1
|
Liu K, Li Y, Shen M, Xu W, Wu S, Yang X, Zhang B, Lin N. Epigenetic Regulation of Stromal and Immune Cells and Therapeutic Targets in the Tumor Microenvironment. Biomolecules 2025; 15:71. [PMID: 39858465 PMCID: PMC11764280 DOI: 10.3390/biom15010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
The tumor microenvironment (TME) plays a pivotal role in neoplastic initiation and progression. Epigenetic machinery, governing the expression of core oncogenes and tumor suppressor genes in transformed cells, significantly contributes to tumor development at both primary and distant sites. Recent studies have illuminated how epigenetic mechanisms integrate external cues and downstream signals, altering the phenotype of stromal cells and immune cells. This remolds the area surrounding tumor cells, ultimately fostering an immunosuppressive microenvironment. Therefore, correcting the TME by targeting the epigenetic modifications holds substantial promise for cancer treatment. This review synthesizes recent research that elucidates the impact of specific epigenetic regulations-ranging from DNA methylation to histone modifications and chromatin remodeling-on stromal and immune cells within the TME. Notably, we highlight their functional roles in either promoting or restricting tumor progression. We also discuss the potential applications of epigenetic agents for cancer treatment, envisaging their ability to normalize the ecosystem. This review aims to assist researchers in understanding the dynamic interplay between epigenetics and the TME, paving the way for better epigenetic therapy.
Collapse
Affiliation(s)
- Kang Liu
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou 311402, China; (K.L.); (Y.L.); (M.S.); (W.X.); (S.W.); (X.Y.)
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Yue Li
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou 311402, China; (K.L.); (Y.L.); (M.S.); (W.X.); (S.W.); (X.Y.)
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Minmin Shen
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou 311402, China; (K.L.); (Y.L.); (M.S.); (W.X.); (S.W.); (X.Y.)
- Department of Drug Clinical Trial Institution, Huzhou Central Hospital, Huzhou 313000, China
| | - Wei Xu
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou 311402, China; (K.L.); (Y.L.); (M.S.); (W.X.); (S.W.); (X.Y.)
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Shanshan Wu
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou 311402, China; (K.L.); (Y.L.); (M.S.); (W.X.); (S.W.); (X.Y.)
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Xinxin Yang
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou 311402, China; (K.L.); (Y.L.); (M.S.); (W.X.); (S.W.); (X.Y.)
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Bo Zhang
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou 311402, China; (K.L.); (Y.L.); (M.S.); (W.X.); (S.W.); (X.Y.)
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Nengming Lin
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou 311402, China; (K.L.); (Y.L.); (M.S.); (W.X.); (S.W.); (X.Y.)
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Westlake University, Hangzhou 310024, China
| |
Collapse
|
2
|
Song Y, Ren S, Wu S, Liu W, Hu C, Feng S, Chen X, Tu R, Gao F. Glucocorticoid promotes metastasis of colorectal cancer via co-regulation of glucocorticoid receptor and TET2. Int J Cancer 2024. [PMID: 39661335 DOI: 10.1002/ijc.35285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
Glucocorticoids (GCs), commonly used for anti-inflammatory and cancer treatments, have been linked to the promotion of cancer metastasis. Yet, the molecular mechanisms behind this potential remain poorly understood. Clarifying these mechanisms is crucial for a nuanced understanding and potential refinement of GC therapies in the context of cancer treatment. In HEK293T cells, co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation sequencing (ChIP-seq) were used with antibodies of glucocorticoid receptor (GR) and ten-eleven translocation enzymes (TET) family proteins (TET1, TET2, TET3). Drug repositioning was performed through the Connectivity Map database, using common target genes of GR and TET2 in HEK293 and HCT116 cell lines and differentially expressed genes (DEGs) of colorectal cancer (CRC). Cell migration and invasion were tested in CRC cell lines with varying GR expression, that is, HCT116 and HT29 cell lines. Dexamethasone (Dex) treatment resulted in a significant difference in cell migration rates in two CRC cell lines with disparate GR expression levels. Co-IP and ChIP-seq analyses substantiated the interaction between GR and TET family proteins in HEK293T cells. Belinostat, the selected compound, was successfully validated for its potential to counteract the effects of GC-induced invasion in CRC cells in vitro. Transcriptomic analyses of Belinostat-treated HCT116 cells revealed down-regulation of target genes associated with cancer metastasis. This study provides valuable insights into the molecular mechanisms underlying GC-induced metastasis, introducing newly repositioned compounds that could serve as potential adjuvant therapy to GC treatment. Furthermore, it opens avenues for exploring novel drug candidates for CRC treatment.
Collapse
Affiliation(s)
- Yanwei Song
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shuqiang Ren
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shumei Wu
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Chenghao Hu
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Siting Feng
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xinyu Chen
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Rui Tu
- E-GENE Co., Ltd, Shenzhen, China
| | - Fei Gao
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Shu W, Huang Q, Chen R, Lan H, Yu L, Cui K, He W, Zhu S, Chen M, Li L, Jiang D, Xu G. Complicated role of ALKBH5 in gastrointestinal cancer: an updated review. Cancer Cell Int 2024; 24:298. [PMID: 39182071 PMCID: PMC11344947 DOI: 10.1186/s12935-024-03480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Gastrointestinal cancer is the most common malignancy in humans, often accompanied by poor prognosis. N6-methyladenosine (m6A) modification is widely present in eukaryotic cells as the most abundant RNA modification. It plays a crucial role in RNA splicing and processing, nuclear export, translation, and stability. Human AlkB homolog 5 (ALKBH5) is a type of RNA demethylase exhibiting abnormal expression in various gastrointestinal cancers.It is closely related to the tumorigenesis, proliferation, migration, and other biological functions of gastrointestinal cancer. However, recent studies indicated that the role and mechanism of ALKBH5 in gastrointestinal cancer are complicated and even controversial. Thus, this review summarizes recent advances in elucidating the role of ALKBH5 as a tumor suppressor or promoter in gastrointestinal cancer. It examines the biological functions of ALKBH5 and its potential as a therapeutic target, providing new perspectives and insights for gastrointestinal cancer research.
Collapse
Affiliation(s)
- Weitong Shu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China
| | - Qianying Huang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China
| | - Rui Chen
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China
| | - Huatao Lan
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China
| | - Luxin Yu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China
| | - Kai Cui
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China
| | - Wanjun He
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China
| | - Songshan Zhu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China
| | - Mei Chen
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China
| | - Li Li
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China
| | - Dan Jiang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China.
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China.
| | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China.
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China.
| |
Collapse
|
4
|
Wang Z, Che S, Yu Z. PROTAC: Novel degradable approach for different targets to treat breast cancer. Eur J Pharm Sci 2024; 198:106793. [PMID: 38740076 DOI: 10.1016/j.ejps.2024.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
The revolutionary Proteolysis Targeting Chimera (PROTACs) have the exciting potential to reshape the pharmaceutical industry landscape by leveraging the ubiquitin-proteasome system for targeted protein degradation. Breast cancer, the most prevalent cancer in women, could be treated using PROTAC therapy. Although substantial work has been conducted, there is not yet a comprehensive overview or progress update on PROTAC therapy for breast cancer. Hence, in this article, we've compiled recent research progress focusing on different breast cancer target proteins, such as estrogen receptor (ER), BET, CDK, HER2, PARP, EZH2, etc. This resource aims to serve as a guide for future PROTAC-based breast cancer treatment design.
Collapse
Affiliation(s)
- Zhenjie Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Office of Drug Clinical Trials, The People's Hospital of Gaozhou, Maoming, 525200, PR China
| | - Siyao Che
- Hepatological Surgery Department, The People's Hospital of Gaozhou, Maoming, 525200, PR China.
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, PR China.
| |
Collapse
|
5
|
Philips SJ, Danda A, Ansari AZ. Using synthetic genome readers/regulators to interrogate chromatin processes: A brief review. Methods 2024; 225:20-27. [PMID: 38471600 PMCID: PMC11055675 DOI: 10.1016/j.ymeth.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Aberrant gene expression underlies numerous human ailments. Hence, developing small molecules to target and remedy dysfunctional gene regulation has been a long-standing goal at the interface of chemistry and medicine. A major challenge for designing small molecule therapeutics aimed at targeting desired genomic loci is the minimization of widescale disruption of genomic functions. To address this challenge, we rationally design polyamide-based multi-functional molecules, i.e., Synthetic Genome Readers/Regulators (SynGRs), which, by design, target distinct sequences in the genome. Herein, we briefly review how SynGRs access chromatin-bound and chromatin-free genomic sites, then highlight the methods for the study of chromatin processes using SynGRs on positioned nucleosomes in vitro or disease-causing repressive genomic loci in vivo.
Collapse
Affiliation(s)
- Steven J Philips
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adithi Danda
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Aseem Z Ansari
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
6
|
Shendy NAM, Bikowitz M, Sigua LH, Zhang Y, Mercier A, Khashana Y, Nance S, Liu Q, Delahunty IM, Robinson S, Goel V, Rees MG, Ronan MA, Wang T, Kocak M, Roth JA, Wang Y, Freeman BB, Orr BA, Abraham BJ, Roussel MF, Schonbrunn E, Qi J, Durbin AD. Group 3 medulloblastoma transcriptional networks collapse under domain specific EP300/CBP inhibition. Nat Commun 2024; 15:3483. [PMID: 38664416 PMCID: PMC11045757 DOI: 10.1038/s41467-024-47102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Chemical discovery efforts commonly target individual protein domains. Many proteins, including the EP300/CBP histone acetyltransferases (HATs), contain several targetable domains. EP300/CBP are critical gene-regulatory targets in cancer, with existing high potency inhibitors of either the catalytic HAT domain or protein-binding bromodomain (BRD). A domain-specific inhibitory approach to multidomain-containing proteins may identify exceptional-responding tumor types, thereby expanding a therapeutic index. Here, we discover that targeting EP300/CBP using the domain-specific inhibitors, A485 (HAT) or CCS1477 (BRD) have different effects in select tumor types. Group 3 medulloblastoma (G3MB) cells are especially sensitive to BRD, compared with HAT inhibition. Structurally, these effects are mediated by the difluorophenyl group in the catalytic core of CCS1477. Mechanistically, bromodomain inhibition causes rapid disruption of genetic dependency networks that are required for G3MB growth. These studies provide a domain-specific structural foundation for drug discovery efforts targeting EP300/CBP and identify a selective role for the EP300/CBP bromodomain in maintaining genetic dependency networks in G3MB.
