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Background Studies has shown that N7-methylguanosine (m7G) modification plays a critical role in neurological diseases. However, the exact role and association of m7G with the immune microenvironment in Alzheimer's disease (AD) remain largely unknown and unexplored. Methods The study datasets comprised 667 AD samples and 503 control samples selected from eight datasets in the Gene Expression Omnibus database; m7G regulator genes were obtained from previous literature. The AD subtypes were identified by consensus clustering analysis according to m7G regulator genes. The clinical characteristics, immune infiltration, and biological functions of the AD subgroups were evaluated. A combination of different types of machine-learning algorithms were used for the identification of AD genes. We also assessed and validated the diagnostic performance of the identified genes via qRT-PCR, immunofluorescence, and immunohistochemical analyses. Results Two AD distinct subgroups, namely cluster A and cluster B, were identified. Cluster A had poor pathological progression and immune infiltration, representing a high-risk subgroup for AD. The differentially expressed genes of cluster A were enriched in immune and synapse-related pathways, suggesting that these genes probably contribute to AD progression by regulating immune-related pathways. Additionally, five feature genes (AEBP1, CARTPT, AK5, NPTX2, and COPG2IT1) were identified, which were used to construct a nomogram model with good ability to predict AD. The animal experiment analyses further confirmed that these feature genes were associated with AD development. Conclusion To the best of our knowledge, this is the first study to reveal close correlations among m7G RNA modification, the immune microenvironment, and the pathogenesis of AD. We also identified five feature genes associated with AD, further contributing to our understanding of the underlying mechanisms and potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Piaopiao Lian
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Cai
- Department of Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cailin Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zhai
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoran Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Fu Y, Jiang F, Zhang X, Pan Y, Xu R, Liang X, Wu X, Li X, Lin K, Shi R, Zhang X, Ferrandon D, Liu J, Pei D, Wang J, Wang T. Perturbation of METTL1-mediated tRNA N 7- methylguanosine modification induces senescence and aging. Nat Commun 2024; 15:5713. [PMID: 38977661 PMCID: PMC11231295 DOI: 10.1038/s41467-024-49796-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
Cellular senescence is characterized by a decrease in protein synthesis, although the underlying processes are mostly unclear. Chemical modifications to transfer RNAs (tRNAs) frequently influence tRNA activity, which is crucial for translation. We describe how tRNA N7-methylguanosine (m7G46) methylation, catalyzed by METTL1-WDR4, regulates translation and influences senescence phenotypes. Mettl1/Wdr4 and m7G gradually diminish with senescence and aging. A decrease in METTL1 causes a reduction in tRNAs, especially those with the m7G modification, via the rapid tRNA degradation (RTD) pathway. The decreases cause ribosomes to stall at certain codons, impeding the translation of mRNA that is essential in pathways such as Wnt signaling and ribosome biogenesis. Furthermore, chronic ribosome stalling stimulates the ribotoxic and integrative stress responses, which induce senescence-associated secretory phenotype. Moreover, restoring eEF1A protein mitigates senescence phenotypes caused by METTL1 deficiency by reducing RTD. Our findings demonstrate that tRNA m7G modification is essential for preventing premature senescence and aging by enabling efficient mRNA translation.
Collapse
Affiliation(s)
- Yudong Fu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fan Jiang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Xiao Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingyi Pan
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Rui Xu
- Department of pediatrics, Foshan maternal and children's hospital affiliated to southern medical university, 528000, Foshan, Guangdong, China
| | - Xiu Liang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Xiaofen Wu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China
| | | | - Kaixuan Lin
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Ruona Shi
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Xiaofei Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dominique Ferrandon
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, Strasbourg, France
- Modèles Insectes de l'Immunité Innée, UPR 9022 du CNRS, Strasbourg, France
| | - Jing Liu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China
- Joint School of Lifesciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China, Guangzhou Medical University, 511436, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Duanqing Pei
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China.
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China.
- Joint School of Lifesciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China, Guangzhou Medical University, 511436, Guangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Tao Wang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China.
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
30
|
Zheng P, Yang S, Ren D, Zhang X, Bai Q. A Pan-Cancer Analysis of the Oncogenic Role of Methyltransferase-Like 1 in Human Tumors. Neurol India 2024; 72:837-845. [PMID: 39216043 DOI: 10.4103/neurol-india.ni_1354_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/21/2022] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND OBJECT Although emerging cell- or animal-based evidence supports the relationship between methyltransferase-like 1 (METTL1) and cancers, no pan-cancer analysis is available. METHODS We thus first explored the potential oncogenic roles of METTL1 across 33 tumors based on the datasets of The Cancer Genome Atlas and Gene Expression Omnibus. RESULTS METTL1 is highly expressed in most cancers, and distinct associations exist between METTL1 expression and prognosis of tumor patients. METTL1 level is related with the dendritic and B-cell infiltration levels in most tumors. Moreover, RNA processing- and RNA metabolism-associated functions were involved in the functional mechanisms of METTL1. CONCLUSION Our pan-cancer study offers a relatively comprehensive understanding of the oncogenic roles of METTL1 across different tumors.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
- Department of Key Laboratory, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Shunmin Yang
- Department of Key Laboratory, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Dabin Ren
