1
|
Kakoulidis P, Theotoki EI, Pantazopoulou VI, Vlachos IS, Emiris IZ, Stravopodis DJ, Anastasiadou E. Comparative structural insights and functional analysis for the distinct unbound states of Human AGO proteins. Sci Rep 2025; 15:9432. [PMID: 40108192 PMCID: PMC11923369 DOI: 10.1038/s41598-025-91849-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
The four human Argonaute (AGO) proteins, critical in RNA interference and gene regulation, exhibit high sequence and structural similarity but differ functionally. We investigated the underexplored structural relationships of these paralogs through microsecond-scale molecular dynamics simulations. Our findings reveal that AGO proteins adopt similar, yet unsynchronized, open-close states. We observed similar and unique local conformations, interdomain distances and intramolecular interactions. Conformational differences at GW182/ZSWIM8 interaction sites and in catalytic/pseudo-catalytic tetrads were minimal. Tetrads display conserved movements, interacting with distant miRNA binding residues. We pinpointed long common protein subsequences with consistent molecular movement but varying solvent accessibility per AGO. We observed diverse conformational patterns at the post-transcriptional sites of the AGOs, except for AGO4. By combining simulation data with large datasets of experimental structures and AlphaFold's predictions, we identified proteins with genomic and proteomic similarities. Some of the identified proteins operate in the mitosis pathway, sharing mitosis-related interactors and miRNA targets. Additionally, we suggest that AGOs interact with a mitosis initiator, zinc ion, by predicting potential binding sites and detecting structurally similar proteins with the same function. These findings further advance our understanding for the human AGO protein family and their role in central cellular processes.
Collapse
Affiliation(s)
- Panos Kakoulidis
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 16122, Athens, Greece.
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 11527, Athens, Greece.
| | - Eleni I Theotoki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 11527, Athens, Greece
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701, Athens, Greece
| | - Vasiliki I Pantazopoulou
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Ioannis S Vlachos
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA, 02142, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Dana BuildingBoston, MA, 02215, USA
| | - Ioannis Z Emiris
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 16122, Athens, Greece
- ATHENA Research Center, Aigialias & Chalepa, 15125, Marousi, Greece
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701, Athens, Greece
| | - Ema Anastasiadou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 11527, Athens, Greece
- Department of Health Science, Higher Colleges of Technology (HCT), Academic City Campus, 17155, Dubai, United Arab Emirates
| |
Collapse
|
2
|
Li Z, Xu Q, Zhong J, Zhang Y, Zhang T, Ying X, Lu X, Li X, Wan L, Xue J, Huang J, Zhen Y, Zhang Z, Wu J, Shen EZ. Structural insights into RNA cleavage by PIWI Argonaute. Nature 2025; 639:250-259. [PMID: 39814893 DOI: 10.1038/s41586-024-08438-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/21/2024] [Indexed: 01/18/2025]
Abstract
Argonaute proteins are categorized into AGO and PIWI clades. Across most animal species, AGO-clade proteins are widely expressed in various cell types, and regulate normal gene expression1. By contrast, PIWI-clade proteins predominantly function during gametogenesis to suppress transposons and ensure fertility1,2. Both clades use nucleic acid guides for target recognition by means of base pairing, crucial for initiating target silencing, often through direct cleavage. AGO-clade proteins use a narrow channel to secure a tight guide-target interaction3. By contrast, PIWI proteins feature a wider channel that potentially allows mismatches during pairing, broadening target silencing capability4,5. However, the mechanism of PIWI-mediated target cleavage remains unclear. Here we demonstrate that after target binding, PIWI proteins undergo a conformational change from an 'open' state to a 'locked' state, facilitating base pairing and enhancing target cleavage efficiency. This transition involves narrowing of the binding channel and repositioning of the PIWI-interacting RNA-target duplex towards the MID-PIWI lobe, establishing extensive contacts for duplex stabilization. During this transition, we also identify an intermediate 'comma-shaped' conformation, which might recruit GTSF1, a known auxiliary protein that enhances PIWI cleavage activity6. GTSF1 facilitates the transition to the locked state by linking the PIWI domain to the RNA duplex, thereby expediting the conformational change critical for efficient target cleavage. These findings explain the molecular mechanisms underlying PIWI-PIWI-interacting RNA complex function in target RNA cleavage, providing insights into how dynamic conformational changes from PIWI proteins coordinate cofactors to safeguard gametogenesis.
Collapse
Affiliation(s)
- Zhiqing Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Qikui Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jing Zhong
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yan Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Tianxiang Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaoze Ying
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaoli Lu
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaoyi Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Li Wan
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Junchao Xue
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jing Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Ying Zhen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Zhao Zhang
- Duke University School of Medicine, Department of Pharmacology and Cancer Biology, Durham, NC, USA
| | - Jianping Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
| | - En-Zhi Shen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
3
|
Chen Q, He H, Zhu Y, Li X, Fang J, Li Z, Liu P, Zhou L, Pan Y, Wu G. Identification of Acanthopanax trifoliatus (L.) Merr as a Novel Potential Therapeutic Agent Against COVID-19 and Pharyngitis. Molecules 2025; 30:1055. [PMID: 40076279 PMCID: PMC11901475 DOI: 10.3390/molecules30051055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Individuals infected with COVID-19 often experience the distressing discomfort of pharyngitis. Thus, it is crucial to develop novel drugs to improve therapeutic options. In this study, we investigated the interaction between bioactive compounds isolated from Acanthopanax trifoliatus (L.) Merr and proteins associated with COVID-19 and pharyngitis through in silico analysis. Several molecules demonstrated high affinities to multiple targets, indicating significant potential for alleviating pharyngitis and other COVID-19-related symptoms. Among them, rutin and isochlorogenic acid C, two major components in Acanthopanax trifoliatus (L.) Merr ethanol extracts, were further experimentally demonstrated to exhibit strong inhibitory effects against SARS-CoV-2 and to possess significant anti-inflammatory activities. Inhibition of over 50% in several key genes was observed, demonstrating the efficacy of in silico methods in identifying high-affinity target binders. Our findings provide a theoretical foundation for the development of Acanthopanax trifoliatus (L.) Merr as a novel multi-target therapeutic agent for both COVID-19 and pharyngitis.