Collapse
Affiliation(s)
- Noha A M Shendy
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Melissa Bikowitz
- Drug Discovery Department, Moffitt Cancer Center, Tampa, FL, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Logan H Sigua
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yang Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Audrey Mercier
- Tumor Cell Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yousef Khashana
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephanie Nance
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qi Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ian M Delahunty
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sarah Robinson
- Tumor Cell Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Vanshita Goel
- Tumor Cell Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Matthew G Rees
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Tingjian Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mustafa Kocak
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Yingzhe Wang
- Preclinical Pharmacokinetics Shared Resource, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Burgess B Freeman
- Preclinical Pharmacokinetics Shared Resource, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Brent A Orr
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Brian J Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Martine F Roussel
- Tumor Cell Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ernst Schonbrunn
- Drug Discovery Department, Moffitt Cancer Center, Tampa, FL, USA.
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
7
|
Wang Q, Ma C, Wang N, Mao H. Effects of quercetin on the DNA methylation pattern in tumor therapy: an updated review. Food Funct 2024; 15:3897-3907. [PMID: 38535893 DOI: 10.1039/d3fo03831a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Quercetin is a unique bioactive flavonoid, and is an excellent antioxidant and has anti-tumor effects by regulating different tumor-related processes like proliferation, apoptosis, invasion, and spread. The latest investigations reveal that quercetin may have the capability to influence DNA methylation modification, one of the primary factors in the development of tumors. Despite the fact that quercetin has significant therapeutic properties, its use as an anti-tumor medicine is constrained by its poor solubility, short half-life, and ineffective tumor targeting. Here, we review the structure and properties of quercetin, its capacity for DNA methylation modification in tumors, and the possibility of nanoscale delivery of quercetin for future tumor treatment.
Collapse
Affiliation(s)
- Qin Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chen Ma
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| | - Nan Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| | - Huixian Mao
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| |
Collapse
|
8
|
Huttunen J, Aaltonen N, Helminen L, Rilla K, Paakinaho V. EP300/CREBBP acetyltransferase inhibition limits steroid receptor and FOXA1 signaling in prostate cancer cells. Cell Mol Life Sci 2024; 81:160. [PMID: 38564048 PMCID: PMC10987371 DOI: 10.1007/s00018-024-05209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
The androgen receptor (AR) is a primary target for treating prostate cancer (PCa), forming the bedrock of its clinical management. Despite their efficacy, resistance often hampers AR-targeted therapies, necessitating new strategies against therapy-resistant PCa. These resistances involve various mechanisms, including AR splice variant overexpression and altered activities of transcription factors like the glucocorticoid receptor (GR) and FOXA1. These factors rely on common coregulators, such as EP300/CREBBP, suggesting a rationale for coregulator-targeted therapies. Our study explores EP300/CREBBP acetyltransferase inhibition's impact on steroid receptor and FOXA1 signaling in PCa cells using genome-wide techniques. Results reveal that EP300/CREBBP inhibition significantly disrupts the AR-regulated transcriptome and receptor chromatin binding by reducing the AR-gene expression. Similarly, GR's regulated transcriptome and receptor binding were hindered, not linked to reduced GR expression but to diminished FOXA1 chromatin binding, restricting GR signaling. Overall, our findings highlight how EP300/CREBBP inhibition distinctively curtails oncogenic transcription factors' signaling, suggesting the potential of coregulatory-targeted therapies in PCa.
Collapse
Affiliation(s)
- Jasmin Huttunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Niina Aaltonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Laura Helminen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
9
|
Wang Y, Zheng J, Long Y, Wu W, Zhu Y. Direct degradation and stabilization of proteins: New horizons in treatment of nonalcoholic steatohepatitis. Biochem Pharmacol 2024; 220:115989. [PMID: 38122854 DOI: 10.1016/j.bcp.2023.115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is featured with excessive hepatic lipid accumulation and its global prevalence is soaring. Nonalcoholic steatohepatitis (NASH), the severe systemic inflammatory subtype of NAFLD, is tightly associated with metabolic comorbidities, and the hepatocytes manifest severe inflammation and ballooning. Currently the therapeutic options for treating NASH are limited. Potent small molecules specifically intervene with the signaling pathways that promote pathogenesis of NASH. Nevertheless they have obvious adverse effects and show long-term ineffectiveness in clinical trials. It poses the fundamental question to efficiently and safely inhibit the pathogenic processes. Targeted protein degradation (TPD) belongs to the direct degradation strategies and is a burgeoning strategy. It utilizes the small molecules to bind to the target proteins and recruit the endogenous proteasome, lysosome and autophagosome-mediated degradation machineries. They effectively and specifically degrade the target proteins. It has exhibited promising therapeutic effects in treatment of cancer, neurodegenerative diseases and other diseases in a catalytic manner at low doses. We critically discuss the principles of multiple direct degradation strategies, especially PROTAC and ATTEC. We extensively analyze their emerging application in degradation of excessive pathogenic proteins and lipid droplets, which promote the progression of NASH. Moreover, we discuss the opposite strategy that utilizes the small molecules to recruit deubiquinases to stabilize the NASH/MASH-suppressing proteins. Their advantages, limitations, as well as the solutions to address the limitations have been analyzed. In summary, the innovative direct degradation strategies provide new insights into design of next-generation therapeutics to combat NASH with optimal safety paradigm and efficiency.
Collapse
Affiliation(s)
- Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, PR China.
| | - Jianan Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China
| | - Yun Long
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, PR China
| | - Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China
| | - Yutong Zhu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China
| |
Collapse
|
10
|
Yang L, Huang Z, Deng Y, Zhang X, Lv Z, Huang H, Sun Q, Liu H, Liang H, He B, Hu F. Characterization of the m6A/m1A/m5C/m7G-related regulators on the prognosis and immune microenvironment of glioma by integrated analysis of scRNA-seq and bulk RNA-seq data. J Gene Med 2024; 26:e3666. [PMID: 38391150 DOI: 10.1002/jgm.3666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Proliferation, metabolism, tumor occurrence and development in gliomas are greatly influenced by RNA modifications. However, no research has integrated the four RNA methylation regulators of m6A, m1A, m5C and m7G in gliomas to analyze their relationship with glioma prognosis and intratumoral heterogeneity. METHODS Based on three in-house single-cell RNA-sequencing (scRNA-seq) data, the glioma heterogeneity and characteristics of m6A/m1A/m5C/m7G-related regulators were elucidated. Based on publicly available bulk RNA-sequencing (RNA-seq) data, a risk-score system for predicting the overall survival (OS) for gliomas was established by three machine learning methods and multivariate Cox regression analysis, and validated in an independent cohort. RESULTS Seven cell types were identified in gliomas by three scRNA-seq data, and 22 m6A/m1A/m5C/m7G-related regulators among the marker genes of different cell subtypes were discovered. Three m6A/m1A/m5C/m7G-related regulators were selected to construct prognostic risk-score model, including EIFA, NSUN6 and TET1. The high-risk patients showed higher immune checkpoint expression, higher tumor microenvironment scores, as well as higher tumor mutation burden and poorer prognosis compared with low-risk patients. Additionally, the area under the curve values of the risk score and nomogram were 0.833 and 0.922 for 3 year survival and 0.759 and 0.885 for 5 year survival for gliomas. EIF3A was significantly highly expressed in glioma tissues in our in-house RNA-sequencing data (p < 0.05). CONCLUSION These findings may contribute to further understanding of the role of m6A/m1A/m5C/m7G-related regulators in gliomas, and provide novel and reliable biomarkers for gliomas prognosis and treatment.
Collapse
Affiliation(s)
- Longkun Yang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, China
- Department of Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Zhicong Huang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, China
- Department of Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Ying Deng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, China
- Department of Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Xing Zhang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, China
| | - Zhonghua Lv
- Department of Neurosurgery, The Tumor hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Hao Huang
- Department of Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Qian Sun
- Department of Neurosurgery, The Tumor hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Hui Liu
- Department of Neurosurgery, The Tumor hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongsheng Liang
- Department of Neurosurgery, The First Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Baochang He
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fujian, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Fulan Hu
- Department of Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Pan D, Huang Y, Jiang D, Zhang Y, Wu M, Han M, Jin X. Discovery of an EP300 Inhibitor using Structure-based Virtual Screening and Bioactivity Evaluation. Curr Pharm Des 2024; 30:1985-1994. [PMID: 38835125 PMCID: PMC11348464 DOI: 10.2174/0113816128298051240529113313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND EP300 (E1A binding protein p300) played a significant role in serial diseases such as cancer, neurodegenerative disease. Therefore, it became a significant target. METHODS Targeting EP300 discovery of a novel drug to alleviate these diseases. In this paper, 17 candidate compounds were obtained using a structure-based virtual screening approach, 4449-0460, with an IC50 of 5.89 ± 2.08 uM, which was identified by the EP300 bioactivity test. 4449-0460 consisted of three rings. The middle benzene ring connected the 5-ethylideneimidazolidine-2,4-dione group and the 3-F-Phenylmethoxy group. RESULTS Furthermore, the interaction mechanism between 4449-0460 and EP300 was explored by combining molecular dynamics (MD) simulations and binding free energy calculation methods. CONCLUSION The binding free energy of EP300 with 4449-0460 was -10.93 kcal/mol, and mainly came from the nonpolar energy term (ΔGnonpolar). Pro1074, Phe1075, Val1079, Leu1084, and Val1138 were the key residues in EP300/4449-0460 binding with more -1 kcal/mol energy contribution. 4449-0460 was a promising inhibitor targeting EP300, which had implications for the development of drugs for EP300-related diseases.
