1
|
Uren RT, Ritchie ME, Wong AW, Ludeman JP, Uno E, Narayana VK, De Souza DP, Sviridov D, Kluck RM. A lipid signature of BAK-driven apoptotic pore formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618570. [PMID: 39463966 PMCID: PMC11507859 DOI: 10.1101/2024.10.16.618570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Apoptotic cell death is regulated by the BCL-2 protein family, with clusters of BAK or BAX homodimers driving pore formation in the mitochondrial outer membrane via a poorly understood process. There is growing evidence that, in addition to BAK and BAX, lipids play an important role in pore formation. Towards a better understanding of the lipidic drivers of apoptotic pore formation in isolated mitochondria, two complementary approaches were taken. Firstly, the lipids released during BAK-mediated pore formation were measured with targeted lipidomics, revealing enrichment of long chain polyunsaturated lysophospholipids (LPLs) in the released fraction. In contrast, the BAK protein was not released suggesting that BAK and LPLs locate to distinct microdomains. Secondly, added cholesterol not only prevented pore formation but prevented the clustering of BAK homodimers. Our data lead us to a model in which BAK clustering triggers formation of a separate microdomain rich in LPLs that can progress to lipid shedding and the opening of a lipid-lined pore. Pore stabilisation and growth may be due to BAK dimers then moving to the pore edge. Our BAK-lipid microdomain model supports the heterogeneity of BAK assemblies, and the observed lipid-release signature gives new insight into the genesis of the apoptotic pore.
Collapse
|
2
|
Vassallo N. Poration of mitochondrial membranes by amyloidogenic peptides and other biological toxins. J Neurochem 2024. [PMID: 39213385 DOI: 10.1111/jnc.16213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Mitochondria are essential organelles known to serve broad functions, including in cellular metabolism, calcium buffering, signaling pathways and the regulation of apoptotic cell death. Maintaining the integrity of the outer (OMM) and inner mitochondrial membranes (IMM) is vital for mitochondrial health. Cardiolipin (CL), a unique dimeric glycerophospholipid, is the signature lipid of energy-converting membranes. It plays a significant role in maintaining mitochondrial architecture and function, stabilizing protein complexes and facilitating efficient oxidative phosphorylation (OXPHOS) whilst regulating cytochrome c release from mitochondria. CL is especially enriched in the IMM and at sites of contact between the OMM and IMM. Disorders of protein misfolding, such as Alzheimer's and Parkinson's diseases, involve amyloidogenic peptides like amyloid-β, tau and α-synuclein, which form metastable toxic oligomeric species that interact with biological membranes. Electrophysiological studies have shown that these oligomers form ion-conducting nanopores in membranes mimicking the IMM's phospholipid composition. Poration of mitochondrial membranes disrupts the ionic balance, causing osmotic swelling, loss of the voltage potential across the IMM, release of pro-apoptogenic factors, and leads to cell death. The interaction between CL and amyloid oligomers appears to favour their membrane insertion and pore formation, directly implicating CL in amyloid toxicity. Additionally, pore formation in mitochondrial membranes is not limited to amyloid proteins and peptides; other biological peptides, as diverse as the pro-apoptotic Bcl-2 family members, gasdermin proteins, cobra venom cardiotoxins and bacterial pathogenic toxins, have all been described to punch holes in mitochondria, contributing to cell death processes. Collectively, these findings underscore the vulnerability of mitochondria and the involvement of CL in various pathogenic mechanisms, emphasizing the need for further research on targeting CL-amyloid interactions to mitigate mitochondrial dysfunction.