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Xiaoxue Zhang
- Department of Key Laboratory, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Qingke Bai
- Department of Key Laboratory, Shanghai Pudong New Area People's Hospital, Shanghai, China
| |
Collapse
|
31
|
XIONG J, FENG T, YUAN BF. [Advances in mapping analysis of ribonucleic acid modifications through sequencing]. Se Pu 2024; 42:632-645. [PMID: 38966972 PMCID: PMC11224946 DOI: 10.3724/sp.j.1123.2023.12025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 07/06/2024] Open
Abstract
Over 170 chemical modifications have been discovered in various types of ribonucleic acids (RNAs), including messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and small nuclear RNA (snRNA). These RNA modifications play crucial roles in a wide range of biological processes such as gene expression regulation, RNA stability maintenance, and protein translation. RNA modifications represent a new dimension of gene expression regulation known as the "epitranscriptome". The discovery of RNA modifications and the relevant writers, erasers, and readers provides an important basis for studies on the dynamic regulation and physiological functions of RNA modifications. Owing to the development of detection technologies for RNA modifications, studies on RNA epitranscriptomes have progressed to the single-base resolution, multilayer, and full-coverage stage. Transcriptome-wide methods help discover new RNA modification sites and are of great importance for elucidating the molecular regulatory mechanisms of epitranscriptomics, exploring the disease associations of RNA modifications, and understanding their clinical applications. The existing RNA modification sequencing technologies can be categorized according to the pretreatment approach and sequencing principle as direct high-throughput sequencing, antibody-enrichment sequencing, enzyme-assisted sequencing, chemical labeling-assisted sequencing, metabolic labeling sequencing, and nanopore sequencing technologies. These methods, as well as studies on the functions of RNA modifications, have greatly expanded our understanding of epitranscriptomics. In this review, we summarize the recent progress in RNA modification detection technologies, focusing on the basic principles, advantages, and limitations of different methods. Direct high-throughput sequencing methods do not require complex RNA pretreatment and allow for the mapping of RNA modifications using conventional RNA sequencing methods. However, only a few RNA modifications can be analyzed by high-throughput sequencing. Antibody enrichment followed by high-throughput sequencing has emerged as a crucial approach for mapping RNA modifications, significantly advancing the understanding of RNA modifications and their regulatory functions in different species. However, the resolution of antibody-enrichment sequencing is limited to approximately 100-200 bp. Although chemical crosslinking techniques can achieve single-base resolution, these methods are often complex, and the specificity of the antibodies used in these methods has raised concerns. In particular, the issue of off-target binding by the antibodies requires urgent attention. Enzyme-assisted sequencing has improved the accuracy of the localization analysis of RNA modifications and enables stoichiometric detection with single-base resolution. However, the enzymes used in this technique show poor reactivity, specificity, and sequence preference. Chemical labeling sequencing has become a widely used approach for profiling RNA modifications, particularly by altering reverse transcription (RT) signatures such as RT stops, misincorporations, and deletions. Chemical-assisted sequencing provides a sequence-independent RNA modification detection strategy that enables the localization of multiple RNA modifications. Additionally, when combined with the biotin-streptavidin affinity method, low-abundance RNA modifications can be enriched and detected. Nevertheless, the specificity of many chemical reactions remains problematic, and the development of specific reaction probes for particular modifications should continue in the future to achieve the precise localization of RNA modifications. As an indirect localization method, metabolic labeling sequencing specifically localizes the sites at which modifying enzymes act, which is of great significance in the study of RNA modification functions. However, this method is limited by the intracellular labeling of RNA and cannot be applied to biological samples such as clinical tissues and blood samples. Nanopore sequencing is a direct RNA-sequencing method that does not require RT or the polymerase chain reaction (PCR). However, challenges in analyzing the data obtained from nanopore sequencing, such as the high rate of false positives, must be resolved. Discussing sequencing analysis methods for various types of RNA modifications is instructive for the future development of novel RNA modification mapping technologies, and will aid studies on the functions of RNA modifications across the entire transcriptome.
Collapse
|
32
|
Su A, Song R, Wong J. Pan-Cancer Analysis Links Altered RNA m 7G Methyltransferase Expression to Oncogenic Pathways, Immune Cell Infiltrations and Overall Survival. Cancer Rep (Hoboken) 2024; 7:e2138. [PMID: 39041608 PMCID: PMC11264101 DOI: 10.1002/cnr2.2138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND N7-methylguanosine (m7G) modification is one of the most prevalent RNA modifications in humans. Dysregulated m7G modifications caused by aberrant expression of m7G writers contribute to cancer progression and result in worse patient survival in several human cancers. However, studies that systematically assess the frequency and clinical relevance of aberrant m7G writer expression in a pan-cancer cohort remain to be performed. AIMS This study aims to systematically investigate the molecular alteration and clinical relevance of m7G methyltransferase in human cancers. METHODS We analysed genome, transcriptome and clinical data from the Cancer Genome Atlas Research Network spanning 33 types of human cancers for aberrant changes in genes encoding m7G writers. RESULT We demonstrate that m7G writers are dysregulated in human cancers and are associated predominantly with poorer survival. By dividing patients into those with high and low m7G scores, we show that a lower m7G score is generally associated with immune infiltration and better response to immunotherapy. CONCLUSION Our analyses indicate the genetic alterations, expression patterns and clinical relevance of m7G writers across various cancers. This study provides insights into the potential utility of m7G writer expression as a cancer biomarker and proposes the possibility of targeting m7G writers for cancer therapy.