Collapse
Affiliation(s)
- Qi Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui He
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanghong Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junhao Fang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhexi Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Panghui Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lin Zhou
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yufang Pan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guoyu Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
4
|
Li P, Lin Y, Ma H, Zhang J, Zhang Q, Yan R, Fan Y. Epigenetic regulation in female reproduction: the impact of m6A on maternal-fetal health. Cell Death Discov 2025; 11:43. [PMID: 39904996 PMCID: PMC11794895 DOI: 10.1038/s41420-025-02324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
With the development of public health, female diseases have become the focus of current concern. The unique reproductive anatomy of women leads to the development of gynecological diseases gradually become an important part of the socio-economic burden. Epigenetics plays an irreplaceable role in gynecologic diseases. As an important mRNA modification, m6A is involved in the maturation of ovum cells and maternal-fetal microenvironment. At present, researchers have found that m6A is involved in the regulation of gestational diabetes and other reproductive system diseases, but the specific mechanism is not clear. In this manuscript, we summarize the components of m6A, the biological function of m6A, the progression of m6A in the maternal-fetal microenvironment and a variety of gynecological diseases as well as the progression of targeted m6A treatment-related diseases, providing a new perspective for clinical treatment-related diseases.
Collapse
Affiliation(s)
- Peipei Li
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hongyun Ma
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jiao Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Qiaorui Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Ruihua Yan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yang Fan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China.
| |
Collapse
|
5
|
Zamanos A, Ioannakis G, Emiris IZ. HydraProt: A New Deep Learning Tool for Fast and Accurate Prediction of Water Molecule Positions for Protein Structures. J Chem Inf Model 2024; 64:2594-2611. [PMID: 38552195 PMCID: PMC11005053 DOI: 10.1021/acs.jcim.3c01559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 04/09/2024]
Abstract
Water molecules are integral to the structural stability of proteins and vital for facilitating molecular interactions. However, accurately predicting their precise position around protein structures remains a significant challenge, making it a vibrant research area. In this paper, we introduce HydraProt (deep Hydration of Proteins), a novel methodology for predicting precise positions of water molecule oxygen atoms around protein structures, leveraging two interconnected deep learning architectures: a 3D U-net and a Multi-Layer Perceptron (MLP). Our approach starts by introducing a coarse voxel-based representation of the protein, which allows for rapid sampling of candidate water positions via the 3D U-net. These water positions are then assessed by embedding the water-protein relationship in the Euclidean space by means of an MLP. Finally, a postprocessing step is applied to further refine the MLP predictions. HydraProt surpasses existing state-of-the-art approaches in terms of precision and recall and has been validated on large data sets of protein structures. Notably, our method offers rapid inference runtime and should constitute the method of choice for protein structure studies and drug discovery applications. Our pretrained models, data, and the source code required to reproduce these results are accessible at https://github.com/azamanos/HydraProt.
Collapse
Affiliation(s)
- Andreas Zamanos
- Archimedes, Athena Research Center, Marousi 15125, Greece
- Department
of Informatics and Telecommunications, National
and Kapodistrian University of Athens, Athens 16122, Greece
| | - George Ioannakis
- Institute
for Language and Speech Processing, Athena
Research Center, Xanthi 67100, Greece
| | - Ioannis Z. Emiris
- Department
of Informatics and Telecommunications, National
and Kapodistrian University of Athens, Athens 16122, Greece
- Athena
Research Center, Marousi 15125, Greece
| |
Collapse
|
6
|
Geleta U, Prajapati P, Bachstetter A, Nelson PT, Wang WX. Sex-Biased Expression and Response of microRNAs in Neurological Diseases and Neurotrauma. Int J Mol Sci 2024; 25:2648. [PMID: 38473893 PMCID: PMC10931569 DOI: 10.3390/ijms25052648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Neurological diseases and neurotrauma manifest significant sex differences in prevalence, progression, outcome, and therapeutic responses. Genetic predisposition, sex hormones, inflammation, and environmental exposures are among many physiological and pathological factors that impact the sex disparity in neurological diseases. MicroRNAs (miRNAs) are a powerful class of gene expression regulator that are extensively involved in mediating biological pathways. Emerging evidence demonstrates that miRNAs play a crucial role in the sex dimorphism observed in various human diseases, including neurological diseases. Understanding the sex differences in miRNA expression and response is believed to have important implications for assessing the risk of neurological disease, defining therapeutic intervention strategies, and advancing both basic research and clinical investigations. However, there is limited research exploring the extent to which miRNAs contribute to the sex disparities observed in various neurological diseases. Here, we review the current state of knowledge related to the sexual dimorphism in miRNAs in neurological diseases and neurotrauma research. We also discuss how sex chromosomes may contribute to the miRNA sexual dimorphism phenomenon. We attempt to emphasize the significance of sexual dimorphism in miRNA biology in human diseases and to advocate a gender/sex-balanced science.
Collapse
Affiliation(s)
- Urim Geleta
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
| | - Paresh Prajapati
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
| | - Adam Bachstetter
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Peter T. Nelson
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Wang-Xia Wang
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
7
|
Nakanishi K. When Argonaute takes out the ribonuclease sword. J Biol Chem 2024; 300:105499. [PMID: 38029964 PMCID: PMC10772731 DOI: 10.1016/j.jbc.2023.105499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
Argonaute (AGO) proteins in all three domains of life form ribonucleoprotein or deoxyribonucleoprotein complexes by loading a guide RNA or DNA, respectively. Since all AGOs retain a PIWI domain that takes an RNase H fold, the ancestor was likely an endoribonuclease (i.e., a slicer). In animals, most miRNA-mediated gene silencing occurs slicer independently. However, the slicer activity of AGO is indispensable in specific events, such as development and differentiation, which are critical for vertebrates and thus cannot be replaced by the slicer-independent regulation. This review highlights the distinctions in catalytic activation mechanisms among slicing-competent AGOs, shedding light on the roles of two metal ions in target recognition and cleavage. The precision of the target specificity by the RNA-induced silencing complexes is reevaluated and redefined. The possible coevolutionary relationship between slicer-independent gene regulation and AGO-binding protein, GW182, is also explored. These discussions reveal that numerous captivating questions remain unanswered regarding the timing and manner in which AGOs employ their slicing activity.