Collapse
Affiliation(s)
- Dabo Pan
- Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities, Kaili 556000, China
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Kaili 556000, China
| | - Yaxuan Huang
- Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities, Kaili 556000, China
| | - Dewen Jiang
- Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities, Kaili 556000, China
| | - Yonghao Zhang
- Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities, Kaili 556000, China
| | - Mingkai Wu
- Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities, Kaili 556000, China
| | - Minzhen Han
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Kaili 556000, China
| | - Xiaojie Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| |
Collapse
|
12
|
Xiong D, Zhang L, Sun ZJ. Targeting the epigenome to reinvigorate T cells for cancer immunotherapy. Mil Med Res 2023; 10:59. [PMID: 38044445 PMCID: PMC10694991 DOI: 10.1186/s40779-023-00496-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Cancer immunotherapy using immune-checkpoint inhibitors (ICIs) has revolutionized the field of cancer treatment; however, ICI efficacy is constrained by progressive dysfunction of CD8+ tumor-infiltrating lymphocytes (TILs), which is termed T cell exhaustion. This process is driven by diverse extrinsic factors across heterogeneous tumor immune microenvironment (TIME). Simultaneously, tumorigenesis entails robust reshaping of the epigenetic landscape, potentially instigating T cell exhaustion. In this review, we summarize the epigenetic mechanisms governing tumor microenvironmental cues leading to T cell exhaustion, and discuss therapeutic potential of targeting epigenetic regulators for immunotherapies. Finally, we outline conceptual and technical advances in developing potential treatment paradigms involving immunostimulatory agents and epigenetic therapies.
Collapse
Affiliation(s)
- Dian Xiong
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China
| | - Lu Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School and and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
13
|
Liu Z, Li X, Gao Y, Liu J, Feng Y, Liu Y, Wang J, Wang C, Wang D, He J, Han W, Mei Q, Sun Y. Epigenetic reprogramming of Runx3 reinforces CD8 + T-cell function and improves the clinical response to immunotherapy. Mol Cancer 2023; 22:84. [PMID: 37189103 DOI: 10.1186/s12943-023-01768-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/24/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Checkpoint blockade immunotherapy, represented by PD-1 or PD-L1 antibody treatment, has been of tremendous success in clinical practice. However, the low clinical response rate and lack of biomarkers for prediction of the immune response limit the clinical application of anti-PD-1 immunotherapy. Our recent work showed that a combination of low-dose decitabine and PD-1-ab significantly improved the complete response (CR) rate of cHL patients from 32 to 71%, which indicates that there is a significant correlation between epigenetic regulation and the clinical response to immunotherapy. METHODS We recruited two groups of Hodgkin lymphoma patients who were treated with anti-PD-1 and DAC+anti-PD-1. CD8+ T cells were isolated from the patients' peripheral blood, DNA methylation was analyzed by EPIC, the expression profile was analyzed by RNA-seq, and multigroup analysis was performed with IPA and GSEA functional annotations. We explored the effect of DAC on the function of CD8+ T cells in the blood, spleen, tumor and lymph nodes using a mouse model. Furthermore, we explored the function of Tils in the tumor microenvironment. Then, we constructed Runx3-knockout mice to confirm the T-cell-specific function of Runx3 in CD8+ T cells and analyzed various subtypes of T cells and cytokines using mass cytometry (CyTOF). RESULTS Multiomics analysis identified that DNA methylation reprogramming of Runx3 was a crucial mediator of CD8+ T-cell function. Multiomics data showed that reversal of methylation of the Runx3 promoter promoted the infiltration of CD8+ TILs and mitigated the exhaustion of CD8+ T cells. Furthermore, experiments on tissue-specific Runx3-knockout mice showed that Runx3 deficiency reduced CD8+ T infiltration and the differentiation of effector T and memory T cells. Furthermore, Runx3 deficiency significantly decreased CCR3 and CCR5 levels. Immunotherapy experiments in Runx3 conditional knockout mice showed that DAC could not reverse the resistance of anti-PD-1 in the absence of Runx3. Moreover, both our clinical data and data from TISIDB showed that Runx3 could be a potential biomarker for immunotherapy to predict the clinical response rate. CONCLUSION We demonstrate that the DNA methylation of Runx3 plays a critical role in CD8+ T-cell infiltration and differentiation during decitabine-primed PD-1-ab immunotherapy, which provides a supporting mechanism for the essential role of epiregulation in immunotherapy.
Collapse
Affiliation(s)
- Zongzhi Liu
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China
| | - Xiang Li
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yibo Gao
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Jiejie Liu
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yating Feng
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Yang Liu
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junyun Wang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chunmeng Wang
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dongrui Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 310058, China.
| | - Jie He
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Weidong Han
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China.
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Qian Mei
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China.
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Yingli Sun
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
14
|
Zhang L, Wang X, Zhao W, Liu J. Overview of m 6A and circRNAs in human cancers. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04610-8. [PMID: 36807759 DOI: 10.1007/s00432-023-04610-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/27/2023] [Indexed: 02/21/2023]
Abstract
N6-methyladenosine (m6A), the richest post-transcriptional modification of RNA in eukaryotic cells, is dynamically installed/uninstalled by the RNA methylase complex ("writer") and demethylase ("eraser") and recognized by the m6A-binding protein ("reader"). M6A modification on RNA metabolism involves maturation, nuclear export, translation and splicing, thereby playing a critical role in cellular pathophysiology and disease processes. Circular RNAs (circRNAs) are a class of non-coding RNAs with a covalently closed loop structure. Due to its conserved and stable properties, circRNAs could participate in physiological and pathological processes through unique pathways. Despite the recent discovery of m6A and circRNAs remains in the initial stage, research has shown that m6A modifications are widespread in circRNAs and regulates circRNA metabolism, including biogenesis, cell localization, translation, and degradation. In this review, we describe the functional crosstalk between m6A and circRNAs, and illustrate their roles in cancer development. Moreover, we discuss the potential mechanisms and future research directions of m6A modification and circRNAs.
Collapse
Affiliation(s)
- Leyu Zhang
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Xi Wang
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China.
| | - Wei Zhao
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China.
| | - Jingwen Liu
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
15
|
Zhang M, Sul OJ, Fu J, Wang Q. Editorial: Natural compounds regulating epigenetics for treating chronic inflammatory diseases. Front Pharmacol 2023; 13:1121165. [PMID: 36712660 PMCID: PMC9873991 DOI: 10.3389/fphar.2022.1121165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Affiliation(s)
- Mingyu Zhang
- Medical College, Dalian University, Dalian, China
| | - Ok Joo Sul
- University of Ulsan, Ulsan, South Korea,*Correspondence: Qianqian Wang, ; Ok Joo Sul, ; Junjiang Fu,
| | - Junjiang Fu
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China,*Correspondence: Qianqian Wang, ; Ok Joo Sul, ; Junjiang Fu,
| | - Qianqian Wang
- Medical College, Dalian University, Dalian, China,*Correspondence: Qianqian Wang, ; Ok Joo Sul, ; Junjiang Fu,
| |
Collapse
|
16
|
Panditharatna E, Marques JG, Wang T, Trissal MC, Liu I, Jiang L, Beck A, Groves A, Dharia NV, Li D, Hoffman SE, Kugener G, Shaw ML, Mire HM, Hack OA, Dempster JM, Lareau C, Dai L, Sigua LH, Quezada MA, Stanton ACJ, Wyatt M, Kalani Z, Goodale A, Vazquez F, Piccioni F, Doench JG, Root DE, Anastas JN, Jones KL, Conway AS, Stopka S, Regan MS, Liang Y, Seo HS, Song K, Bashyal P, Jerome WP, Mathewson ND, Dhe-Paganon S, Suvà ML, Carcaboso AM, Lavarino C, Mora J, Nguyen QD, Ligon KL, Shi Y, Agnihotri S, Agar NY, Stegmaier K, Stiles CD, Monje M, Golub TR, Qi J, Filbin MG. BAF Complex Maintains Glioma Stem Cells in Pediatric H3K27M Glioma. Cancer Discov 2022; 12:2880-2905. [PMID: 36305736 PMCID: PMC9716260 DOI: 10.1158/2159-8290.cd-21-1491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 08/03/2022] [Accepted: 09/15/2022] [Indexed: 01/12/2023]
Abstract
Diffuse midline gliomas are uniformly fatal pediatric central nervous system cancers that are refractory to standard-of-care therapeutic modalities. The primary genetic drivers are a set of recurrent amino acid substitutions in genes encoding histone H3 (H3K27M), which are currently undruggable. These H3K27M oncohistones perturb normal chromatin architecture, resulting in an aberrant epigenetic landscape. To interrogate for epigenetic dependencies, we performed a CRISPR screen and show that patient-derived H3K27M-glioma neurospheres are dependent on core components of the mammalian BAF (SWI/SNF) chromatin remodeling complex. The BAF complex maintains glioma stem cells in a cycling, oligodendrocyte precursor cell-like state, in which genetic perturbation of the BAF catalytic subunit SMARCA4 (BRG1), as well as pharmacologic suppression, opposes proliferation, promotes progression of differentiation along the astrocytic lineage, and improves overall survival of patient-derived xenograft models. In summary, we demonstrate that therapeutic inhibition of the BAF complex has translational potential for children with H3K27M gliomas. SIGNIFICANCE Epigenetic dysregulation is at the core of H3K27M-glioma tumorigenesis. Here, we identify the BRG1-BAF complex as a critical regulator of enhancer and transcription factor landscapes, which maintain H3K27M glioma in their progenitor state, precluding glial differentiation, and establish pharmacologic targeting of the BAF complex as a novel treatment strategy for pediatric H3K27M glioma. See related commentary by Beytagh and Weiss, p. 2730. See related article by Mo et al., p. 2906.