Collapse
Affiliation(s)
- Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Tal-Qroqq, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Tal-Qroqq, Malta
| |
Collapse
|
3
|
Leitl KD, Sperl LE, Hagn F. Preferred inhibition of pro-apoptotic Bak by BclxL via a two-step mechanism. Cell Rep 2024; 43:114526. [PMID: 39046879 DOI: 10.1016/j.celrep.2024.114526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Bak is a pore-forming Bcl2 protein that induces apoptosis at the outer mitochondrial membrane, which can either proceed via Bak oligomerization or be inhibited by anti-apoptotic Bcl2 proteins, such as BclxL. BclxL is very efficient in inhibiting Bak pore formation, but the mechanistic basis of this preferred interaction has remained enigmatic. Here, we identify Bakα1 as a second binding site for BclxL and show that it specifically interacts with the Bcl2-homology (BH)3 binding groove of BclxL. The affinity between BclxL and Bakα1 is weaker than with Bak-BH3, suggesting that Bakα1, being exposed early in the pore-forming trajectory, transiently captures BclxL, which subsequently transitions to the proximal BH3 site. Bak variants where the initial transient interaction with BclxL is modulated show a markedly altered response to BclxL inhibition. This work contributes to a better mechanistic understanding of the fine-tuned interactions between different players of the Bcl2 protein family.
Collapse
Affiliation(s)
- Kira D Leitl
- Bavarian NMR Center (BNMRZ), Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany; Molecular Targets and Therapeutics Center (MTTC), Institute of Structural Biology, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Laura E Sperl
- Bavarian NMR Center (BNMRZ), Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ), Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany; Molecular Targets and Therapeutics Center (MTTC), Institute of Structural Biology, Helmholtz Munich, 85764 Neuherberg, Germany.
| |
Collapse
|
4
|
Miller MS, Cowan AD, Brouwer JM, Smyth ST, Peng L, Wardak AZ, Uren RT, Luo C, Roy MJ, Shah S, Tan Z, Reid GE, Colman PM, Czabotar PE. Sequence differences between BAX and BAK core domains manifest as differences in their interactions with lipids. FEBS J 2024; 291:2335-2353. [PMID: 38088212 DOI: 10.1111/febs.17031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 12/11/2023] [Indexed: 01/21/2024]
Abstract
The B-cell lymphoma 2 (BCL2) family members, BCL2-associated protein X (BAX) and BCL2 homologous antagonist killer (BAK), are required for programmed cell death via the mitochondrial pathway. When cells are stressed, damaged or redundant, the balance of power between the BCL2 family of proteins shifts towards BAX and BAK, allowing their transition from an inactive, monomeric state to a membrane-active oligomeric form that releases cytochrome c from the mitochondrial intermembrane space. That oligomeric state has an essential intermediate, a symmetric homodimer of BAX or BAK. Here we describe crystal structures of dimers of the core domain of BAX, comprising its helices α2-α5. These structures provide an atomic resolution description of the interactions that drive BAX homo-dimerisation and insights into potential interaction between core domain dimers and membrane lipids. The previously identified BAK lipid-interacting sites are not conserved with BAX and are likely to determine the differences between them in their interactions with lipids. We also describe structures of heterodimers of BAK/BAX core domains, yielding further insight into the differences in lipid binding between BAX and BAK.
Collapse
Affiliation(s)
- Michelle S Miller
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Angus D Cowan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Jason M Brouwer
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Sean T Smyth
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Liuyu Peng
- School of Chemistry, University of Melbourne, Parkville, Vic., Australia
| | - Ahmad Z Wardak
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Rachel T Uren
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Cindy Luo
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Michael J Roy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Sayali Shah
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Ziwen Tan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Gavin E Reid
- School of Chemistry, University of Melbourne, Parkville, Vic., Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Vic., Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic., Australia
| | - Peter M Colman
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
5
|
Jenner A, Garcia-Saez AJ. The regulation of the apoptotic pore-An immunological tightrope walk. Adv Immunol 2024; 162:59-108. [PMID: 38866439 DOI: 10.1016/bs.ai.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Apoptotic pore formation in mitochondria is the pivotal point for cell death during mitochondrial apoptosis. It is regulated by BCL-2 family proteins in response to various cellular stress triggers and mediates mitochondrial outer membrane permeabilization (MOMP). This allows the release of mitochondrial contents into the cytosol, which triggers rapid cell death and clearance through the activation of caspases. However, under conditions of low caspase activity, the mitochondrial contents released into the cytosol through apoptotic pores serve as inflammatory signals and activate various inflammatory responses. In this chapter, we discuss how the formation of the apoptotic pore is regulated by BCL-2 proteins as well as other cellular or mitochondrial proteins and membrane lipids. Moreover, we highlight the importance of sublethal MOMP in the regulation of mitochondrial-activated inflammation and discuss its physiological consequences in the context of pathogen infection and disease and how it can potentially be exploited therapeutically, for example to improve cancer treatment.