Collapse
Affiliation(s)
- Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
8
|
Wen T, Li T, Xu Y, Zhang Y, Pan H, Wang Y. The role of m6A epigenetic modifications in tumor coding and non-coding RNA processing. Cell Commun Signal 2023; 21:355. [PMID: 38102645 PMCID: PMC10722709 DOI: 10.1186/s12964-023-01385-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/04/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Epigenetic modifications of RNA significantly contribute to the regulatory processes in tumors and have, thus, received considerable attention. The m6A modification, known as N6-methyladenosine, is the predominant epigenetic alteration found in both eukaryotic mRNAs and ncRNAs. MAIN BODY m6A methylation modifications are dynamically reversible and are catalyzed, removed, and recognized by the complex of m6A methyltransferase (MTases), m6A demethylase, and m6A methyl recognition proteins (MRPs). Published evidence suggests that dysregulated m6A modification results in abnormal biological behavior of mature mRNA, leading to a variety of abnormal physiological processes, with profound implications for tumor development in particular. CONCLUSION Abnormal RNA processing due to dysregulation of m6A modification plays an important role in tumor pathogenesis and potential mechanisms of action. In this review, we comprehensively explored the mechanisms by which m6A modification regulates mRNA and ncRNA processing, focusing on their roles in tumors, and aiming to understand the important regulatory function of m6A modification, a key RNA epigenetic modification, in tumor cells, with a view to providing theoretical support for tumor diagnosis and treatment. Video Abstract.
Collapse
Affiliation(s)
- Tongxuan Wen
- Department of Neurosurgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China
| | - Tong Li
- Department of Neurosurgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China
| | - Yeqiu Xu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China
| | - Yuanzhuang Zhang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China
| | - Hai Pan
- Department of Neurosurgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China.
| | - Yong Wang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China.
| |
Collapse
|
9
|
Sim G, Kehling AC, Park MS, Divoky C, Zhang H, Malhotra N, Secor J, Nakanishi K. Determining the defining lengths between mature microRNAs/small interfering RNAs and tinyRNAs. Sci Rep 2023; 13:19761. [PMID: 37957252 PMCID: PMC10643408 DOI: 10.1038/s41598-023-46562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are loaded into Argonaute (AGO) proteins, forming RNA-induced silencing complexes (RISCs). The assembly process establishes the seed, central, 3' supplementary, and tail regions across the loaded guide, enabling the RISC to recognize target RNAs for silencing. This guide segmentation is caused by anchoring the 3' end at the AGO PAZ domain, but the minimum guide length required for the conformation remains to be studied because the current miRNA size defined by Dicer processing is ambiguous. Using a 3' → 5' exonuclease ISG20, we determined the lengths of AGO-associated miR-20a and let-7a with 3' ends that no longer reach the PAZ domain. Unexpectedly, miR-20a and let-7a needed different lengths, 19 and 20 nt, respectively, to maintain their RISC conformation. This difference can be explained by the low affinity of the PAZ domain for the adenosine at g19 of let-7a, suggesting that the tail-region sequence slightly alters the minimum guide length. We also present that 17-nt guides are sufficiently short enough to function as tinyRNAs (tyRNAs) whose 3' ends are not anchored at the PAZ domain. Since tyRNAs do not have the prerequisite anchoring for the standardized guide segmentation, they would recognize targets differently from miRNAs and siRNAs.
Collapse
Affiliation(s)
- GeunYoung Sim
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Audrey C Kehling
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Mi Seul Park
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Cameron Divoky
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Huaqun Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Nipun Malhotra
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Jackson Secor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Kotaro Nakanishi
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
- Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
10
|
Sim G, Kehling AC, Park MS, Divoky C, Zhang H, Malhotra N, Secor J, Nakanishi K. Determining the defining lengths between mature microRNAs/small interfering RNAs and tinyRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564437. [PMID: 37961191 PMCID: PMC10634876 DOI: 10.1101/2023.10.27.564437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are loaded into Argonaute (AGO) proteins, forming RNA-induced silencing complexes (RISCs). The assembly process establishes the seed, central, 3' supplementary, and tail regions across the loaded guide, enabling the RISC to recognize and cleave target RNAs. This guide segmentation is caused by anchoring the 3' end at the AGO PAZ domain, but the minimum guide length required for the conformation remains to be studied because there was no method by which to do so. Using a 3'→5' exonuclease ISG20, we determined the lengths of AGO-associated miR-20a and let-7a with 3' ends that no longer reach the PAZ domain. Unexpectedly, miR-20a and let-7a needed different lengths, 19 and 20 nt, respectively, to maintain their RISC conformation. This difference can be explained by the low affinity of the PAZ domain for the adenosine at g19 of let-7a, suggesting that the tail-region sequence slightly alters the minimum guide length. We also present that 17-nt guides are sufficiently short enough to function as tinyRNAs (tyRNAs) whose 3' ends are not anchored at the PAZ domain. Since tyRNAs do not have the prerequisite anchoring for the standardized guide segmentation, they would recognize targets differently from miRNAs and siRNAs.