Collapse
Affiliation(s)
- Eshini Panditharatna
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Joana G. Marques
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Tingjian Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Maria C. Trissal
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ilon Liu
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Alexander Beck
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andrew Groves
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Neekesh V. Dharia
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Deyao Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Samantha E. Hoffman
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Guillaume Kugener
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - McKenzie L. Shaw
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Hafsa M. Mire
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Olivia A. Hack
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Joshua M. Dempster
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Caleb Lareau
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Pathology, Stanford University, Stanford, California
| | - Lingling Dai
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Logan H. Sigua
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Michael A. Quezada
- Department of Neurology, Stanford University School of Medicine, Stanford, California
| | - Ann-Catherine J. Stanton
- Department of Neurosurgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Meghan Wyatt
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Zohra Kalani
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Amy Goodale
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Francisca Vazquez
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Federica Piccioni
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
- Merck Research Laboratories, Cambridge, Massachusetts
| | - John G. Doench
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - David E. Root
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jamie N. Anastas
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Neurosurgery and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Kristen L. Jones
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Amy Saur Conway
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Sylwia Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael S. Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yu Liang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Kijun Song
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Puspalata Bashyal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - William P. Jerome
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Nathan D. Mathewson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Microbiology and Immunobiology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Mario L. Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Klarman Cell Observatory, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Angel M. Carcaboso
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Cinzia Lavarino
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Keith L. Ligon
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts
- Ludwig Institute for Cancer Research, Oxford Branch, Oxford University, Oxford, United Kingdom
| | - Sameer Agnihotri
- Department of Neurosurgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nathalie Y.R. Agar
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Charles D. Stiles
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Todd R. Golub
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Mariella G. Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
17
|
Zhang S, Meng Y, Zhou L, Qiu L, Wang H, Su D, Zhang B, Chan K, Han J. Targeting epigenetic regulators for inflammation: Mechanisms and intervention therapy. MedComm (Beijing) 2022; 3:e173. [PMID: 36176733 PMCID: PMC9477794 DOI: 10.1002/mco2.173] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/11/2022] Open
Abstract
Emerging evidence indicates that resolution of inflammation is a critical and dynamic endogenous process for host tissues defending against external invasive pathogens or internal tissue injury. It has long been known that autoimmune diseases and chronic inflammatory disorders are characterized by dysregulated immune responses, leading to excessive and uncontrol tissue inflammation. The dysregulation of epigenetic alterations including DNA methylation, posttranslational modifications to histone proteins, and noncoding RNA expression has been implicated in a host of inflammatory disorders and the immune system. The inflammatory response is considered as a critical trigger of epigenetic alterations that in turn intercede inflammatory actions. Thus, understanding the molecular mechanism that dictates the outcome of targeting epigenetic regulators for inflammatory disease is required for inflammation resolution. In this article, we elucidate the critical role of the nuclear factor-κB signaling pathway, JAK/STAT signaling pathway, and the NLRP3 inflammasome in chronic inflammatory diseases. And we formulate the relationship between inflammation, coronavirus disease 2019, and human cancers. Additionally, we review the mechanism of epigenetic modifications involved in inflammation and innate immune cells. All that matters is that we propose and discuss the rejuvenation potential of interventions that target epigenetic regulators and regulatory mechanisms for chronic inflammation-associated diseases to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Su Zhang
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Meng
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Lian Zhou
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Lei Qiu
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Heping Wang
- Department of NeurosurgeryTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dan Su
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Bo Zhang
- Laboratory of Cancer Epigenetics and GenomicsDepartment of Gastrointestinal SurgeryFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Kui‐Ming Chan
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
| | - Junhong Han
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
18
|
Zhang Z, Lin J, Liu Z, Tian G, Li XM, Jing Y, Li X, Li XD. Photo-Cross-Linking To Delineate Epigenetic Interactome. J Am Chem Soc 2022; 144:20979-20997. [DOI: 10.1021/jacs.2c06135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhuoyuan Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jianwei Lin
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Gaofei Tian
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiao-Meng Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yihang Jing
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
19
|
Barghout SH, Mann MK, Aman A, Yu Y, Alteen MG, Schimmer AD, Schapira M, Arrowsmith CH, Barsyte-Lovejoy D. Combinatorial Anticancer Drug Screen Identifies Off-Target Effects of Epigenetic Chemical Probes. ACS Chem Biol 2022; 17:2801-2816. [PMID: 36084291 DOI: 10.1021/acschembio.2c00451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Anticancer drug response is determined by genetic and epigenetic mechanisms. To identify the epigenetic regulators of anticancer drug response, we conducted a chemical epigenetic screen using chemical probes that target different epigenetic modulators. In this screen, we tested 31 epigenetic probes in combination with 14 mechanistically diverse anticancer agents and identified 8 epigenetic probes that significantly potentiate the cytotoxicity of TAK-243, a first-in-class ubiquitin-activating enzyme (UBA1) inhibitor evaluated in several solid and hematologic malignancies. These probes are TP-472, GSK864, A-196, UNC1999, SGC-CBP30, and PFI-4 (and its related analogues GSK6853 and GSK5959), and they target BRD9/7, mutant IDH1, SUV420H1/2, EZH2/1, p300/CBP, and BRPF1B, respectively. In contrast to epigenetic probes, negative control compounds did not have a significant impact on TAK-243 cytotoxicity. Potentiation of TAK-243 cytotoxicity was associated with reduced ubiquitylation and induction of apoptosis. Mechanistically, these epigenetic probes exerted their potentiation by inhibiting the efflux transporter ATP-binding cassette subfamily G member 2 (ABCG2) without inducing significant changes in the ubiquitylation pathways or ABCG2 expression levels. As assessed by docking analysis, the identified probes could potentially interact with ABCG2. Based on these data, we have developed a cell-based assay that can quantitatively evaluate ABCG2 inhibition by drug candidates. In conclusion, our study identifies epigenetic probes that profoundly potentiate TAK-243 cytotoxicity through off-target ABCG2 inhibition. We also provide experimental evidence that several negative control compounds cannot exclude a subset of off-target effects of chemical probes. Finally, potentiation of TAK-243 cytotoxicity can serve as a quantitative measure of ABCG2-inhibitory activity.
Collapse
Affiliation(s)
- Samir H Barghout
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Mandeep K Mann
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Yifan Yu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Matthew G Alteen
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aaron D Schimmer
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
20
|
Zhang D, Wang Y, Ramprasath T, Wang P, Negri R. Editorial: Crosstalk between epigenetics on the development of cancer and cardiovascular disease. Front Cell Dev Biol 2022; 10:1027798. [PMID: 36340040 PMCID: PMC9632337 DOI: 10.3389/fcell.2022.1027798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Donghong Zhang
- Department of Pharmacology and Chemical Biology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States
- *Correspondence: Donghong Zhang, ; Rodolfo Negri,
| | - Yidong Wang
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| | - Ping Wang
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Rodolfo Negri
- Department of Biology and Biotechnology “C.Darwin”, Sapienza University of Rome, Rome, Italy
- *Correspondence: Donghong Zhang, ; Rodolfo Negri,
| |
Collapse
|
21
|
Du L, Lu Y, Wang J. Editorial: The role of interplay between metabolism and chromosomes in tumorigenesis. Front Cell Dev Biol 2022; 10:981075. [PMID: 36036005 PMCID: PMC9400713 DOI: 10.3389/fcell.2022.981075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Jiayi Wang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Doyle EJ, Morey L, Conway E. Know when to fold 'em: Polycomb complexes in oncogenic 3D genome regulation. Front Cell Dev Biol 2022; 10:986319. [PMID: 36105358 PMCID: PMC9464936 DOI: 10.3389/fcell.2022.986319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin is spatially and temporally regulated through a series of orchestrated processes resulting in the formation of 3D chromatin structures such as topologically associating domains (TADs), loops and Polycomb Bodies. These structures are closely linked to transcriptional regulation, with loss of control of these processes a frequent feature of cancer and developmental syndromes. One such oncogenic disruption of the 3D genome is through recurrent dysregulation of Polycomb Group Complex (PcG) functions either through genetic mutations, amplification or deletion of genes that encode for PcG proteins. PcG complexes are evolutionarily conserved epigenetic complexes. They are key for early development and are essential transcriptional repressors. PcG complexes include PRC1, PRC2 and PR-DUB which are responsible for the control of the histone modifications H2AK119ub1 and H3K27me3. The spatial distribution of the complexes within the nuclear environment, and their associated modifications have profound effects on the regulation of gene transcription and the 3D genome. Nevertheless, how PcG complexes regulate 3D chromatin organization is still poorly understood. Here we glean insights into the role of PcG complexes in 3D genome regulation and compaction, how these processes go awry during tumorigenesis and the therapeutic implications that result from our insights into these mechanisms.
Collapse
Affiliation(s)
- Emma J. Doyle
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Lluis Morey
- Sylvester Comprehensive Cancer Centre, Miami, FL, United States
- Department of Human Genetics, Biomedical Research Building, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eric Conway
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Yang C, Li D, Zang S, Zhang L, Zhong Z, Zhou Y. Mechanisms of carcinogenic activity triggered by lysine-specific demethylase 1A. Front Pharmacol 2022; 13:955218. [PMID: 36059955 PMCID: PMC9428822 DOI: 10.3389/fphar.2022.955218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022] Open
Abstract
Epigenetics has emerged as a prime focus area in the field of cancer research. Lysine-specific demethylase 1A (LSD1), the first discovered histone demethylase, is mainly responsible for catalysing demethylation of histone 3 lysine 4 (H3K4) and H3K9 to activate or inhibit gene transcription. LSD1 is abnormally expressed in various cancers and participates in cancer proliferation, apoptosis, metastasis, invasion, drug resistance and other processes by interacting with regulatory factors. Therefore, it may serve as a potential therapeutic target for cancer. This review summarises the major oncogenic mechanisms mediated by LSD1 and provides a reference for developing novel and efficient anticancer strategies targeting LSD1.