Collapse
Affiliation(s)
- Anni Su
- Epigenetics and RNA Biology Laboratory, Charles Perkins CentreUniversity of SydneyCamperdownAustralia
- Faculty of Medicine and HealthUniversity of SydneyCamperdownAustralia
| | - Renhua Song
- Epigenetics and RNA Biology Laboratory, Charles Perkins CentreUniversity of SydneyCamperdownAustralia
- Faculty of Medicine and HealthUniversity of SydneyCamperdownAustralia
| | - Justin J.‐L. Wong
- Epigenetics and RNA Biology Laboratory, Charles Perkins CentreUniversity of SydneyCamperdownAustralia
- Faculty of Medicine and HealthUniversity of SydneyCamperdownAustralia
| |
Collapse
|
33
|
Peng W, Fu J, Zhou L, Duan H. METTL1/FOXM1 promotes lung adenocarcinoma progression and gefitinib resistance by inhibiting PTPN13 expression. Cancer Med 2024; 13:e7420. [PMID: 38967523 PMCID: PMC11225164 DOI: 10.1002/cam4.7420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024] Open
Abstract
INTRODUCTION Lung adenocarcinoma (LUAD) is the most common malignant tumor in respiratory system. Methyltransferase-like 1 (METTL1) is a driver of m7G modification in mRNA. This study aimed to demonstrate the role of METTL1 in the proliferation, invasion and Gefitinib-resistance of LUAD. METHODS Public datasets were downloaded from the Gene Expression Profiling Interactive Analysis (GEPIA) and GSE31210 datasets. Malignant tumor phenotypes were tested in vitro and in vivo through biological function assays and nude mouse with xenograft tumors. RNA immunoprecipitation assays were conducted to determine the interaction between METTL1 protein and FOXM1 mRNA. Public transcriptional database, Chromatin immunoprecipitation and luciferase report assays were conducted to detect the downstream target of a transcriptional factor FOXM1. Half maximal inhibitory concentration (IC50) was calculated to evaluate the sensitivity to Gefitinib in LUAD cells. RESULTS The results showed that METTL1 was upregulated in LUAD, and the high expression of METTL1 was associated with unfavorable prognosis. Through the m7G-dependent manner, METTL1 improved the RNA stability of FOXM1, leading to the up-regulation of FOXM1. FOXM1 transcriptionally suppressed PTPN13 expression. The METTL1/FOXM1/PTPN13 axis reduced the sensitivity of LUAD cells to Gefitinib. Taken together, our data suggested that METTL1 plays oncogenic role in LUAD through inducing the m7G modification of FOXM1, therefore METTL1 probably is a new potential therapeutic target to counteract Gefitinib resistance in LUAD.
Collapse
Affiliation(s)
- Wei Peng
- Department of Oncology, Hunan Provincial People's HospitalThe First Affiliated of Human Normal UniversityChangshaHunanChina
- Key Laboratory of Study and Discovey of Small Targeted Molecules of Hunan ProvinceHunan Normal UniversityChangshaHunanChina
- Laboratory of Oncology, Institute of Translational MedicineHunan Procincial People's HospitalChangshaHunanChina
| | - Jia Fu
- Department of Oncology, Hunan Provincial People's HospitalThe First Affiliated of Human Normal UniversityChangshaHunanChina
| | - Lijun Zhou
- Department of Oncology, Hunan Provincial People's HospitalThe First Affiliated of Human Normal UniversityChangshaHunanChina
| | - Huaxin Duan
- Department of Oncology, Hunan Provincial People's HospitalThe First Affiliated of Human Normal UniversityChangshaHunanChina
- Key Laboratory of Study and Discovey of Small Targeted Molecules of Hunan ProvinceHunan Normal UniversityChangshaHunanChina
- Laboratory of Oncology, Institute of Translational MedicineHunan Procincial People's HospitalChangshaHunanChina
| |
Collapse
|
34
|
Li Y, Jin H, Li Q, Shi L, Mao Y, Zhao L. The role of RNA methylation in tumor immunity and its potential in immunotherapy. Mol Cancer 2024; 23:130. [PMID: 38902779 PMCID: PMC11188252 DOI: 10.1186/s12943-024-02041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
RNA methylation, a prevalent post-transcriptional modification, has garnered considerable attention in research circles. It exerts regulatory control over diverse biological functions by modulating RNA splicing, translation, transport, and stability. Notably, studies have illuminated the substantial impact of RNA methylation on tumor immunity. The primary types of RNA methylation encompass N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G), and 3-methylcytidine (m3C). Compelling evidence underscores the involvement of RNA methylation in regulating the tumor microenvironment (TME). By affecting RNA translation and stability through the "writers", "erasers" and "readers", RNA methylation exerts influence over the dysregulation of immune cells and immune factors. Consequently, RNA methylation plays a pivotal role in modulating tumor immunity and mediating various biological behaviors, encompassing proliferation, invasion, metastasis, etc. In this review, we discussed the mechanisms and functions of several RNA methylations, providing a comprehensive overview of their biological roles and underlying mechanisms within the tumor microenvironment and among immunocytes. By exploring how these RNA modifications mediate tumor immune evasion, we also examine their potential applications in immunotherapy. This review aims to provide novel insights and strategies for identifying novel targets in RNA methylation and advancing cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liangrong Shi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
35
|
Zhang H, Tang Y, Zhou Y, Wang Y, Si H, Li L, Tang B. DNAzyme-RCA-based colorimetric and lateral flow dipstick assays for the point-of-care testing of exosomal m5C-miRNA-21. Chem Sci 2024; 15:9345-9352. [PMID: 38903234 PMCID: PMC11186332 DOI: 10.1039/d4sc02648a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 06/22/2024] Open
Abstract
Methylation of microRNAs (miRNAs) is a post-transcriptional modification that affects miRNA activity by altering the specificity of miRNAs to target mRNAs. Abnormal methylation of miRNAs in cancer suggests their potential as a tumor marker. However, the traditional methylated miRNA detection mainly includes mass spectrometry, sequencing and others; complex procedures and reliance on large instruments greatly limit their application in point-of-care testing (POCT). Based on this, we developed DNAzyme-RCA-based gold nanoparticle (AuNP) colorimetric and lateral flow dipstick (LFD) assays to achieve convenient detection of exosomal 5-methylcytosine miRNA-21 (m5C-miRNA-21) for the first time. The two assays achieved specific recognition and linear amplification of m5C-miRNA-21 through the DNAzyme triggered RCA reaction and color output with low background interference through AuNP aggregation induced by base complementary pairing. The lowest concentration of m5C-miRNA-21 visible to the naked eye of the two assays can reach 1 pM and 0.1 pM, respectively. Detection of exosomal m5C-miRNA-21 in clinical blood samples showed that the expression level of m5C-miRNA-21 in colorectal cancer patients was significantly higher than that in healthy individuals. This approach not only demonstrates a new strategy for the detection of colorectal cancer but also provides a reference for the development of novel diagnostic tools for other miRNA methylation-related diseases.