Collapse
Affiliation(s)
- GeunYoung Sim
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Audrey C. Kehling
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Mi Seul Park
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Cameron Divoky
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Huaqun Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Nipun Malhotra
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Jackson Secor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Kotaro Nakanishi
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Xiao Y, Maeda S, Otomo T, MacRae IJ. Structural basis for RNA slicing by a plant Argonaute. Nat Struct Mol Biol 2023; 30:778-784. [PMID: 37127820 PMCID: PMC10868596 DOI: 10.1038/s41594-023-00989-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Argonaute (AGO) proteins use small RNAs to recognize transcripts targeted for silencing in plants and animals. Many AGOs cleave target RNAs using an endoribonuclease activity termed 'slicing'. Slicing by DNA-guided prokaryotic AGOs has been studied in detail, but structural insights into RNA-guided slicing by eukaryotic AGOs are lacking. Here we present cryogenic electron microscopy structures of the Arabidopsis thaliana Argonaute10 (AtAgo10)-guide RNA complex with and without a target RNA representing a slicing substrate. The AtAgo10-guide-target complex adopts slicing-competent and slicing-incompetent conformations that are unlike known prokaryotic AGO structures. AtAgo10 slicing activity is licensed by docking target (t) nucleotides t9-t13 into a surface channel containing the AGO endoribonuclease active site. A β-hairpin in the L1 domain secures the t9-t13 segment and coordinates t9-t13 docking with extended guide-target pairing. Results show that prokaryotic and eukaryotic AGOs use distinct mechanisms for achieving target slicing and provide insights into small interfering RNA potency.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Shintaro Maeda
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Takanori Otomo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
12
|
Xu Z, Sziraki A, Lee J, Zhou W, Cao J. PerturbSci-Kinetics: Dissecting key regulators of transcriptome kinetics through scalable single-cell RNA profiling of pooled CRISPR screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526143. [PMID: 36778497 PMCID: PMC9915486 DOI: 10.1101/2023.01.29.526143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Here we described PerturbSci-Kinetics, a novel combinatorial indexing method for capturing three-layer single-cell readout (i.e., whole transcriptomes, nascent transcriptomes, sgRNA identities) across hundreds of genetic perturbations. Through PerturbSci-Kinetics profiling of pooled CRISPR screens targeting a variety of biological processes, we were able to decipher the complexity of RNA regulations at multiple levels (e.g., synthesis, processing, degradation), and revealed key regulators involved in miRNA and mitochondrial RNA processing pathways. Our technique opens the possibility of systematically decoding the genome-wide regulatory network underlying RNA temporal dynamics at scale and cost-effectively.
Collapse
|
13
|
Mauro M, Berretta M, Palermo G, Cavalieri V, La Rocca G. The Multiplicity of Argonaute Complexes in Mammalian Cells. J Pharmacol Exp Ther 2023; 384:1-9. [PMID: 35667689 PMCID: PMC9827513 DOI: 10.1124/jpet.122.001158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/12/2023] Open
Abstract
Argonautes (AGOs) are a highly conserved family of proteins found in most eukaryotes and involved in mechanisms of gene regulation, both at the transcriptional and post-transcriptional level. Among other functions, AGO proteins associate with microRNAs (miRNAs) to mediate the post-transcriptional repression of protein-coding genes. In this process, AGOs associate with members of the trinucleotide repeat containing 6 protein (TNRC6) family to form the core of the RNA-induced silencing complex (RISC), the effector machinery that mediates miRNA function. However, the description of the exact composition of the RISC has been a challenging task due to the fact the AGO's interactome is dynamically regulated in a cell type- and condition-specific manner. Here, we summarize some of the most significant studies that have identified AGO complexes in mammalian cells, as well as the approaches used to characterize them. Finally, we discuss possible opportunities to exploit what we have learned on the properties of the RISC to develop novel anti-cancer therapies. SIGNIFICANCE STATEMENT: The RNA-induced silencing complex (RISC) is the molecular machinery that mediates miRNA function in mammals. Studies over the past two decades have shed light on important biochemical and functional properties of this complex. However, many aspects of this complex await further elucidation, mostly due to technical limitations that have hindered full characterization. Here, we summarize some of the most significant studies on the mammalian RISC and discuss possible sources of biases in the approaches used to characterize it.
Collapse
Affiliation(s)
- Maurizio Mauro
- Department of Medicine, Albert Einstein College of Medicine, New York, New York (M.M.); Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy (M.B.); Gruppo Oncologico Ricercatori Italiani, GORI ONLUS, Pordenone, Italy (M.B.); Department of Biomedical and Biotechnological Sciences, University of Catania, Catania Italy (G.P.); Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy (V.C.); and Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York (G.L.R.)
| | - Massimiliano Berretta
- Department of Medicine, Albert Einstein College of Medicine, New York, New York (M.M.); Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy (M.B.); Gruppo Oncologico Ricercatori Italiani, GORI ONLUS, Pordenone, Italy (M.B.); Department of Biomedical and Biotechnological Sciences, University of Catania, Catania Italy (G.P.); Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy (V.C.); and Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York (G.L.R.)
| | - Giuseppe Palermo
- Department of Medicine, Albert Einstein College of Medicine, New York, New York (M.M.); Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy (M.B.); Gruppo Oncologico Ricercatori Italiani, GORI ONLUS, Pordenone, Italy (M.B.); Department of Biomedical and Biotechnological Sciences, University of Catania, Catania Italy (G.P.); Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy (V.C.); and Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York (G.L.R.)
| | - Vincenzo Cavalieri
- Department of Medicine, Albert Einstein College of Medicine, New York, New York (M.M.); Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy (M.B.); Gruppo Oncologico Ricercatori Italiani, GORI ONLUS, Pordenone, Italy (M.B.); Department of Biomedical and Biotechnological Sciences, University of Catania, Catania Italy (G.P.); Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy (V.C.); and Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York (G.L.R.)
| | - Gaspare La Rocca
- Department of Medicine, Albert Einstein College of Medicine, New York, New York (M.M.); Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy (M.B.); Gruppo Oncologico Ricercatori Italiani, GORI ONLUS, Pordenone, Italy (M.B.); Department of Biomedical and Biotechnological Sciences, University of Catania, Catania Italy (G.P.); Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy (V.C.); and Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York (G.L.R.)
| |
Collapse
|
14
|
Quévillon Huberdeau M, Shah VN, Nahar S, Neumeier J, Houle F, Bruckmann A, Gypas F, Nakanishi K, Großhans H, Meister G, Simard MJ. A specific type of Argonaute phosphorylation regulates binding to microRNAs during C. elegans development. Cell Rep 2022; 41:111822. [PMID: 36516777 PMCID: PMC10436268 DOI: 10.1016/j.celrep.2022.111822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/22/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Argonaute proteins are at the core of the microRNA-mediated gene silencing pathway essential for animals. In C. elegans, the microRNA-specific Argonautes ALG-1 and ALG-2 regulate multiple processes required for proper animal developmental timing and viability. Here we identified a phosphorylation site on ALG-1 that modulates microRNA association. Mutating ALG-1 serine 642 into a phospho-mimicking residue impairs microRNA binding and causes embryonic lethality and post-embryonic phenotypes that are consistent with alteration of microRNA functions. Monitoring microRNA levels in alg-1 phosphorylation mutant animals shows that microRNA passenger strands increase in abundance but are not preferentially loaded into ALG-1, indicating that the miRNA binding defects could lead to microRNA duplex accumulation. Our genetic and biochemical experiments support protein kinase A (PKA) KIN-1 as the putative kinase that phosphorylates ALG-1 serine 642. Our data indicate that PKA triggers ALG-1 phosphorylation to regulate its microRNA association during C. elegans development.