Collapse
Affiliation(s)
- Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohong Zang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Lei Zhang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yingtang Zhou,
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
- *Correspondence: Zhangfeng Zhong, ; Yingtang Zhou,
| |
Collapse
|
24
|
Zambelli A, Sgarra R, De Sanctis R, Agostinetto E, Santoro A, Manfioletti G. Heterogeneity of triple-negative breast cancer: understanding the Daedalian labyrinth and how it could reveal new drug targets. Expert Opin Ther Targets 2022; 26:557-573. [PMID: 35638300 DOI: 10.1080/14728222.2022.2084380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is considered the most aggressive breast cancer subtype with the least favorable outcomes. However, recent research efforts have generated an enhanced knowledge of the biology of the disease and have provided a new, more comprehensive understanding of the multifaceted ecosystem that underpins TNBC. AREAS COVERED In this review, the authors illustrate the principal biological characteristics of TNBC, the molecular driver alterations, targetable genes, and the biomarkers of immune engagement that have been identified across the subgroups of TNBC. Accordingly, the authors summarize the landscape of the innovative and investigative biomarker-driven therapeutic options in TNBC that emerge from the unique biological basis of the disease. EXPERT OPINION The therapeutic setting of TNBC is rapidly evolving. An enriched understanding of the tumor spatial and temporal heterogeneity and the surrounding microenvironment of this complex disease can effectively support the development of novel and tailored opportunities of treatment.
Collapse
Affiliation(s)
- Alberto Zambelli
- Medical Oncology and Hematology Unit, IRCCS - Humanitas Clinical and Research Center, Humanitas Cancer Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Riccardo Sgarra
- Department of Life sciences, University of Trieste, Trieste, Italy
| | - Rita De Sanctis
- Medical Oncology and Hematology Unit, IRCCS - Humanitas Clinical and Research Center, Humanitas Cancer Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elisa Agostinetto
- Department of Biomedical Sciences, Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Brussels, Belgium and Humanitas University, Milan, Italy
| | - Armando Santoro
- Medical Oncology and Hematology Unit, IRCCS - Humanitas Clinical and Research Center, Humanitas Cancer Center, Milan, Italy
| | | |
Collapse
|
25
|
Shendy NAM, Zimmerman MW, Abraham BJ, Durbin AD. Intrinsic transcriptional heterogeneity in neuroblastoma guides mechanistic and therapeutic insights. Cell Rep Med 2022; 3:100632. [PMID: 35584622 PMCID: PMC9133465 DOI: 10.1016/j.xcrm.2022.100632] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/24/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022]
Abstract
Cell state is controlled by master transcription factors (mTFs) that determine the cellular gene expression program. Cancer cells acquire dysregulated gene expression programs by mutational and non-mutational processes. Intratumoral heterogeneity can result from cells displaying distinct mTF-regulated cell states, which co-exist within the tumor. One archetypal tumor associated with transcriptionally regulated heterogeneity is high-risk neuroblastoma (NB). Patients with NB have poor overall survival despite intensive therapies, and relapsed patients are commonly refractory to treatment. The cellular populations that comprise NB are marked by different cohorts of mTFs and differential sensitivity to conventional therapies. Recent studies have highlighted mechanisms by which NB cells dynamically shift the cell state with treatment, revealing new opportunities to control the cellular response to treatment by manipulating cell-state-defining transcriptional programs. Here, we review recent advances in understanding transcriptionally defined cancer heterogeneity. We offer challenges to the field to encourage translation of basic science into clinical benefit.
Collapse
Affiliation(s)
- Noha A M Shendy
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mark W Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Brian J Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
26
|
Abstract
Gene transcription does not only require writers of active histone modifications; on-site opposition by erasers is essential for many genes. Here, we propose the concept of dynamic opposition of histone modifications to explain this conundrum. We highlight the requirement of HDACs for acetylation balance at superenhancers, and the requirement of KDM5A for H4K3me3 recycling at highly active gene promoters. We propose that histone post-translational modifications regulate charge balance for biomolecular condensate formation and nucleosome turnover and form a short-term memory that informs lock-and-step checkpoints for chromatin engagement by RNA polymerase II.
Collapse
Affiliation(s)
- Ana María Garzón-Porras
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Emma Chory
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Berkley E. Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
27
|
Pnueli L, Melamed P. Epigenetic repression of gonadotropin gene expression via a GnRH-mediated DNA delivery system. Gene Ther 2022; 29:294-303. [PMID: 35301447 DOI: 10.1038/s41434-022-00325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 11/09/2022]
Abstract
The reproductive axis is activated by gonadotropin-releasing hormone (GnRH), which stimulates the pituitary gonadotropes to secrete hormones that drive gonadal function and steroidogenesis. Thus repression of this axis, which is conserved across mammals and sexes, can reduce steroid levels and/or prevent reproduction. Steroid-dependent pathologies, including various cancers, are commonly treated with GnRH super-analogs which have long-term side-effects, while humane solutions for controlling reproduction in domestic and wild animal populations are lacking. GnRH-conjugated toxins are undergoing clinical trials for GnRHR-expressing cancer cells, and have been examined for gonadotrope ablation in animals, but showed low and/or transient effects and administration of toxins has many potential complications. Here we exploit GnRH targeting to gonadotropes to deliver DNA encoding an effector that induces gonadotropin gene repressive epigenetic modifications which are perpetuated over time. Several layers of specificity are endowed through targeting to GnRHR-expressing cells and due to local cleavage of the peptide packaging the DNA; the DNA-encoded effector is expressed and directed to the target genes by the DNA binding domain of a highly specific transcription factor. This design has multiple advantages over existing methods of shutting down the reproductive axis, and its modular design should allow adaptation for broad applications.
Collapse
Affiliation(s)
- Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
28
|
Durbin AD, Wang T, Wimalasena VK, Zimmerman MW, Li D, Dharia NV, Mariani L, Shendy NA, Nance S, Patel AG, Shao Y, Mundada M, Maxham L, Park PM, Sigua LH, Morita K, Conway AS, Robichaud AL, Perez-Atayde AR, Bikowitz MJ, Quinn TR, Wiest O, Easton J, Schönbrunn E, Bulyk ML, Abraham BJ, Stegmaier K, Look AT, Qi J. EP300 Selectively Controls the Enhancer Landscape of MYCN-Amplified Neuroblastoma. Cancer Discov 2022; 12:730-751. [PMID: 34772733 PMCID: PMC8904277 DOI: 10.1158/2159-8290.cd-21-0385] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/25/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023]
Abstract
Gene expression is regulated by promoters and enhancers marked by histone H3 lysine 27 acetylation (H3K27ac), which is established by the paralogous histone acetyltransferases (HAT) EP300 and CBP. These enzymes display overlapping regulatory roles in untransformed cells, but less characterized roles in cancer cells. We demonstrate that the majority of high-risk pediatric neuroblastoma (NB) depends on EP300, whereas CBP has a limited role. EP300 controls enhancer acetylation by interacting with TFAP2β, a transcription factor member of the lineage-defining transcriptional core regulatory circuitry (CRC) in NB. To disrupt EP300, we developed a proteolysis-targeting chimera (PROTAC) compound termed "JQAD1" that selectively targets EP300 for degradation. JQAD1 treatment causes loss of H3K27ac at CRC enhancers and rapid NB apoptosis, with limited toxicity to untransformed cells where CBP may compensate. Furthermore, JQAD1 activity is critically determined by cereblon (CRBN) expression across NB cells. SIGNIFICANCE EP300, but not CBP, controls oncogenic CRC-driven transcription in high-risk NB by binding TFAP2β. We developed JQAD1, a CRBN-dependent PROTAC degrader with preferential activity against EP300 and demonstrated its activity in NB. JQAD1 has limited toxicity to untransformed cells and is effective in vivo in a CRBN-dependent manner. This article is highlighted in the In This Issue feature, p. 587.
Collapse
Affiliation(s)
- Adam D. Durbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tingjian Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Mark W. Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Deyao Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Neekesh V. Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Luca Mariani
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Noha A.M. Shendy
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephanie Nance
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Anand G. Patel
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Maya Mundada
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lily Maxham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Paul M.C. Park
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Logan H. Sigua
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ken Morita
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Amy Saur Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Amanda L. Robichaud
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Melissa J. Bikowitz
- Drug Discovery Department, Moffit Cancer Center, Tampa, Florida
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Taylor R. Quinn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ernst Schönbrunn
- Drug Discovery Department, Moffit Cancer Center, Tampa, Florida
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Martha L. Bulyk
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Brian J. Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - A. Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Ma X, Lu Y, Zhou Z, Li Q, Chen X, Wang W, Jin Y, Hu Z, Chen G, Deng Q, Shang W, Wang H, Fu H, He X, Feng XH, Zhu S. Human expandable pancreatic progenitor-derived β cells ameliorate diabetes. SCIENCE ADVANCES 2022; 8:eabk1826. [PMID: 35196077 PMCID: PMC8865776 DOI: 10.1126/sciadv.abk1826] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
An unlimited source of human pancreatic β cells is in high demand. Even with recent advances in pancreatic differentiation from human pluripotent stem cells, major hurdles remain in large-scale and cost-effective production of functional β cells. Here, through chemical screening, we demonstrate that the bromodomain and extraterminal domain (BET) inhibitor I-BET151 can robustly promote the expansion of PDX1+NKX6.1+ pancreatic progenitors (PPs). These expandable PPs (ePPs) maintain pancreatic progenitor cell status in the long term and can efficiently differentiate into functional pancreatic β (ePP-β) cells. Notably, transplantation of ePP-β cells rapidly ameliorated diabetes in mice, suggesting strong potential for cell replacement therapy. Mechanistically, I-BET151 activates Notch signaling and promotes the expression of key PP-associated genes, underscoring the importance of epigenetic and transcriptional modulations for lineage-specific progenitor self-renewal. In summary, our studies achieve the long-term goal of robust expansion of PPs and represent a substantial step toward unlimited supplies of functional β cells for biomedical research and regenerative medicine.