Collapse
Affiliation(s)
- Andreas Jenner
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ana J Garcia-Saez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Cheng P, Hou Y, Bian M, Fang X, Liu Y, Rao Y, Cao S, Liu Y, Zhang S, Chen Y, Dong X, Liu Z. Parkin-mediated ubiquitination inhibits BAK apoptotic activity by blocking its canonical hydrophobic groove. Commun Biol 2023; 6:1260. [PMID: 38087033 PMCID: PMC10716173 DOI: 10.1038/s42003-023-05650-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BAK permeabilizes the mitochondrial outer membrane, causing apoptosis. This apoptotic activity of BAK is stimulated by binding prodeath activators within its canonical hydrophobic groove. Parkin, an E3 ubiquitin (Ub) ligase, can ubiquitinate BAK, which inhibits BAK apoptotic activity. However, the molecular mechanism underlying the inhibition of ubiquitination remains structurally uncharacterized. Here, we utilize truncated and soluble BAK to construct a mimetic of K113-ubiquitinated BAK (disulfide-linked UbG76C ~ BAKK113C) and further present its NMR-derived structure model. The classical L8-I44-H68-V70 hydrophobic patch of the conjugated Ub subunit binds within the canonical hydrophobic groove of BAK. This Ub occludes the binding of prodeath BID activators in the groove and impairs BID-triggered BAK activation and membrane permeabilization. Reduced interaction between Ub and BAK subunits allows BID to activate K113-ubiquitinated BAK. These mechanistic insights suggest a nonsignaling function of Ub in that it directly antagonizes stimuli targeting Ub-modified proteins rather than by recruiting downstream partners for cellular messaging.
Collapse
Affiliation(s)
- Peng Cheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuzhu Hou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingxing Bian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueru Fang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanfang Rao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuo Cao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanjun Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanke Chen
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xu Dong
- Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430074, China.
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
King LE, Hohorst L, García-Sáez AJ. Expanding roles of BCL-2 proteins in apoptosis execution and beyond. J Cell Sci 2023; 136:jcs260790. [PMID: 37994778 DOI: 10.1242/jcs.260790] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Abstract
The proteins of the BCL-2 family are known as key regulators of apoptosis, with interactions between family members determining permeabilisation of the mitochondrial outer membrane (MOM) and subsequent cell death. However, the exact mechanism through which they form the apoptotic pore responsible for MOM permeabilisation (MOMP), the structure and specific components of this pore, and what roles BCL-2 proteins play outside of directly regulating MOMP are incompletely understood. Owing to the link between apoptosis dysregulation and disease, the BCL-2 proteins are important targets for drug development. With the development and clinical use of drugs targeting BCL-2 proteins showing success in multiple haematological malignancies, enhancing the efficacy of these drugs, or indeed developing novel drugs targeting BCL-2 proteins is of great interest to treat cancer patients who have developed resistance or who suffer other disease types. Here, we review our current understanding of the molecular mechanism of MOMP, with a particular focus on recently discovered roles of BCL-2 proteins in apoptosis and beyond, and discuss what implications these functions might have in both healthy tissues and disease.