Collapse
Affiliation(s)
- Miguel Quévillon Huberdeau
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec City, QC G1R 3S3, Canada; Université Laval Cancer Research Centre, Québec City, QC G1R 3S3, Canada
| | - Vivek Nilesh Shah
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec City, QC G1R 3S3, Canada; Université Laval Cancer Research Centre, Québec City, QC G1R 3S3, Canada
| | - Smita Nahar
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Julia Neumeier
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - François Houle
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec City, QC G1R 3S3, Canada; Université Laval Cancer Research Centre, Québec City, QC G1R 3S3, Canada
| | - Astrid Bruckmann
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Foivos Gypas
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, Columbus, OH 43210, USA
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4056 Basel, Switzerland
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Martin J Simard
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec City, QC G1R 3S3, Canada; Université Laval Cancer Research Centre, Québec City, QC G1R 3S3, Canada.
| |
Collapse
|
15
|
Sim G, Kehling AC, Park MS, Secor J, Divoky C, Zhang H, Malhotra N, Bhagdikar D, El-wahaband EA, Nakanishi K. Manganese-dependent microRNA trimming by 3’→5’ exonucleases generates 14-nucleotide or shorter tiny RNAs.. [DOI: 10.1101/2022.10.06.511180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractMicroRNAs (miRNAs) are about 22-nucleotide (nt) non-coding RNAs forming the effector complexes with Argonaute (AGO) proteins to repress gene expression. Although tiny RNAs (tyRNAs) shorter than 19 nt have been found to bind to plant and vertebrate AGOs, their biogenesis remains a long-standing question. Here, our in vivo and in vitro studies show several 3’→5’ exonucleases, such as interferon-stimulated gene 20 kDa (ISG20), three prime repair exonuclease 1 (TREX1), and ERI1 (enhanced RNAi, also known as 3’hExo), capable of trimming AGO-associated full-length miRNAs to 14 nt or shorter tyRNAs. Their guide trimming occurs in a manganese-dependent manner but independently of the guide sequence and the loaded four human AGO paralogs. We also show that ISG20-mediated guide trimming makes Argonaute3 (AGO3) a slicer. Given the high Mn2+ concentrations in stressed cells, virus-infected cells, and neurodegeneration, our study sheds light on the roles of the Mn2+-dependent exonucleases in remodeling gene silencing.
Collapse
|
16
|
Construction of a miRNA-mRNA Network Related to Exosomes in Colon Cancer. DISEASE MARKERS 2022; 2022:2192001. [PMID: 35845138 PMCID: PMC9277152 DOI: 10.1155/2022/2192001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 12/24/2022]
Abstract
Background The competing endogenous RNA (CeRNA) network plays important roles in the occurrence and development of colon cancer. This research is aimed at constructing a miRNA-mRNA network associated with exosomes in colon cancer. Methods We explored the GEO database and then analyzed the RNAs of 722 samples to obtain differentially expressed miRNAs (DEMs) and mRNAs (DEGs) alongside the progress of colon cancer. Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEM target genes and DEGs were performed. In addition, a miRNA-mRNA network related to exosomes in colon cancer was constructed based on DEMs and DEGs. Finally, the expression of miRNA and mRNA in the network was verified by GEPIA2 on the base of TCGA database. Results Through our analysis, 19 DEMs (17 up and 2 down) and 1672 DEGs (954 up and 718 down) were screened. The GO and KEGG results show that these DEGs were mainly enriched in ribonucleoprotein complex biogenesis, noncoding RNA metabolic process, cell-substrate junction, cadherin binding, transcription coregulator activity, and regulation of the human T-cell leukemia virus 1 infection-related pathway. Besides, a miRNA-mRNA network, including 4 miRNAs (hsa-miR-623, hsa-miR-320c, hsa-miR-486-5p, and hsa-miR-1290) and 7 mRNAs (GNAI1, CADM1, PGRMC2, etc.), was constructed. Three of these seven mRNAs were downregulated in colon cancer. Ultimately, the GNAI1, CADM1, and PGRMC2 expression levels were verified by TCGA database. Conclusions This study reveals the network relationship between colon cancer exosome-derived miRNA and targeted mRNA. It deepens our understanding of new molecular mechanisms and pathways that may play a role in the occurrence and metastasis of colon cancer.
Collapse
|
17
|
Nakanishi K. Anatomy of four human Argonaute proteins. Nucleic Acids Res 2022; 50:6618-6638. [PMID: 35736234 PMCID: PMC9262622 DOI: 10.1093/nar/gkac519] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) bind to complementary target RNAs and regulate their gene expression post-transcriptionally. These non-coding regulatory RNAs become functional after loading into Argonaute (AGO) proteins to form the effector complexes. Humans have four AGO proteins, AGO1, AGO2, AGO3 and AGO4, which share a high sequence identity. Since most miRNAs are found across the four AGOs, it has been thought that they work redundantly, and AGO2 has been heavily studied as the exemplified human paralog. Nevertheless, an increasing number of studies have found that the other paralogs play unique roles in various biological processes and diseases. In the last decade, the structural study of the four AGOs has provided the field with solid structural bases. This review exploits the completed structural catalog to describe common features and differences in target specificity across the four AGOs.