Collapse
Affiliation(s)
- Xiaojie Ma
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yunkun Lu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ziyu Zhou
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qin Li
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xi Chen
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Weiyun Wang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yan Jin
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhensheng Hu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Guo Chen
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qian Deng
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Weina Shang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Hangzhou Women’s Hospital, Prenatal Diagnosis Center, 369 Kunpeng Road, Hangzhou, China
| | - Hongxing Fu
- Department of Pharmacy, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shunlan International Medical College, 848 Dongxin Road, Hangzhou, China
| | - Xiangwei He
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Saiyong Zhu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Corresponding author.
| |
Collapse
|
30
|
Conery AR, Rocnik JL, Trojer P. Small molecule targeting of chromatin writers in cancer. Nat Chem Biol 2021; 18:124-133. [PMID: 34952934 DOI: 10.1038/s41589-021-00920-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
More than a decade after the launch of DNA methyltransferase and histone deacetylase inhibitors for the treatment of cancer, 2020 heralded the approval of the first histone methyltransferase inhibitor, revitalizing the concept that targeted manipulation of the chromatin regulatory landscape can have profound therapeutic impact. Three chromatin regulatory pathways-DNA methylation, histone acetylation and methylation-are frequently implicated in human cancer but hundreds of potentially druggable mechanisms complicate identification of key targets for therapeutic intervention. In addition to human genetics and functional screening, chemical biology approaches have proven critical for the discovery of key nodes in these pathways and in an ever-increasing complexity of molecularly defined human cancer contexts. This review introduces small molecule targeting approaches, showcases chemical probes and drug candidates for epigenetic writer enzymes, illustrates molecular features that may represent epigenetic dependencies and suggests translational strategies to maximize their impact in cancer therapy.
Collapse
|
31
|
Holdgate GA, Bardelle C, Lanne A, Read J, O'Donovan DH, Smith JM, Selmi N, Sheppard R. Drug discovery for epigenetics targets. Drug Discov Today 2021; 27:1088-1098. [PMID: 34728375 DOI: 10.1016/j.drudis.2021.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/19/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022]
Abstract
Dysregulation of the epigenome is associated with the onset and progression of several diseases, including cancer, autoimmune, cardiovascular, and neurological disorders. Members from the three families of epigenetic proteins (readers, writers, and erasers) have been shown to be druggable using small-molecule inhibitors. Increasing knowledge of the role of epigenetics in disease and the reversibility of these modifications explain why pharmacological intervention is an attractive strategy for tackling epigenetic-based disease. In this review, we provide an overview of epigenetics drug targets, focus on approaches used for initial hit identification, and describe the subsequent role of structure-guided chemistry optimisation of initial hits to clinical candidates. We also highlight current challenges and future potential for epigenetics-based therapies.
Collapse
Affiliation(s)
- Geoffrey A Holdgate
- High-throughput Screening, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Alderley Park, UK.
| | - Catherine Bardelle
- High-throughput Screening, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Alderley Park, UK
| | - Alice Lanne
- High-throughput Screening, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Alderley Park, UK
| | - Jon Read
- Structure and Biophysics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Nidhal Selmi
- iLAB, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Robert Sheppard
- Medicinal Chemistry, Cardiovascular, Renal, Metabolism R&D, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
32
|
Tang G, Yuan J, Wang J, Zhang YZ, Xie SS, Wang H, Tao Z, Liu H, Kistler HC, Zhao Y, Duan CG, Liu W, Ma Z, Chen Y. Fusarium BP1 is a reader of H3K27 methylation. Nucleic Acids Res 2021; 49:10448-10464. [PMID: 34570240 PMCID: PMC8501951 DOI: 10.1093/nar/gkab844] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Histone H3 lysine 27 methylation catalyzed by polycomb repressive complex 2 (PRC2) is conserved from fungi to humans and represses gene transcription. However, the mechanism for recognition of methylated H3K27 remains unclear, especially in fungi. Here, we found that the bromo-adjacent homology (BAH)-plant homeodomain (PHD) domain containing protein BAH–PHD protein 1 (BP1) is a reader of H3K27 methylation in the cereal fungal pathogen Fusarium graminearum. BP1 interacts with the core PRC2 component Suz12 and directly binds methylated H3K27. BP1 is distributed in a subset of genomic regions marked by H3K27me3 and co-represses gene transcription. The BP1 deletion mutant shows identical phenotypes on mycelial growth and virulence, as well as similar expression profiles of secondary metabolite genes to the strain lacking the H3K27 methyltransferase Kmt6. More importantly, BP1 can directly bind DNA through its PHD finger, which might increase nucleosome residence and subsequently reinforce transcriptional repression in H3K27me3-marked target regions. A phylogenetic analysis showed that BP1 orthologs are mainly conserved in fungi. Overall, our findings provide novel insights into the mechanism by which PRC2 mediates gene repression in fungi, which is distinct from the PRC1-PRC2 system in plants and mammals.
Collapse
Affiliation(s)
- Guangfei Tang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianlong Yuan
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Jing Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yi-Zhe Zhang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Si-Si Xie
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Hongkai Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zeng Tao
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, Northwest A&F University, Yangling 712100, China
| | - H Corby Kistler
- Cereal Disease Laboratory, Agricultural Research Service, United States Department of Agriculture, Saint Paul, MN 55108, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
Cao Z, Budinich KA, Huang H, Ren D, Lu B, Zhang Z, Chen Q, Zhou Y, Huang YH, Alikarami F, Kingsley MC, Lenard AK, Wakabayashi A, Khandros E, Bailis W, Qi J, Carroll MP, Blobel GA, Faryabi RB, Bernt KM, Berger SL, Shi J. ZMYND8-regulated IRF8 transcription axis is an acute myeloid leukemia dependency. Mol Cell 2021; 81:3604-3622.e10. [PMID: 34358447 PMCID: PMC8932643 DOI: 10.1016/j.molcel.2021.07.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
The transformed state in acute leukemia requires gene regulatory programs involving transcription factors and chromatin modulators. Here, we uncover an IRF8-MEF2D transcriptional circuit as an acute myeloid leukemia (AML)-biased dependency. We discover and characterize the mechanism by which the chromatin "reader" ZMYND8 directly activates IRF8 in parallel with the MYC proto-oncogene through their lineage-specific enhancers. ZMYND8 is essential for AML proliferation in vitro and in vivo and associates with MYC and IRF8 enhancer elements that we define in cell lines and in patient samples. ZMYND8 occupancy at IRF8 and MYC enhancers requires BRD4, a transcription coactivator also necessary for AML proliferation. We show that ZMYND8 binds to the ET domain of BRD4 via its chromatin reader cassette, which in turn is required for proper chromatin occupancy and maintenance of leukemic growth in vivo. Our results rationalize ZMYND8 as a potential therapeutic target for modulating essential transcriptional programs in AML.
Collapse
Affiliation(s)
- Zhendong Cao
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Krista A Budinich
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hua Huang
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diqiu Ren
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bin Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Zhen Zhang
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qingzhou Chen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yeqiao Zhou
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu-Han Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Fatemeh Alikarami
- Division of Pediatric Oncology, Department of Pediatrics, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Molly C Kingsley
- Division of Pediatric Oncology, Department of Pediatrics, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alexandra K Lenard
- Division of Pediatric Oncology, Department of Pediatrics, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Aoi Wakabayashi
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eugene Khandros
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Will Bailis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Martin P Carroll
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerd A Blobel
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert B Faryabi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathrin M Bernt
- Division of Pediatric Oncology, Department of Pediatrics, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
Paakinaho V, Palvimo JJ. Genome-wide crosstalk between steroid receptors in breast and prostate cancers. Endocr Relat Cancer 2021; 28:R231-R250. [PMID: 34137734 PMCID: PMC8345902 DOI: 10.1530/erc-21-0038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
Steroid receptors (SRs) constitute an important class of signal-dependent transcription factors (TFs). They regulate a variety of key biological processes and are crucial drug targets in many disease states. In particular, estrogen (ER) and androgen receptors (AR) drive the development and progression of breast and prostate cancer, respectively. Thus, they represent the main specific drug targets in these diseases. Recent evidence has suggested that the crosstalk between signal-dependent TFs is an important step in the reprogramming of chromatin sites; a signal-activated TF can expand or restrict the chromatin binding of another TF. This crosstalk can rewire gene programs and thus alter biological processes and influence the progression of disease. Lately, it has been postulated that there may be an important crosstalk between the AR and the ER with other SRs. Especially, progesterone (PR) and glucocorticoid receptor (GR) can reprogram chromatin binding of ER and gene programs in breast cancer cells. Furthermore, GR can take the place of AR in antiandrogen-resistant prostate cancer cells. Here, we review the current knowledge of the crosstalk between SRs in breast and prostate cancers. We emphasize how the activity of ER and AR on chromatin can be modulated by other SRs on a genome-wide scale. We also highlight the knowledge gaps in the interplay of SRs and their complex interactions with other signaling pathways and suggest how to experimentally fill in these gaps.