Collapse
Affiliation(s)
- Louise E King
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne 50931, Germany
| | - Lisa Hohorst
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne 50931, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne 50931, Germany
| |
Collapse
|
8
|
Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat Rev Mol Cell Biol 2023; 24:732-748. [PMID: 37438560 DOI: 10.1038/s41580-023-00629-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
The proteins of the BCL-2 family are key regulators of mitochondrial apoptosis, acting as either promoters or inhibitors of cell death. The functional interplay and balance between the opposing BCL-2 family members control permeabilization of the outer mitochondrial membrane, leading to the release of activators of the caspase cascade into the cytosol and ultimately resulting in cell death. Despite considerable research, our knowledge about the mechanisms of the BCL-2 family of proteins remains insufficient, which complicates cell fate predictions and does not allow us to fully exploit these proteins as targets for drug discovery. Detailed understanding of the formation and molecular architecture of the apoptotic pore in the outer mitochondrial membrane remains a holy grail in the field, but new studies allow us to begin constructing a structural model of its arrangement. Recent literature has also revealed unexpected activities for several BCL-2 family members that challenge established concepts of how they regulate mitochondrial permeabilization. In this Review, we revisit the most important advances in the field and integrate them into a new structure-function-based classification of the BCL-2 family members that intends to provide a comprehensive model for BCL-2 action in apoptosis. We close this Review by discussing the potential of drugging the BCL-2 family in diseases characterized by aberrant apoptosis.
Collapse
Affiliation(s)
- Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Ana J Garcia-Saez
- Membrane Biophysics, Institute of Genetics, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
9
|
Chen M, Hu L, Bao X, Ye K, Li Y, Zhang Z, Kaufmann SH, Xiao J, Dai H. Eltrombopag directly activates BAK and induces apoptosis. Cell Death Dis 2023; 14:394. [PMID: 37393297 PMCID: PMC10314921 DOI: 10.1038/s41419-023-05918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Small molecule direct BAK activators can potentially be used for the development of anti-cancer drugs or as tools to study BAK activation. The thrombopoietin receptor agonist eltrombopag (Eltro) inhibits BAX activation and BAX-mediated apoptosis. Here we report that, in contrast to its function as a BAX inhibitor, Eltro directly binds BAK but induces its activation in vitro. Moreover, Eltro induces or sensitizes BAK-dependent cell death in mouse embryonic fibroblasts (MEFs) and Jurkat cells. Chemical shift perturbation analysis by NMR indicates that Eltro binds to the BAK α4/α6/α7 groove to initiate BAK activation. Further molecular docking by HADDOCK suggests that several BAK residues, including R156, F157, and H164, play an important role in the interaction with Eltro. The introduction of an R156E mutation in the BAK α4/α6/α7 groove not only decreases Eltro binding and Eltro-induced BAK activation in vitro but also diminishes Eltro-induced apoptosis. Thus, our data suggest that Eltro directly induces BAK activation and BAK-dependent apoptosis, providing a starting point for the future development of more potent and selective direct BAK activators.
Collapse
Affiliation(s)
- Meng Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Lei Hu
- School of Preclinical Medicine, Wannan Medical College, Wuhu, 241002, China
| | - Xuyuan Bao
- Department of Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Kaiqin Ye
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yunjian Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zhiyong Zhang
- Department of Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Scott H Kaufmann
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jun Xiao
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
10
|
Aguilar F, Yu S, Grant RA, Swanson S, Ghose D, Su BG, Sarosiek KA, Keating AE. Peptides from human BNIP5 and PXT1 and non-native binders of pro-apoptotic BAK can directly activate or inhibit BAK-mediated membrane permeabilization. Structure 2023; 31:265-281.e7. [PMID: 36706751 PMCID: PMC9992319 DOI: 10.1016/j.str.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023]
Abstract
Apoptosis is important for development and tissue homeostasis, and its dysregulation can lead to diseases, including cancer. As an apoptotic effector, BAK undergoes conformational changes that promote mitochondrial outer membrane disruption, leading to cell death. This is termed "activation" and can be induced by peptides from the human proteins BID, BIM, and PUMA. To identify additional peptides that can regulate BAK, we used computational protein design, yeast surface display screening, and structure-based energy scoring to identify 10 diverse new binders. We discovered peptides from the human proteins BNIP5 and PXT1 and three non-native peptides that activate BAK in liposome assays and induce cytochrome c release from mitochondria. Crystal structures and binding studies reveal a high degree of similarity among peptide activators and inhibitors, ruling out a simple function-determining property. Our results shed light on the vast peptide sequence space that can regulate BAK function and will guide the design of BAK-modulating tools and therapeutics.