Collapse
Affiliation(s)
- Hao Zhang
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Yue Tang
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University Jinan 250014 P. R. China
| | - Yingshun Zhou
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Yiguo Wang
- First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Jinan 250014 P. R. China
| | - Haibin Si
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Lu Li
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
- Laoshan Laboratory Qingdao 266237 P. R. China
| |
Collapse
|
36
|
Lin H, Liao F, Liu J, Yang Z, Zhang J, Cheng J, Zhou H, Li S, Li L, Li Y, Zhuo Z, He J. Neuroblastoma susceptibility and association of N7-methylguanosine modification gene polymorphisms: multi-center case-control study. Pediatr Res 2024:10.1038/s41390-024-03318-w. [PMID: 38871802 DOI: 10.1038/s41390-024-03318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/02/2024] [Accepted: 05/18/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Neuroblastoma (NB) is a common extracranial solid malignancy in children. The N7-methylguanosine (m7G) modification gene METTL1/WDR4 polymorphisms may serve as promising molecular markers for identifying populations susceptible to NB. METHODS TaqMan probes was usded to genotype METTL1/WDR4 single nucleotide polymorphisms (SNPs) in 898 NB patients and 1734 healthy controls. A logistic regression model was utilized to calculate the odds ratio (OR) and 95% confidence interval (CI), evaluating the association between genotype polymorphisms and NB susceptibility. The analysis was also stratified by age, sex, tumor origin site, and clinical stage. RESULTS Individual polymorphism of the METTL1/WDR4 gene investigated in this study did not show significant associations with NB susceptibility. However, combined genotype analysis revealed that carrying all 5 WDR4 protective genotypes was associated with a significantly lower NB risk compared to having 0-4 protective genotypes (AOR = 0.82, 95% CI = 0.69-0.96, P = 0.014). Further stratified analyses revealed that carrying 1-3 METTL1 risk genotypes, the WDR4 rs2156316 CG/GG genotype, the WDR4 rs2248490 CG/GG genotype, and having all five WDR4 protective genotypes were all significantly correlated with NB susceptibility in distinct subpopulations. CONCLUSIONS In conclusion, our findings suggest significant associations between m7G modification gene METTL1/WDR4 SNPs and NB susceptibility in specific populations. IMPACT Genetic variation in m7G modification gene is associated with susceptibility to NB. Single nucleotide polymorphisms in METTL1/WDR4 are associated with susceptibility to NB. Single nucleotide polymorphisms of METTL1/WDR4 can be used as a biomarker for screening NB susceptible populations.
Collapse
Affiliation(s)
- Huiran Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Fan Liao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Haixia Zhou
- Department of Hematology, The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan, 030013, Shannxi, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming, 650228, Yunnan, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha, 410004, Hunan, China
| | - Zhenjian Zhuo
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
- Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
37
|
Yang L, Tang L, Min Q, Tian H, Li L, Zhao Y, Wu X, Li M, Du F, Chen Y, Li W, Li X, Chen M, Gu L, Sun Y, Xiao Z, Shen J. Emerging role of RNA modification and long noncoding RNA interaction in cancer. Cancer Gene Ther 2024; 31:816-830. [PMID: 38351139 PMCID: PMC11192634 DOI: 10.1038/s41417-024-00734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
RNA modification, especially N6-methyladenosine, 5-methylcytosine, and N7-methylguanosine methylation, participates in the occurrence and progression of cancer through multiple pathways. The function and expression of these epigenetic regulators have gradually become a hot topic in cancer research. Mutation and regulation of noncoding RNA, especially lncRNA, play a major role in cancer. Generally, lncRNAs exert tumor-suppressive or oncogenic functions and its dysregulation can promote tumor occurrence and metastasis. In this review, we summarize N6-methyladenosine, 5-methylcytosine, and N7-methylguanosine modifications in lncRNAs. Furthermore, we discuss the relationship between epigenetic RNA modification and lncRNA interaction and cancer progression in various cancers. Therefore, this review gives a comprehensive understanding of the mechanisms by which RNA modification affects the progression of various cancers by regulating lncRNAs, which may shed new light on cancer research and provide new insights into cancer therapy.
Collapse
Affiliation(s)
- Liqiong Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Lu Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Qi Min
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Hua Tian
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Linwei Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
38
|
Dong R, Wang C, Tang B, Cheng Y, Peng X, Yang X, Ni B, Li J. WDR4 promotes HCC pathogenesis through N 7-methylguanosine by regulating and interacting with METTL1. Cell Signal 2024; 118:111145. [PMID: 38493882 DOI: 10.1016/j.cellsig.2024.111145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The N7-methylguanosine (m7G), a modification at defined internal positions within tRNAs and rRNAs, is correlated with tumor progression. Methyltransferase like 1 (METTL1)/ WD repeat domain 4 (WDR4) mediated tRNA m7G modification, which could alter many oncogenic mRNAs translation to promote progress of multiple cancer types. However, whether and how the internal mRNA m7G modification is involved in tumorigenesis remains unclear. METHODS The immunohistochemistry assay was conducted to detect the expression of WDR4 and METTL1 in hepatocellular carcinoma (HCC) and the expression of both genes whether contributes to the prognosis of the survival rate of HCC patients. Then, CCK8, colony formation assays and tumor xenograft models were conducted to determine the effects of WDR4 on HCC cells in vitro and vivo. Besides, dot blot assay, m7G-MeRIP-seq and RNA-seq analysis were conducted to determine whether WDR4 contributes to m7G modification and underlying mechanism in HCC cells. Finally, rescue and CO-IP assay were conducted to explore whether WDR4 and METTL1 proteins form a complex in Huh7 cells. RESULTS WDR4 modulates m7G modification at the internal sites of tumor-promoting mRNAs by forming the WDR4-METTL1 complex. WDR4 knockdown downregulated the expression of mRNA and protein levels of METTL1 gene and thus further modulate the formation of WDR4-METTL1 complex indirectly. METTL1 expression was markedly correlated with WDR4 expression in HCC tissues. HCC patients with high expression of both genes had a poor prognosis. CONCLUSIONS WDR4 may contribute to HCC pathogenesis by interacting with and regulating the expression of METTL1 to synergistically modulate the m7G modification of target mRNAs in tumor cells.