Collapse
Affiliation(s)
- Ville Paakinaho
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Correspondence should be addressed to J J Palvimo:
| |
Collapse
|
35
|
Ohguchi H, Park PMC, Wang T, Gryder BE, Ogiya D, Kurata K, Zhang X, Li D, Pei C, Masuda T, Johansson C, Wimalasena VK, Kim Y, Hino S, Usuki S, Kawano Y, Samur MK, Tai YT, Munshi NC, Matsuoka M, Ohtsuki S, Nakao M, Minami T, Lauberth S, Khan J, Oppermann U, Durbin AD, Anderson KC, Hideshima T, Qi J. Lysine Demethylase 5A is Required for MYC Driven Transcription in Multiple Myeloma. Blood Cancer Discov 2021; 2:370-387. [PMID: 34258103 PMCID: PMC8265280 DOI: 10.1158/2643-3230.bcd-20-0108] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/22/2021] [Accepted: 03/28/2021] [Indexed: 12/23/2022] Open
Abstract
Lysine demethylase 5A (KDM5A) is a negative regulator of histone H3K4 trimethylation, a histone mark associated with activate gene transcription. We identify that KDM5A interacts with the P-TEFb complex and cooperates with MYC to control MYC targeted genes in multiple myeloma (MM) cells. We develop a cell-permeable and selective KDM5 inhibitor, JQKD82, that increases histone H3K4me3 but paradoxically inhibits downstream MYC-driven transcriptional output in vitro and in vivo. Using genetic ablation together with our inhibitor, we establish that KDM5A supports MYC target gene transcription independent of MYC itself, by supporting TFIIH (CDK7)- and P-TEFb (CDK9)-mediated phosphorylation of RNAPII. These data identify KDM5A as a unique vulnerability in MM functioning through regulation of MYC-target gene transcription, and establish JQKD82 as a tool compound to block KDM5A function as a potential therapeutic strategy for MM.
Collapse
Affiliation(s)
- Hiroto Ohguchi
- Division of Disease Epigenetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.
| | - Paul M C Park
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tingjian Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Berkley E Gryder
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Daisuke Ogiya
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Keiji Kurata
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xiaofeng Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Deyao Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chengkui Pei
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Catrine Johansson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | | | - Yong Kim
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yawara Kawano
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Mehmet K Samur
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Takashi Minami
- Division of Molecular and Vascular Biology, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Shannon Lauberth
- Division of Biological Sciences, University of Califonia, San Diego, La Jolla, California
| | - Javed Khan
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Udo Oppermann
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- Structural Genomics Consortium, University of Oxford, Headington, United Kingdom; Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Teru Hideshima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
36
|
Xiao Z, Yang X, Liu Z, Shao Z, Song C, Zhang K, Wang X, Li Z. GASC1 promotes glioma progression by enhancing NOTCH1 signaling. Mol Med Rep 2021; 23:310. [PMID: 33649841 PMCID: PMC7974312 DOI: 10.3892/mmr.2021.11949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/21/2021] [Indexed: 12/21/2022] Open
Abstract
Recent studies have reported that gene amplified in squamous cell carcinoma 1 (GASC1) is involved in the progression of several types of cancer. However, whether GASC1 promotes glioma progression remains unknown. Therefore, the present study aimed to investigate the effect of GASC1 exposure on glioma tumorigenesis. The western blot demonstrated that grade III and IV glioma tissues exhibited a higher mRNA and protein expression of GASC1. Moreover, CD133+ U87 or U251 cells from magnetic cell separation exhibited a higher GASC1 expression. Invasion Transwell assay, clonogenic assay and wound healing assay have shown that GASC1 inhibition using a pharmacological inhibitor and specific short hairpin (sh)RNA suppressed the invasive, migratory and tumorsphere forming abilities of primary culture human glioma cells. Furthermore, GASC1‑knockdown decreased notch receptor (Notch) responsive protein hes family bHLH transcription factor 1 (Hes1) signaling. GASC1 inhibition reduced notch receptor 1 (NOTCH1) expression, and a NOTCH1 inhibitor enhanced the effects of GASC1 inhibition on the CD133+ U87 or U251 cell tumorsphere forming ability, while NOTCH1 overexpression abrogated these effects. In addition, the GASC1 inhibitor caffeic acid and/or the NOTCH1 inhibitor DAPT (a γ‑Secretase Inhibitor), efficiently suppressed the human glioma xenograft tumors. Thus, the present results demonstrated the importance of GASC1 in the progression of glioma and identified that GASC1 promotes glioma progression, at least in part, by enhancing NOTCH signaling, suggesting that GASC1/NOTCH1 signaling may be a potential therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Zhengzheng Xiao
- Department of Neurosurgery, Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Xiaoli Yang
- Department of General Practice, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zebin Liu
- Department of Neurosurgery, Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zheng Shao
- Department of Neurosurgery, Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Chaojun Song
- Department of Neurosurgery, Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Kun Zhang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 210011, P.R. China
| | - Xiaobin Wang
- Department of Urology, Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Zhengwei Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
37
|
Muthengi A, Wimalasena VK, Yosief HO, Bikowitz MJ, Sigua LH, Wang T, Li D, Gaieb Z, Dhawan G, Liu S, Erickson J, Amaro RE, Schönbrunn E, Qi J, Zhang W. Development of Dimethylisoxazole-Attached Imidazo[1,2- a]pyridines as Potent and Selective CBP/P300 Inhibitors. J Med Chem 2021; 64:5787-5801. [PMID: 33872011 DOI: 10.1021/acs.jmedchem.0c02232] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The use of epigenetic bromodomain inhibitors as anticancer therapeutics has transitioned from targeting bromodomain extraterminal domain (BET) proteins into targeting non-BET bromodomains. The two most relevant non-BET bromodomain oncology targets are cyclic AMP response element-binding protein (CBP) and E1A binding protein P300 (EP300). To explore the growing CBP/EP300 interest, we developed a highly efficient two-step synthetic route for dimethylisoxazole-attached imidazo[1,2-a]pyridine scaffold-containing inhibitors. Our efficient two-step reactions enabled high-throughput synthesis of compounds designed by molecular modeling, which together with structure-activity relationship (SAR) studies facilitated an overarching understanding of selective targeting of CBP/EP300 over non-BET bromodomains. This led to the identification of a new potent and selective CBP/EP300 bromodomain inhibitor, UMB298 (compound 23, CBP IC50 72 nM and bromodomain 4, BRD4 IC50 5193 nM). The SAR we established is in good agreement with literature-reported CBP inhibitors, such as CBP30, and demonstrates the advantage of utilizing our two-step approach for inhibitor development of other bromodomains.
Collapse
Affiliation(s)
- Alex Muthengi
- Center for Green Chemistry and Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Virangika K Wimalasena
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Hailemichael O Yosief
- Center for Green Chemistry and Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Melissa J Bikowitz
- Drug Discovery Department, Moffit Cancer Center, Tampa, Florida 33612, United States.,Department of Molecular Medicine, USF Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Logan H Sigua
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Tingjian Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Deyao Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Zied Gaieb
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Dr, LA Jolla, California 92093, United States
| | - Gagan Dhawan
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Delhi, New Delhi 110019, India
| | - Shuai Liu
- Center for Green Chemistry and Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Jon Erickson
- Center for Green Chemistry and Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Rommie E Amaro
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Dr, LA Jolla, California 92093, United States
| | - Ernst Schönbrunn
- Drug Discovery Department, Moffit Cancer Center, Tampa, Florida 33612, United States.,Department of Molecular Medicine, USF Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States.,Department of Medicine, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Wei Zhang
- Center for Green Chemistry and Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| |
Collapse
|
38
|
Huang J, Gou H, Yao J, Yi K, Jin Z, Matsuoka M, Zhao T. The noncanonical role of EZH2 in cancer. Cancer Sci 2021; 112:1376-1382. [PMID: 33615636 PMCID: PMC8019201 DOI: 10.1111/cas.14840] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb repressive complex 2 (PRC2). Dysregulation of EZH2 causes alteration of gene expression and functions, thereby promoting cancer development. The regulatory function of EZH2 varies across different tumor types. The canonical role of EZH2 is gene silencing through catalyzing the trimethylation of lysine 27 of histone H3 (H3K27me3) in a PRC2-dependent manner. Accumulating evidence indicates that EZH2 has an H3K27me3-independent function as a transcriptional coactivator and plays a critical role in cancer initiation, development, and progression. In this review, we summarize the regulation and function of EZH2 and focus on the current understanding of the noncanonical role of EZH2 in cancer.
Collapse
Affiliation(s)
- Jinhua Huang
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Hongwei Gou
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Jia Yao
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Kaining Yi
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Zhigang Jin
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Masao Matsuoka
- Department of Hematology, Rheumatology, and Infectious DiseaseGraduate School of Medical SciencesFaculty of Life SciencesKumamoto UniversityKumamotoJapan
- Laboratory of Virus ControlInstitute for Frontier Life and Medical SciencesKyoto UniversityKyotoJapan
| | - Tiejun Zhao
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
- Laboratory of Virus ControlInstitute for Frontier Life and Medical SciencesKyoto UniversityKyotoJapan
| |
Collapse
|
39
|
Zhang Y, Geng X, Li Q, Xu J, Tan Y, Xiao M, Song J, Liu F, Fang C, Wang H. m6A modification in RNA: biogenesis, functions and roles in gliomas. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020. [PMID: 32943100 DOI: 10.1186/s13046-020-01706-8.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The chemical modification of RNA is a newly discovered epigenetic regulation mechanism in cells and plays a crucial role in a variety of biological processes. N6-methyladenine (m6A) mRNA modification is the most abundant form of posttranscriptional RNA modification in eukaryotes. Through the development of m6A RNA sequencing, the relevant molecular mechanism of m6A modification has gradually been revealed. It has been found that the effect of m6A modification on RNA metabolism involves processing, nuclear export, translation and even decay. As the most common malignant tumour of the central nervous system, gliomas (especially glioblastoma) have a very poor prognosis, and treatment efficacy is not ideal even with the application of high-intensity treatment measures of surgery combined with chemoradiotherapy. Exploring the origin and development mechanisms of tumour cells from the perspective of tumour biogenesis has always been a hotspot in the field of glioma research. Emerging evidence suggests that m6A modification can play a key role in gliomas through a variety of mechanisms, providing more possibilities for early diagnosis and targeted therapy of gliomas. The aim of the present review is to focus on the research progress regarding the association between m6A modification and gliomas. And to provide a theoretical basis according to the currently available literature for further exploring this association. This review may provide new insights for the molecular mechanism, early diagnosis, histologic grading, targeted therapy and prognostic evaluation of gliomas.