Collapse
Affiliation(s)
- Fiona Aguilar
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stacey Yu
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Program in Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA; John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sebastian Swanson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dia Ghose
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bonnie G Su
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kristopher A Sarosiek
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Program in Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA; John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
11
|
Dai H, Peterson KL, Flatten KS, Meng XW, Venkatachalam A, Correia C, Ramirez-Alvarado M, Pang YP, Kaufmann SH. A BAK subdomain that binds mitochondrial lipids selectively and releases cytochrome C. Cell Death Differ 2023; 30:794-808. [PMID: 36376382 PMCID: PMC9984382 DOI: 10.1038/s41418-022-01083-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
How BAK and BAX induce mitochondrial outer membrane (MOM) permeabilization (MOMP) during apoptosis is incompletely understood. Here we have used molecular dynamics simulations, surface plasmon resonance, and assays for membrane permeabilization in vitro and in vivo to assess the structure and function of selected BAK subdomains and their derivatives. Results of these studies demonstrate that BAK helical regions α5 and α6 bind the MOM lipid cardiolipin. While individual peptides corresponding to these helical regions lack the full biological activity of BAK, tandem peptides corresponding to α4-α5, α5-α6, or α6-α7/8 can localize exogenous proteins to mitochondria, permeabilize liposomes composed of MOM lipids, and cause MOMP in the absence of the remainder of the BAK protein. Importantly, the ability of these tandem helices to induce MOMP under cell-free conditions is diminished by mutations that disrupt the U-shaped helix-turn-helix structure of the tandem peptides or decrease their lipid binding. Likewise, BAK-induced apoptosis in intact cells is diminished by CLS1 gene interruption, which decreases mitochondrial cardiolipin content, or by BAK mutations that disrupt the U-shaped tandem peptide structure or diminish lipid binding. Collectively, these results suggest that BAK structural rearrangements during apoptosis might mobilize helices involved in specific protein-lipid interactions that are critical for MOMP.
Collapse
Affiliation(s)
- Haiming Dai
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Kevin L Peterson
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Karen S Flatten
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - X Wei Meng
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Cristina Correia
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Yuan-Ping Pang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Scott H Kaufmann
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
12
|
Moldoveanu T. Apoptotic mitochondrial poration by a growing list of pore-forming BCL-2 family proteins. Bioessays 2023; 45:e2200221. [PMID: 36650950 PMCID: PMC9975053 DOI: 10.1002/bies.202200221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
The pore-forming BCL-2 family proteins are effectors of mitochondrial poration in apoptosis initiation. Two atypical effectors-BOK and truncated BID (tBID)-join the canonical effectors BAK and BAX. Gene knockout revealed developmental phenotypes in the absence the effectors, supporting their roles in vivo. During apoptosis effectors are activated and change shape from dormant monomers to dynamic oligomers that associate with and permeabilize mitochondria. BID is activated by proteolysis, BOK accumulates on inhibition of its degradation by the E3 ligase gp78, while BAK and BAX undergo direct activation by BH3-only initiators, autoactivation, and crossactivation. Except tBID, effector oligomers on the mitochondria appear as arcs and rings in super-resolution microscopy images. The BH3-in-groove dimers of BAK and BAX, the tBID monomers, and uncharacterized BOK species are the putative building blocks of apoptotic pores. Effectors interact with lipids and bilayers but the mechanism of membrane poration remains elusive. I discuss effector-mediated mitochondrial poration.