Collapse
Affiliation(s)
- Rui Dong
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Second Affiliated Hospital of Third Military Medical University, Chongqing 400037, China; Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, China; Chongqing International Institute for Immunology, Chongqing 401320, China
| | - Chuanxu Wang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Second Affiliated Hospital of Third Military Medical University, Chongqing 400037, China
| | - Bo Tang
- Chongqing International Institute for Immunology, Chongqing 401320, China
| | - Yayu Cheng
- Department of Gynecology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao 266042, China
| | - Xuehui Peng
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Second Affiliated Hospital of Third Military Medical University, Chongqing 400037, China
| | - Xiaomin Yang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Second Affiliated Hospital of Third Military Medical University, Chongqing 400037, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Jing Li
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Second Affiliated Hospital of Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
39
|
Du D, Zhou M, Ju C, Yin J, Wang C, Xu X, Yang Y, Li Y, Cui L, Wang Z, Lei Y, Li H, He F, He J. METTL1-mediated tRNA m 7G methylation and translational dysfunction restricts breast cancer tumorigenesis by fueling cell cycle blockade. J Exp Clin Cancer Res 2024; 43:154. [PMID: 38822363 PMCID: PMC11140866 DOI: 10.1186/s13046-024-03076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND RNA modifications of transfer RNAs (tRNAs) are critical for tRNA function. Growing evidence has revealed that tRNA modifications are related to various disease processes, including malignant tumors. However, the biological functions of methyltransferase-like 1 (METTL1)-regulated m7G tRNA modifications in breast cancer (BC) remain largely obscure. METHODS The biological role of METTL1 in BC progression were examined by cellular loss- and gain-of-function tests and xenograft models both in vitro and in vivo. To investigate the change of m7G tRNA modification and mRNA translation efficiency in BC, m7G-methylated tRNA immunoprecipitation sequencing (m7G tRNA MeRIP-seq), Ribosome profiling sequencing (Ribo-seq), and polysome-associated mRNA sequencing were performed. Rescue assays were conducted to decipher the underlying molecular mechanisms. RESULTS The tRNA m7G methyltransferase complex components METTL1 and WD repeat domain 4 (WDR4) were down-regulated in BC tissues at both the mRNA and protein levels. Functionally, METTL1 inhibited BC cell proliferation, and cell cycle progression, relying on its enzymatic activity. Mechanistically, METTL1 increased m7G levels of 19 tRNAs to modulate the translation of growth arrest and DNA damage 45 alpha (GADD45A) and retinoblastoma protein 1 (RB1) in a codon-dependent manner associated with m7G. Furthermore, in vivo experiments showed that overexpression of METTL1 enhanced the anti-tumor effectiveness of abemaciclib, a cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor. CONCLUSION Our study uncovered the crucial tumor-suppressive role of METTL1-mediated tRNA m7G modification in BC by promoting the translation of GADD45A and RB1 mRNAs, selectively blocking the G2/M phase of the cell cycle. These findings also provided a promising strategy for improving the therapeutic benefits of CDK4/6 inhibitors in the treatment of BC patients.
Collapse
Affiliation(s)
- Dan Du
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mingxia Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chenxi Ju
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jie Yin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chang Wang
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xinyu Xu
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yunqing Yang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yun Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Le Cui
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhengyang Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuqing Lei
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Hongle Li
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China.
| | - Fucheng He
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Jing He
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
40
|
Lü C, Xu H, Gao P, Huang A, Qu M, He W, Wu H, Chen J, Xu B, Guo L, Xie J. Abundance of Modifications in Mature miRNAs Revealed by LC-MS/MS Method Coupled with a Two-Step Hybridization Purification Strategy. Anal Chem 2024; 96:6870-6874. [PMID: 38648202 DOI: 10.1021/acs.analchem.4c01326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Accurate detection of endogenous miRNA modifications, such as N6-methyladenosine (m6A), 7-methylguanosine (m7G), and 5-methylcytidine (m5C), poses significant challenges, resulting in considerable uncertainty regarding their presence in mature miRNAs. In this study, we demonstrate for the first time that liquid chromatography coupled with a tandem mass spectrometry (LC-MS/MS) nucleoside analysis method is a practical tool for quantitatively analyzing human miRNA modifications. The newly designed liquid-solid two-step hybridization (LSTH) strategy enhances specificity for miRNA purification, while LC-MS/MS offers robust capability in recognizing modifications and sufficient sensitivity with detection limits ranging from attomoles to low femtomoles. Therefore, it provides a more reliable approach compared to existing techniques for revealing modifications in endogenous miRNAs. With this approach, we characterized m6A, m7G, and m5C modifications in miR-21-5p, Let-7a/e-5p, and miR-10a-5p isolated from cultured cells and observed unexpectedly low abundance (<1% at each site) of these modifications.
Collapse
Affiliation(s)
- Chenchen Lü
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
- Beijing Institute of Microchemistry, Beijing 100091, China
| | - Hua Xu
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Pengxia Gao
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Aixue Huang
- Institute of Beijing Basic Medicine, Academy of Military Medical Sciences, Beijing 100850, China
| | - Minmin Qu
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Weiwei He
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Haijiang Wu
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jia Chen
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Bin Xu
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Lei Guo
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jianwei Xie
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
41
|
Zhang X, Ma Y, Yu J, Su R, Wang X. Internal m 6 A and m 7 G RNA modifications in hematopoietic system and acute myeloid leukemia. Chin Med J (Engl) 2024; 137:1033-1043. [PMID: 38545694 PMCID: PMC11062654 DOI: 10.1097/cm9.0000000000003073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 05/03/2024] Open
Abstract
ABSTRACT Epitranscriptomics focuses on the RNA-modification-mediated post-transcriptional regulation of gene expression. The past decade has witnessed tremendous progress in our understanding of the landscapes and biological functions of RNA modifications, as prompted by the emergence of potent analytical approaches. The hematopoietic system provides a lifelong supply of blood cells, and gene expression is tightly controlled during the differentiation of hematopoietic stem cells (HSCs). The dysregulation of gene expression during hematopoiesis may lead to severe disorders, including acute myeloid leukemia (AML). Emerging evidence supports the involvement of the mRNA modification system in normal hematopoiesis and AML pathogenesis, which has led to the development of small-molecule inhibitors that target N6-methyladenosine (m 6 A) modification machinery as treatments. Here, we summarize the latest findings and our most up-to-date information on the roles of m 6 A and N7-methylguanine in both physiological and pathological conditions in the hematopoietic system. Furthermore, we will discuss the therapeutic potential and limitations of cancer treatments targeting m 6 A.