Collapse
Affiliation(s)
- Kotaro Nakanishi
- To whom correspondence should be addressed. Tel: +1 614 688 2188;
| |
Collapse
|
18
|
Abstract
MicroRNAs (miRNAs) are key players in gene regulation that target specific mRNAs for degradation or translational repression. Each miRNA is synthesized as a miRNA duplex comprising two strands (5p and 3p). However, only one of the two strands becomes active and is selectively incorporated into the RNA-induced silencing complex in a process known as miRNA strand selection. Recently, significant progress has been made in understanding the factors and processes involved in strand selection. Here, we explore the selection and functionality of the miRNA star strand (either 5p or 3p), which is generally present in the cell at low levels compared to its partner strand and, historically, has been thought to possess no biological activity. We also highlight the concepts of miRNA arm switching and miRNA isomerism. Finally, we offer insights into the impact of aberrant strand selection on immunity and cancer. Leading us through this journey is miR-155, a well-established regulator of immunity and cancer, and the increasing evidence that its 3p strand plays a role in these arenas. Interestingly, the miR-155-5p/-3p ratio appears to vary dependent on the timing of the immune response, and the 3p strand seems to play a regulatory role upon its partner 5p strand.
Collapse
Affiliation(s)
- Owen Dawson
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
19
|
Leitão AL, Enguita FJ. A Structural View of miRNA Biogenesis and Function. Noncoding RNA 2022; 8:ncrna8010010. [PMID: 35202084 PMCID: PMC8874510 DOI: 10.3390/ncrna8010010] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/16/2022] Open
Abstract
Micro-RNAs (miRNAs) are a class of non-coding RNAs (ncRNAs) that act as post-transcriptional regulators of gene expression. Since their discovery in 1993, they have been the subject of deep study due to their involvement in many important biological processes. Compared with other ncRNAs, miRNAs are generated from devoted transcriptional units which are processed by a specific set of endonucleases. The contribution of structural biology methods for understanding miRNA biogenesis and function has been essential for the dissection of their roles in cell biology and human disease. In this review, we summarize the application of structural biology for the characterization of the molecular players involved in miRNA biogenesis (processors and effectors), starting from the X-ray crystallography methods to the more recent cryo-electron microscopy protocols.
Collapse
Affiliation(s)
- Ana Lúcia Leitão
- MEtRICs, Department of Sciences and Technology of Biomass, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
20
|
Nakanishi K. Are Argonaute-Associated Tiny RNAs Junk, Inferior miRNAs, or a New Type of Functional RNAs? Front Mol Biosci 2021; 8:795356. [PMID: 34926585 PMCID: PMC8678501 DOI: 10.3389/fmolb.2021.795356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 11/14/2022] Open
Abstract
The biosynthesis pathways of microRNAs (miRNAs) have been well characterized with the identification of the required components. miRNAs are synthesized from the transcripts of miRNA genes and other RNAs, such as introns, transfer RNAs, ribosomal RNAs, small nucleolar RNAs, and even viral miRNAs. These small RNAs are loaded into Argonaute (AGO) proteins and recruit the effector complexes to target mRNAs, repressing their gene expression post-transcriptionally. While mature miRNAs were defined as 19–23 nucleotides (nt), tiny RNAs (tyRNAs) shorter than 19 nt have been found to bind AGOs as equivalent or lesser miRNAs compared to their full-length mature miRNAs. In contrast, my recent study revealed that when human AGO3 loads 14 nt cleavage-inducing tyRNAs (cityRNAs), comprised of the first 14 nt of their corresponding mature miRNA, it can become a comparable slicer to AGO2. This observation raises the possibility that tyRNAs play distinct roles from their mature form. This minireview focuses on human AGO-associated tyRNAs shorter than 19 nt and discusses their possible biosynthesis pathways and physiological benefits, including how tyRNAs could avoid target-directed miRNA degradation accompanied by AGO polyubiquitination.
Collapse
Affiliation(s)
- Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States.,Center for RNA Biology, Columbus, OH, United States
| |
Collapse
|
21
|
Anzelon TA, Chowdhury S, Hughes SM, Xiao Y, Lander GC, MacRae IJ. Structural basis for piRNA targeting. Nature 2021; 597:285-289. [PMID: 34471284 PMCID: PMC9302021 DOI: 10.1038/s41586-021-03856-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
PIWI proteins use PIWI-interacting RNAs (piRNAs) to identify and silence transposable elements and thereby maintain genome integrity between metazoan generations1. The targeting of transposable elements by PIWI has been compared to mRNA target recognition by Argonaute proteins2,3, which use microRNA (miRNA) guides, but the extent to which piRNAs resemble miRNAs is not known. Here we present cryo-electron microscopy structures of a PIWI-piRNA complex from the sponge Ephydatia fluviatilis with and without target RNAs, and a biochemical analysis of target recognition. Mirroring Argonaute, PIWI identifies targets using the piRNA seed region. However, PIWI creates a much weaker seed so that stable target association requires further piRNA-target pairing, making piRNAs less promiscuous than miRNAs. Beyond the seed, the structure of PIWI facilitates piRNA-target pairing in a manner that is tolerant of mismatches, leading to long-lived PIWI-piRNA-target interactions that may accumulate on transposable-element transcripts. PIWI ensures targeting fidelity by physically blocking the propagation of piRNA-target interactions in the absence of faithful seed pairing, and by requiring an extended piRNA-target duplex to reach an endonucleolytically active conformation. PIWI proteins thereby minimize off-targeting cellular mRNAs while defending against evolving genomic threats.