Collapse
Affiliation(s)
- Yuhao Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Xiuchao Geng
- Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, 050091, Shijiazhuang, China
| | - Qiang Li
- Faculty of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, 050200, Shijiazhuang, China
| | - Jianglong Xu
- Department of Neurosurgery, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Yanli Tan
- Department of Pathology, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Menglin Xiao
- Department of Neurosurgery, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Jia Song
- School of Basic Medicine, Hebei University, 071000, Baoding, China
| | - Fulin Liu
- Office of Academic Research, Affiliated Hospital of Hebei University, 071000, Baoding, China.
| | - Chuan Fang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, 071000, Baoding, China.
| | - Hong Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, 071000, Baoding, China. .,Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, 050091, Shijiazhuang, China. .,Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, 050091, Shijiazhuang, China.
| |
Collapse
|
40
|
Zhang Y, Geng X, Li Q, Xu J, Tan Y, Xiao M, Song J, Liu F, Fang C, Wang H. m6A modification in RNA: biogenesis, functions and roles in gliomas. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:192. [PMID: 32943100 PMCID: PMC7500025 DOI: 10.1186/s13046-020-01706-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022]
Abstract
The chemical modification of RNA is a newly discovered epigenetic regulation mechanism in cells and plays a crucial role in a variety of biological processes. N6-methyladenine (m6A) mRNA modification is the most abundant form of posttranscriptional RNA modification in eukaryotes. Through the development of m6A RNA sequencing, the relevant molecular mechanism of m6A modification has gradually been revealed. It has been found that the effect of m6A modification on RNA metabolism involves processing, nuclear export, translation and even decay. As the most common malignant tumour of the central nervous system, gliomas (especially glioblastoma) have a very poor prognosis, and treatment efficacy is not ideal even with the application of high-intensity treatment measures of surgery combined with chemoradiotherapy. Exploring the origin and development mechanisms of tumour cells from the perspective of tumour biogenesis has always been a hotspot in the field of glioma research. Emerging evidence suggests that m6A modification can play a key role in gliomas through a variety of mechanisms, providing more possibilities for early diagnosis and targeted therapy of gliomas. The aim of the present review is to focus on the research progress regarding the association between m6A modification and gliomas. And to provide a theoretical basis according to the currently available literature for further exploring this association. This review may provide new insights for the molecular mechanism, early diagnosis, histologic grading, targeted therapy and prognostic evaluation of gliomas.
Collapse
Affiliation(s)
- Yuhao Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Xiuchao Geng
- Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, 050091, Shijiazhuang, China
| | - Qiang Li
- Faculty of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, 050200, Shijiazhuang, China
| | - Jianglong Xu
- Department of Neurosurgery, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Yanli Tan
- Department of Pathology, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Menglin Xiao
- Department of Neurosurgery, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Jia Song
- School of Basic Medicine, Hebei University, 071000, Baoding, China
| | - Fulin Liu
- Office of Academic Research, Affiliated Hospital of Hebei University, 071000, Baoding, China.
| | - Chuan Fang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, 071000, Baoding, China.
| | - Hong Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, 071000, Baoding, China. .,Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, 050091, Shijiazhuang, China. .,Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, 050091, Shijiazhuang, China.
| |
Collapse
|
41
|
Farooqi AA, Fayyaz S, Poltronieri P, Calin G, Mallardo M. Epigenetic deregulation in cancer: Enzyme players and non-coding RNAs. Semin Cancer Biol 2020; 83:197-207. [PMID: 32738290 DOI: 10.1016/j.semcancer.2020.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023]
Abstract
Data obtained from cutting-edge research have shown that deregulated epigenetic marks are critical hallmarks of cancer. Rapidly emerging scientific evidence has helped in developing a proper understanding of the mechanisms leading to control of cellular functions, from changes in chromatin accessibility, transcription and translation, and in post-translational modifications. Firstly, mechanisms of DNA methylation and demethylation are introduced, as well as modifications of DNA and RNA, with particular focus on N6-methyladenosine (m6A), discussing the effects of these modifications in normal cells and in malignancies. Then, chromatin modifying proteins and remodelling complexes are discussed. Many enzymes and accessory proteins in these complexes have been found mutated or have undergone differential splicing, leading to defective protein complexes. Epigenetic mechanisms acting on nucleosomes by polycomb repressive complexes and on chromatin by SWI/SNF complexes on nucleosome assembly/disassembly, as well as main mutated genes linked to cancers, are reviewed. Among enzymes acting on histones and other proteins erasing the reversible modifications are histone deacetylases (HDACs). Sirtuins are of interest since most of these enzymes not only deacylate histones and other proteins, but also post-translationally modify proteins adding a Mono-ADP-ribose (MAR) moiety. MAR can be read by MACRO-domain containing proteins such as histone MacroH2A1, with specific function in chromatin assembly. Finally, recent advances are presented on non-coding RNAs with a scaffold function, prospecting their role in assembly of chromatin modifying complexes, recruiting enzyme players to chromatin regions. Lastly, the imbalance in metabolites production due to mitochondrial dysfunction is presented, with the potential of these metabolites to inhibit enzymes, either writers, readers or erasers of epitranscriptome marks. In the perspectives, studies are overwied on drugs under development aiming to limit excessive enzyme activities and to reactivate chromatin modifying complexes, for therapeutic application. This knowledge may lead to novel drugs and personalised medicine for cancer patients.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan.
| | | | - Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, via Monteroni Km 7, 73100 Lecce, Italy.
| | - George Calin
- Department of Experimental Therapeutics, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, "Federico II" via Pansini 5, Napoli, Italy.
| |
Collapse
|
42
|
Fioravanti R, Tomassi S, Di Bello E, Romanelli A, Plateroti AM, Benedetti R, Conte M, Novellino E, Altucci L, Valente S, Mai A. Properly Substituted Cyclic Bis-(2-bromobenzylidene) Compounds Behaved as Dual p300/CARM1 Inhibitors and Induced Apoptosis in Cancer Cells. Molecules 2020; 25:molecules25143122. [PMID: 32650558 PMCID: PMC7397249 DOI: 10.3390/molecules25143122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022] Open
Abstract
Bis-(3-bromo-4-hydroxy)benzylidene cyclic compounds have been reported by us as epigenetic multiple ligands, but different substitutions at the two wings provided analogues with selective inhibition. Since the 1-benzyl-3,5-bis((E)-3-bromobenzylidene)piperidin-4-one 3 displayed dual p300/EZH2 inhibition joined to cancer-selective cell death in a panel of tumor cells and in in vivo xenograft models, we prepared a series of bis((E)-2-bromobenzylidene) cyclic compounds 4a–n to test in biochemical (p300, PCAF, SIRT1/2, EZH2, and CARM1) and cellular (NB4, U937, MCF-7, SH-SY5Y) assays. The majority of 4a–n exhibited potent dual p300 and CARM1 inhibition, sometimes reaching the submicromolar level, and induction of apoptosis mainly in the tested leukemia cell lines. The most effective compounds in both enzyme and cellular assays carried a 4-piperidone moiety and a methyl (4d), benzyl (4e), or acyl (4k–m) substituent at N1 position. Elongation of the benzyl portion to 2-phenylethyl (4f) and 3-phenylpropyl (4g) decreased the potency of compounds at both the enzymatic and cellular levels, but the activity was promptly restored by introduction of a ketone group into the phenylalkyl substituent (4h–j). Western blot analyses performed in NB4 and MCF-7 cells on selected compounds confirmed their inhibition of p300 and CARM1 through decrease of the levels of acetyl-H3 and acetyl-H4, marks for p300 inhibition, and of H3R17me2, mark for CARM1 inhibition.
Collapse
Affiliation(s)
- Rossella Fioravanti
- Dipartimento di Chimica e Tecnologie del Farmaco, ‘Sapienza’ Università di Roma, 00185 Roma, Italy; (R.F.); (E.D.B.); (A.R.)
| | - Stefano Tomassi
- Dipartimento di Farmacia, Università di Napoli ‘Federico II’, 80131 Napoli, Italy; (S.T.); (E.N.)
| | - Elisabetta Di Bello
- Dipartimento di Chimica e Tecnologie del Farmaco, ‘Sapienza’ Università di Roma, 00185 Roma, Italy; (R.F.); (E.D.B.); (A.R.)
| | - Annalisa Romanelli
- Dipartimento di Chimica e Tecnologie del Farmaco, ‘Sapienza’ Università di Roma, 00185 Roma, Italy; (R.F.); (E.D.B.); (A.R.)
| | - Andrea Maria Plateroti
- Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso–Nesmos, ‘Sapienza’ Università di Roma, 00185 Roma, Italy;
| | - Rosaria Benedetti
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, 80138 Napoli, Italy; (R.B.); (M.C.); (L.A.)
| | - Mariarosaria Conte
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, 80138 Napoli, Italy; (R.B.); (M.C.); (L.A.)
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli ‘Federico II’, 80131 Napoli, Italy; (S.T.); (E.N.)
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, 80138 Napoli, Italy; (R.B.); (M.C.); (L.A.)
| | - Sergio Valente
- Dipartimento di Chimica e Tecnologie del Farmaco, ‘Sapienza’ Università di Roma, 00185 Roma, Italy; (R.F.); (E.D.B.); (A.R.)
- Correspondence: (S.V.); (A.M.)
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, ‘Sapienza’ Università di Roma, 00185 Roma, Italy; (R.F.); (E.D.B.); (A.R.)
- Correspondence: (S.V.); (A.M.)
| |
Collapse
|