Collapse
Affiliation(s)
- Xiaoxu Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing 100005, China
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Yanni Ma
- State Key Laboratory of Common Mechanism Research for Major Diseases, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing 100005, China
- The Institute of Blood Transfusion, Chinese Academy of Medical Sciences / Peking Union Medical College, Chengdu,Sichuan 610052, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing 100005, China
- The Institute of Blood Transfusion, Chinese Academy of Medical Sciences / Peking Union Medical College, Chengdu,Sichuan 610052, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xiaoshuang Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing 100005, China
- The Institute of Blood Transfusion, Chinese Academy of Medical Sciences / Peking Union Medical College, Chengdu,Sichuan 610052, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
42
|
Shen Z, Naveed M, Bao J. Untacking small RNA profiling and RNA fragment footprinting: Approaches and challenges in library construction. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1852. [PMID: 38715192 DOI: 10.1002/wrna.1852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 06/06/2024]
Abstract
Small RNAs (sRNAs) with sizes ranging from 15 to 50 nucleotides (nt) are critical regulators of gene expression control. Prior studies have shown that sRNAs are involved in a broad range of biological processes, such as organ development, tumorigenesis, and epigenomic regulation; however, emerging evidence unveils a hidden layer of diversity and complexity of endogenously encoded sRNAs profile in eukaryotic organisms, including novel types of sRNAs and the previously unknown post-transcriptional RNA modifications. This underscores the importance for accurate, unbiased detection of sRNAs in various cellular contexts. A multitude of high-throughput methods based on next-generation sequencing (NGS) are developed to decipher the sRNA expression and their modifications. Nonetheless, distinct from mRNA sequencing, the data from sRNA sequencing suffer frequent inconsistencies and high variations emanating from the adapter contaminations and RNA modifications, which overall skew the sRNA libraries. Here, we summarize the sRNA-sequencing approaches, and discuss the considerations and challenges for the strategies and methods of sRNA library construction. The pros and cons of sRNA sequencing have significant implications for implementing RNA fragment footprinting approaches, including CLIP-seq and Ribo-seq. We envision that this review can inspire novel improvements in small RNA sequencing and RNA fragment footprinting in future. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Zhaokang Shen
- Department of Obstetrics and Gynecology, Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Muhammad Naveed
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
- Department of Obstetrics and Gynecology, Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianqiang Bao
- Department of Obstetrics and Gynecology, Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| |
Collapse
|
43
|
Li L, Xia X, Yang T, Sun Y, Liu X, Xu W, Lu M, Cui D, Wu Y. RNA methylation: A potential therapeutic target in autoimmune disease. Int Rev Immunol 2024; 43:160-177. [PMID: 37975549 DOI: 10.1080/08830185.2023.2280544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD) are caused by the body's immune response to autoantigens. The pathogenesis of autoimmune diseases is unclear. Numerous studies have demonstrated that RNA methylation plays a key role in disease progression, which is essential for post-transcriptional regulation and has gradually become a broad regulatory mechanism that controls gene expression in various physiological processes, including RNA nuclear output, translation, splicing, and noncoding RNA processing. Here, we outline the writers, erasers, and readers of RNA methylation, including N6-methyladenosine (m6A), 2'-O-methylation (Nm), 2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytidine (m5C) and N7-methylguanosine (m7G). As the role of RNA methylation modifications in the immune system and diseases is explained, the potential treatment value of these modifications has also been demonstrated. This review reports the relationship between RNA methylation and autoimmune diseases, highlighting the need for future research into the therapeutic potential of RNA modifications.
Collapse
Affiliation(s)
- Lele Li
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiaoping Xia
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Tian Yang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yuchao Sun
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xueke Liu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Wei Xu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Mei Lu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Dawei Cui
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingping Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
44
|
Qian W, Yang L, Li T, Li W, Zhou J, Xie S. RNA modifications in pulmonary diseases. MedComm (Beijing) 2024; 5:e546. [PMID: 38706740 PMCID: PMC11068158 DOI: 10.1002/mco2.546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Threatening public health, pulmonary disease (PD) encompasses diverse lung injuries like chronic obstructive PD, pulmonary fibrosis, asthma, pulmonary infections due to pathogen invasion, and fatal lung cancer. The crucial involvement of RNA epigenetic modifications in PD pathogenesis is underscored by robust evidence. These modifications not only shape cell fates but also finely modulate the expression of genes linked to disease progression, suggesting their utility as biomarkers and targets for therapeutic strategies. The critical RNA modifications implicated in PDs are summarized in this review, including N6-methylation of adenosine, N1-methylation of adenosine, 5-methylcytosine, pseudouridine (5-ribosyl uracil), 7-methylguanosine, and adenosine to inosine editing, along with relevant regulatory mechanisms. By shedding light on the pathology of PDs, these summaries could spur the identification of new biomarkers and therapeutic strategies, ultimately paving the way for early PD diagnosis and treatment innovation.