Collapse
Affiliation(s)
- Todd A Anzelon
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Saikat Chowdhury
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Siobhan M Hughes
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Yao Xiao
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
22
|
Binding of guide piRNA triggers methylation of the unstructured N-terminal region of Aub leading to assembly of the piRNA amplification complex. Nat Commun 2021; 12:4061. [PMID: 34210982 PMCID: PMC8249470 DOI: 10.1038/s41467-021-24351-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 06/10/2021] [Indexed: 11/08/2022] Open
Abstract
PIWI proteins use guide piRNAs to repress selfish genomic elements, protecting the genomic integrity of gametes and ensuring the fertility of animal species. Efficient transposon repression depends on amplification of piRNA guides in the ping-pong cycle, which in Drosophila entails tight cooperation between two PIWI proteins, Aub and Ago3. Here we show that post-translational modification, symmetric dimethylarginine (sDMA), of Aub is essential for piRNA biogenesis, transposon silencing and fertility. Methylation is triggered by loading of a piRNA guide into Aub, which exposes its unstructured N-terminal region to the PRMT5 methylosome complex. Thus, sDMA modification is a signal that Aub is loaded with piRNA guide. Amplification of piRNA in the ping-pong cycle requires assembly of a tertiary complex scaffolded by Krimper, which simultaneously binds the N-terminal regions of Aub and Ago3. To promote generation of new piRNA, Krimper uses its two Tudor domains to bind Aub and Ago3 in opposite modification and piRNA-loading states. Our results reveal that post-translational modifications in unstructured regions of PIWI proteins and their binding by Tudor domains that are capable of discriminating between modification states is essential for piRNA biogenesis and silencing.
Collapse
|
23
|
Li YC, Chao TC, Kim HJ, Cholko T, Chen SF, Li G, Snyder L, Nakanishi K, Chang CE, Murakami K, Garcia BA, Boyer TG, Tsai KL. Structure and noncanonical Cdk8 activation mechanism within an Argonaute-containing Mediator kinase module. SCIENCE ADVANCES 2021; 7:eabd4484. [PMID: 33523904 PMCID: PMC7810384 DOI: 10.1126/sciadv.abd4484] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/25/2020] [Indexed: 05/02/2023]
Abstract
The Cdk8 kinase module (CKM) in Mediator, comprising Med13, Med12, CycC, and Cdk8, regulates RNA polymerase II transcription through kinase-dependent and -independent functions. Numerous pathogenic mutations causative for neurodevelopmental disorders and cancer congregate in CKM subunits. However, the structure of the intact CKM and the mechanism by which Cdk8 is non-canonically activated and functionally affected by oncogenic CKM alterations are poorly understood. Here, we report a cryo-electron microscopy structure of Saccharomyces cerevisiae CKM that redefines prior CKM structural models and explains the mechanism of Med12-dependent Cdk8 activation. Med12 interacts extensively with CycC and activates Cdk8 by stabilizing its activation (T-)loop through conserved Med12 residues recurrently mutated in human tumors. Unexpectedly, Med13 has a characteristic Argonaute-like bi-lobal architecture. These findings not only provide a structural basis for understanding CKM function and pathological dysfunction, but also further impute a previously unknown regulatory mechanism of Mediator in transcriptional modulation through its Med13 Argonaute-like features.
Collapse
Affiliation(s)
- Yi-Chuan Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ti-Chun Chao
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hee Jong Kim
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy Cholko
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Shin-Fu Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Guojie Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Laura Snyder
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Chia-En Chang
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas G Boyer
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
24
|
Park MS, Sim G, Kehling AC, Nakanishi K. Human Argonaute2 and Argonaute3 are catalytically activated by different lengths of guide RNA. Proc Natl Acad Sci U S A 2020; 117:28576-28578. [PMID: 33122430 PMCID: PMC7682322 DOI: 10.1073/pnas.2015026117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA interfering is a eukaryote-specific gene silencing by 20∼23-nucleotide (nt) microRNAs and small interfering RNAs that recruit Argonaute proteins to complementary RNAs for degradation. In humans, Argonaute2 (AGO2) has been known as the only slicer while Argonaute3 (AGO3) barely cleaves RNAs. Therefore, the intrinsic slicing activity of AGO3 remains controversial and a long-standing question. Here, we report 14-nt 3' end-shortened variants of let-7a, miR-27a, and specific miR-17-92 families that make AGO3 an extremely competent slicer, increasing target cleavage up to ∼82-fold in some instances. These RNAs, named cleavage-inducing tiny guide RNAs (cityRNAs), conversely lower the activity of AGO2, demonstrating that AGO2 and AGO3 have different optimum guide lengths for target cleavage. Our study sheds light on the role of tiny guide RNAs.
Collapse
Affiliation(s)
- Mi Seul Park
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - GeunYoung Sim
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
- Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH 43210
| | - Audrey C Kehling
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210;
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
- Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
25
|
Medley JC, Panzade G, Zinovyeva AY. microRNA strand selection: Unwinding the rules. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1627. [PMID: 32954644 PMCID: PMC8047885 DOI: 10.1002/wrna.1627] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
microRNAs (miRNAs) play a central role in the regulation of gene expression by targeting specific mRNAs for degradation or translational repression. Each miRNA is post‐transcriptionally processed into a duplex comprising two strands. One of the two miRNA strands is selectively loaded into an Argonaute protein to form the miRNA‐Induced Silencing Complex (miRISC) in a process referred to as miRNA strand selection. The other strand is ejected from the complex and is subject to degradation. The target gene specificity of miRISC is determined by sequence complementarity between the Argonaute‐loaded miRNA strand and target mRNA. Each strand of the miRNA duplex has the capacity to be loaded into miRISC and possesses a unique seed sequence. Therefore, miRNA strand selection plays a defining role in dictating the specificity of miRISC toward its targets and provides a mechanism to alter gene expression in a switch‐like fashion. Aberrant strand selection can lead to altered gene regulation by miRISC and is observed in several human diseases including cancer. Previous and emerging data shape the rules governing miRNA strand selection and shed light on how these rules can be circumvented in various physiological and pathological contexts. This article is categorized under:RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs
Collapse
Affiliation(s)
- Jeffrey C Medley
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Ganesh Panzade
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Anna Y Zinovyeva
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
26
|
Setny P. Conserved internal hydration motifs in protein kinases. Proteins 2020; 88:1578-1591. [DOI: 10.1002/prot.25977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/18/2020] [Accepted: 07/05/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Piotr Setny
- Centre of New Technologies University of Warsaw Warsaw Poland
| |
Collapse
|
27
|
From the Argonauts Mythological Sailors to the Argonautes RNA-Silencing Navigators: Their Emerging Roles in Human-Cell Pathologies. Int J Mol Sci 2020; 21:ijms21114007. [PMID: 32503341 PMCID: PMC7312461 DOI: 10.3390/ijms21114007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
Regulation of gene expression has emerged as a fundamental element of transcript homeostasis. Key effectors in this process are the Argonautes (AGOs), highly specialized RNA-binding proteins (RBPs) that form complexes, such as the RNA-Induced Silencing Complex (RISC). AGOs dictate post-transcriptional gene-silencing by directly loading small RNAs and repressing their mRNA targets through small RNA-sequence complementarity. The four human highly-conserved family-members (AGO1, AGO2, AGO3, and AGO4) demonstrate multi-faceted and versatile roles in transcriptome’s stability, plasticity, and functionality. The post-translational modifications of AGOs in critical amino acid residues, the nucleotide polymorphisms and mutations, and the deregulation of expression and interactions are tightly associated with aberrant activities, which are observed in a wide spectrum of pathologies. Through constantly accumulating information, the AGOs’ fundamental engagement in multiple human diseases has recently emerged. The present review examines new insights into AGO-driven pathology and AGO-deregulation patterns in a variety of diseases such as in viral infections and propagations, autoimmune diseases, cancers, metabolic deficiencies, neuronal disorders, and human infertility. Altogether, AGO seems to be a crucial contributor to pathogenesis and its targeting may serve as a novel and powerful therapeutic tool for the successful management of diverse human diseases in the clinic.