Collapse
Affiliation(s)
- Weiwei Qian
- Emergency Department of Emergency MedicineLaboratory of Emergency Medicine, West China Hospital, And Disaster Medical, Sichuan UniversityChengduSichuanChina
- Emergency DepartmentShangjinnanfu Hospital, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Lvying Yang
- The Department of Respiratory and Critical Care MedicineThe First Veterans Hospital of Sichuan ProvinceChengduSichuanChina
| | - Tianlong Li
- Department of Critical Care Medicine Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Wanlin Li
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's HospitalShenzhenGuangdongChina
| | - Jian Zhou
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National‐Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical SchoolShenzhenChina
- Department of ImmunologyInternational Cancer Center, Shenzhen University Health Science CenterShenzhenGuangdongChina
| | - Shenglong Xie
- Department of Thoracic SurgerySichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
45
|
Dai D, Zhuang H, Shu M, Chen L, Long C, Wu H, Chen B. Identification of N7-methylguanosine-related miRNAs as potential biomarkers for prognosis and drug response in breast cancer. Heliyon 2024; 10:e29326. [PMID: 38628712 PMCID: PMC11017060 DOI: 10.1016/j.heliyon.2024.e29326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
Objectives The impact of N7-methylguanosine (m7G) on tumor progression and the regulatory role of microRNAs (miRNAs) in immune function significantly influence breast cancer (BC) prognosis. Investigating the interplay between m7G modification and miRNAs provides novel insights for assessing prognostics and drug responses in BC. Materials and methods RNA sequences (miRNA and mRNA profiles) and clinical data for BC were acquired from the Cancer Genome Atlas (TCGA) database. A miRNA signature associated with 15 m7G in this cohort was identified using Cox regression and LASSO. The risk score model was evaluated using Kaplan-Meier and time-dependent ROC analysis, categorizing patients into high-risk and low-risk groups. Functional enrichment analyses were conducted to explore potential pathways. The immune system, including scores, cell infiltration, function, and drug sensitivity, was examined and compared between high-risk and low-risk groups. A nomogram that combines risk scores and clinical factors was developed and validated. Single-sample gene set enrichment analysis (ssGSEA) was employed to explore m7G-related miRNA signatures and immune cell relationships in the tumor microenvironment. Additionally, drug susceptibility was compared between risk groups. Results Fifteen m7G-related miRNAs were independently correlated with overall survival (OS) in BC patients. Time-dependent ROC analysis yielded area under the curve (AUC) values of 0.742, 0.726, and 0.712 for predicting 3-, 5-, and 10-year survival rates, respectively. The Kaplan-Meier analysis revealed a significant disparity in OS between the high-risk and low-risk groups (p = 1.3e-6). Multiple regression identified the risk score as a significant independent prognostic factor. An excellent calibration nomogram with a C-index of 0.785 (95 % CI: 0.728-0.843) was constructed. In immune analysis, low-risk patients exhibited heightened immune function and increased responsiveness to immunotherapy and chemotherapy compared to high-risk patients. Conclusion This study systematically analyzed m7G-related miRNAs and revealed their regulatory mechanisms concerning the tumor microenvironment (TME), pathology, and the prognosis of BC patient. Based on these miRNAs, a prognostic model and nomogram were developed for BC patients, facilitating prognostic assessments. These findings can also assist in predicting treatment responses and guiding medication selection.
Collapse
Affiliation(s)
- Danian Dai
- Department of Vascular and Plastic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Hongkai Zhuang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mao Shu
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Lezi Chen
- Department of Vascular and Plastic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Chen Long
- Department of Pathology, Yueyang Maternal Child Health-Care Hospital, Yueyang, 414000, Hunan, China
| | - Hongmei Wu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Bo Chen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| |
Collapse
|
46
|
Zacco E, Broglia L, Kurihara M, Monti M, Gustincich S, Pastore A, Plath K, Nagakawa S, Cerase A, Sanchez de Groot N, Tartaglia GG. RNA: The Unsuspected Conductor in the Orchestra of Macromolecular Crowding. Chem Rev 2024; 124:4734-4777. [PMID: 38579177 PMCID: PMC11046439 DOI: 10.1021/acs.chemrev.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 04/07/2024]
Abstract
This comprehensive Review delves into the chemical principles governing RNA-mediated crowding events, commonly referred to as granules or biological condensates. We explore the pivotal role played by RNA sequence, structure, and chemical modifications in these processes, uncovering their correlation with crowding phenomena under physiological conditions. Additionally, we investigate instances where crowding deviates from its intended function, leading to pathological consequences. By deepening our understanding of the delicate balance that governs molecular crowding driven by RNA and its implications for cellular homeostasis, we aim to shed light on this intriguing area of research. Our exploration extends to the methodologies employed to decipher the composition and structural intricacies of RNA granules, offering a comprehensive overview of the techniques used to characterize them, including relevant computational approaches. Through two detailed examples highlighting the significance of noncoding RNAs, NEAT1 and XIST, in the formation of phase-separated assemblies and their influence on the cellular landscape, we emphasize their crucial role in cellular organization and function. By elucidating the chemical underpinnings of RNA-mediated molecular crowding, investigating the role of modifications, structures, and composition of RNA granules, and exploring both physiological and aberrant phase separation phenomena, this Review provides a multifaceted understanding of the intriguing world of RNA-mediated biological condensates.
Collapse
Affiliation(s)
- Elsa Zacco
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Laura Broglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Misuzu Kurihara
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Michele Monti
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Stefano Gustincich
- Central
RNA Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Annalisa Pastore
- UK
Dementia Research Institute at the Maurice Wohl Institute of King’s
College London, London SE5 9RT, U.K.
| | - Kathrin Plath
- Department
of Biological Chemistry, David Geffen School
of Medicine at the University of California Los Angeles, Los Angeles, California 90095, United States
| | - Shinichi Nagakawa
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Andrea Cerase
- Blizard
Institute,
Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, U.K.
- Unit
of Cell and developmental Biology, Department of Biology, Università di Pisa, 56123 Pisa, Italy
| | - Natalia Sanchez de Groot
- Unitat
de Bioquímica, Departament de Bioquímica i Biologia
Molecular, Universitat Autònoma de
Barcelona, 08193 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
- Catalan
Institution for Research and Advanced Studies, ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
47
|
Nai F, Flores Espinoza MP, Invernizzi A, Vargas-Rosales PA, Bobileva O, Herok M, Caflisch A. Small-Molecule Inhibitors of the m7G-RNA Writer METTL1. ACS BIO & MED CHEM AU 2024; 4:100-110. [PMID: 38645929 PMCID: PMC11027120 DOI: 10.1021/acsbiomedchemau.3c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 04/23/2024]
Abstract
We discovered the first inhibitors of the m7G-RNA writer METTL1 by high-throughput docking and an enzymatic assay based on luminescence. Eleven compounds, which belong to three different chemotypes, show inhibitory activity in the range 40-300 μM. Two adenine derivatives identified by docking have very favorable ligand efficiency of 0.34 and 0.31 kcal/mol per non-hydrogen atom, respectively. Molecular dynamics simulations provide evidence that the inhibitors compete with the binding of the cosubstrate S-adenosyl methionine to METTL1. We also present a soakable crystal form that was used to determine the structure of the complex of METTL1 with sinefungin at a resolution of 1.85 Å.
Collapse
Affiliation(s)
- Francesco Nai
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Annalisa Invernizzi
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Olga Bobileva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Marcin Herok
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
48
|
Liu ZY, Lin LC, Liu ZY, Yang JJ, Tao H. m6A epitranscriptomic and epigenetic crosstalk in cardiac fibrosis. Mol Ther 2024; 32:878-889. [PMID: 38311850 PMCID: PMC11163196 DOI: 10.1016/j.ymthe.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/27/2023] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
Cardiac fibrosis, a crucial pathological characteristic of various cardiac diseases, presents a significant treatment challenge. It involves the deposition of the extracellular matrix (ECM) and is influenced by genetic and epigenetic factors. Prior investigations have predominantly centered on delineating the substantial influence of epigenetic and epitranscriptomic mechanisms in driving the progression of fibrosis. Recent studies have illuminated additional avenues for modulating the progression of fibrosis, offering potential solutions to the challenging issues surrounding fibrosis treatment. In the context of cardiac fibrosis, an intricate interplay exists between m6A epitranscriptomic and epigenetics. This interplay governs various pathophysiological processes: mitochondrial dysfunction, mitochondrial fission, oxidative stress, autophagy, apoptosis, pyroptosis, ferroptosis, cell fate switching, and cell differentiation, all of which affect the advancement of cardiac fibrosis. In this comprehensive review, we meticulously analyze pertinent studies, emphasizing the interplay between m6A epitranscriptomics and partial epigenetics (including histone modifications and noncoding RNA), aiming to provide novel insights for cardiac fibrosis treatment.
Collapse
Affiliation(s)
- Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P.R. China
| | - Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P.R. China
| | - Zhen-Yu Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P.R. China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P.R. China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P.R. China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P.R. China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China.
| |
Collapse
|
49
|
Jin J, Liu XM, Shao W, Meng XM. Nucleic acid and protein methylation modification in renal diseases. Acta Pharmacol Sin 2024; 45:661-673. [PMID: 38102221 PMCID: PMC10943093 DOI: 10.1038/s41401-023-01203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Although great efforts have been made to elucidate the pathological mechanisms of renal diseases and potential prevention and treatment targets that would allow us to retard kidney disease progression, we still lack specific and effective management methods. Epigenetic mechanisms are able to alter gene expression without requiring DNA mutations. Accumulating evidence suggests the critical roles of epigenetic events and processes in a variety of renal diseases, involving functionally relevant alterations in DNA methylation, histone methylation, RNA methylation, and expression of various non-coding RNAs. In this review, we highlight recent advances in the impact of methylation events (especially RNA m6A methylation, DNA methylation, and histone methylation) on renal disease progression, and their impact on treatments of renal diseases. We believe that a better understanding of methylation modification changes in kidneys may contribute to the development of novel strategies for the prevention and management of renal diseases.
Collapse
Affiliation(s)
- Juan Jin
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xue-Mei Liu
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
50
|
Chen H, Liu H, Zhang C, Xiao N, Li Y, Zhao X, Zhang R, Gu H, Kang Q, Wan J. RNA methylation-related inhibitors: Biological basis and therapeutic potential for cancer therapy. Clin Transl Med 2024; 14:e1644. [PMID: 38572667 PMCID: PMC10993167 DOI: 10.1002/ctm2.1644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 04/05/2024] Open
Abstract
RNA methylation is widespread in nature. Abnormal expression of proteins associated with RNA methylation is strongly associated with a number of human diseases including cancer. Increasing evidence suggests that targeting RNA methylation holds promise for cancer treatment. This review specifically describes several common RNA modifications, such as the relatively well-studied N6-methyladenosine, as well as 5-methylcytosine and pseudouridine (Ψ). The regulatory factors involved in these modifications and their roles in RNA are also comprehensively discussed. We summarise the diverse regulatory functions of these modifications across different types of RNAs. Furthermore, we elucidate the structural characteristics of these modifications along with the development of specific inhibitors targeting them. Additionally, recent advancements in small molecule inhibitors targeting RNA modifications are presented to underscore their immense potential and clinical significance in enhancing therapeutic efficacy against cancer. KEY POINTS: In this paper, several important types of RNA modifications and their related regulatory factors are systematically summarised. Several regulatory factors related to RNA modification types were associated with cancer progression, and their relationships with cancer cell migration, invasion, drug resistance and immune environment were summarised. In this paper, the inhibitors targeting different regulators that have been proposed in recent studies are summarised in detail, which is of great significance for the development of RNA modification regulators and cancer treatment in the future.
Collapse
Affiliation(s)
- Huanxiang Chen
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- School of Life ScienceZhengzhou UniversityZhengzhouChina
| | - Hongyang Liu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chenxing Zhang
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Nan Xiao
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yang Li
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | | | - Ruike Zhang
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Huihui Gu
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Qiaozhen Kang
- School of Life ScienceZhengzhou UniversityZhengzhouChina
| | - Junhu Wan
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|