Collapse
|
28
|
Yamaguchi S, Oe A, Nishida KM, Yamashita K, Kajiya A, Hirano S, Matsumoto N, Dohmae N, Ishitani R, Saito K, Siomi H, Nishimasu H, Siomi MC, Nureki O. Crystal structure of Drosophila Piwi. Nat Commun 2020; 11:858. [PMID: 32051406 PMCID: PMC7015924 DOI: 10.1038/s41467-020-14687-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/22/2020] [Indexed: 11/09/2022] Open
Abstract
PIWI-clade Argonaute proteins associate with PIWI-interacting RNAs (piRNAs), and silence transposons in animal gonads. Here, we report the crystal structure of the Drosophila PIWI-clade Argonaute Piwi in complex with endogenous piRNAs, at 2.9 Å resolution. A structural comparison of Piwi with other Argonautes highlights the PIWI-specific structural features, such as the overall domain arrangement and metal-dependent piRNA recognition. Our structural and biochemical data reveal that, unlike other Argonautes including silkworm Siwi, Piwi has a non-canonical DVDK tetrad and lacks the RNA-guided RNA cleaving slicer activity. Furthermore, we find that the Piwi mutant with the canonical DEDH catalytic tetrad exhibits the slicer activity and readily dissociates from less complementary RNA targets after the slicer-mediated cleavage, suggesting that the slicer activity could compromise the Piwi-mediated co-transcriptional silencing. We thus propose that Piwi lost the slicer activity during evolution to serve as an RNA-guided RNA-binding platform, thereby ensuring faithful co-transcriptional silencing of transposons.
Collapse
Affiliation(s)
- Sonomi Yamaguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akira Oe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazumichi M Nishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Keitaro Yamashita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Asako Kajiya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Seiichi Hirano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Naoki Matsumoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kuniaki Saito
- Invertebrate Genetics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Haruhiko Siomi
- Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Nishimasu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
29
|
Müller M, Fazi F, Ciaudo C. Argonaute Proteins: From Structure to Function in Development and Pathological Cell Fate Determination. Front Cell Dev Biol 2020; 7:360. [PMID: 32039195 PMCID: PMC6987405 DOI: 10.3389/fcell.2019.00360] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
The highly conserved Argonaute protein family members play a central role in the regulation of gene expression networks, orchestrating the establishment and the maintenance of cell identity throughout the entire life cycle, as well as in several human disorders, including cancers. Four functional Argonaute proteins (AGO1-4), with high structure similarity, have been described in humans and mice. Interestingly, only AGO2 is robustly expressed during human and mouse early development, in contrast to the other AGOs. Consequently, AGO2 is indispensable for early development in vivo and in vitro. Here, we review the roles of Argonaute proteins during early development by focusing on the interplay between specific domains of the protein and their function. Moreover, we report recent works highlighting the importance of AGO posttranslational modifications in cancer.
Collapse
Affiliation(s)
- Madlen Müller
- Swiss Federal Institute of Technology Zurich, Department of Biology, IMHS, Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Sciences Program, University of Zurich, Zurich, Switzerland
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Constance Ciaudo
- Swiss Federal Institute of Technology Zurich, Department of Biology, IMHS, Zurich, Switzerland
| |
Collapse
|
30
|
Ma S, Chen C, Ji X, Liu J, Zhou Q, Wang G, Yuan W, Kan Q, Sun Z. The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol 2019; 12:121. [PMID: 31757221 PMCID: PMC6874823 DOI: 10.1186/s13045-019-0805-7] [Citation(s) in RCA: 447] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
N6-methyladenosine (m6A) methylation, one of the most common RNA modifications, has been reported to execute important functions that affect normal life activities and diseases. Most studies have suggested that m6A modification can affect the complexity of cancer progression by regulating biological functions related to cancer. M6A modification of noncoding RNAs regulates the cleavage, transport, stability, and degradation of noncoding RNAs themselves. It also regulates cell proliferation and metastasis, stem cell differentiation, and homeostasis in cancer by affecting the biological function of cells. Interestingly, noncoding RNAs also play significant roles in regulating these m6A modifications. Additionally, it is becoming increasingly clear that m6A and noncoding RNAs potentially contribute to the clinical application of cancer treatment. In this review, we summarize the effect of the interactions between m6A modifications and noncoding RNAs on the biological functions involved in cancer progression. In particular, we discuss the role of m6A and noncoding RNAs as possible potential biomarkers and therapeutic targets in the treatment of cancers.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chen Chen
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiang Ji
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Quanbo Zhou
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guixian Wang
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Weitang Yuan
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhenqiang Sun
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|