Collapse
Affiliation(s)
- Tudor Moldoveanu
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences,Correspondence:
| |
Collapse
|
13
|
Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat Rev Mol Cell Biol 2022; 24:312-333. [PMID: 36543934 DOI: 10.1038/s41580-022-00564-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Regulated cell death (RCD) relies on activation and recruitment of pore-forming proteins (PFPs) that function as executioners of specific cell death pathways: apoptosis regulator BAX (BAX), BCL-2 homologous antagonist/killer (BAK) and BCL-2-related ovarian killer protein (BOK) for apoptosis, gasdermins (GSDMs) for pyroptosis and mixed lineage kinase domain-like protein (MLKL) for necroptosis. Inactive precursors of PFPs are converted into pore-forming entities through activation, membrane recruitment, membrane insertion and oligomerization. These mechanisms involve protein-protein and protein-lipid interactions, proteolytic processing and phosphorylation. In this Review, we discuss the structural rearrangements incurred by RCD-related PFPs and describe the mechanisms that manifest conversion from autoinhibited to membrane-embedded molecular states. We further discuss the formation and maturation of membrane pores formed by BAX/BAK/BOK, GSDMs and MLKL, leading to diverse pore architectures. Lastly, we highlight commonalities and differences of PFP mechanisms involving BAX/BAK/BOK, GSDMs and MLKL and conclude with a discussion on how, in a population of challenged cells, the coexistence of cell death modalities may have profound physiological and pathophysiological implications.
Collapse
|
14
|
Wolf P, Schoeniger A, Edlich F. Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119317. [PMID: 35752202 DOI: 10.1016/j.bbamcr.2022.119317] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/02/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
In multicellular organisms the regulated cell death apoptosis is critically important for both ontogeny and homeostasis. Mitochondria are indispensable for stress-induced apoptosis. The BCL-2 protein family controls mitochondrial apoptosis and initiates cell death through the pro-apoptotic activities of BAX and BAK at the outer mitochondrial membrane (OMM). Cellular survival is ensured by the retrotranslocation of mitochondrial BAX and BAK into the cytosol by anti-apoptotic BCL-2 proteins. BAX/BAK-dependent OMM permeabilization releases the mitochondrial cytochrome c (cyt c), which initiates activation of caspase-9. The caspase cascade leads to cell shrinkage, plasma membrane blebbing, chromatin condensation, and apoptotic body formation. Although it is clear that ultimately complexes of active BAX and BAK commit the cell to apoptosis, the nature of these complexes is still enigmatic. Excessive research has described a range of complexes, varying from a few molecules to several 10,000, in different systems. BAX/BAK complexes potentially form ring-like structures that could expose the inner mitochondrial membrane. It has been suggested that these pores allow the efflux of small proteins and even mitochondrial DNA. Here we summarize the current state of knowledge for mitochondrial BAX/BAK complexes and the interactions between these proteins and the membrane.
Collapse
Affiliation(s)
- Philipp Wolf
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Axel Schoeniger
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Frank Edlich
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
15
|
Sekar G, Singh G, Qin X, Guibao CD, Schwam B, Inde Z, Grace CR, Zhang W, Slavish PJ, Lin W, Chen T, Lee RE, Rankovic Z, Sarosiek K, Moldoveanu T. Small molecule SJ572946 activates BAK to initiate apoptosis. iScience 2022; 25:105064. [PMID: 36147946 PMCID: PMC9485059 DOI: 10.1016/j.isci.2022.105064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/29/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023] Open
Abstract
Poration of the outer mitochondrial membrane by the effector BCL-2 proteins BAK and BAX initiates apoptosis. BH3-only initiators BID and BIM trigger conformational changes in BAK and BAX transforming them from globular dormant proteins to oligomers of the apoptotic pores. Small molecules that can directly activate effectors are being sought for applications in cancer treatment. Here, we describe the small molecule SJ572946, discovered in a fragment-based screen that binds to the activation groove of BAK and selectively triggers BAK activation over that of BAX in liposome and mitochondrial permeabilization assays. SJ572946 independently kills BAK-expressing BCL2allKO HCT116 cells revealing on target cellular activity. In combination with apoptotic inducers and BH3 mimetics, SJ572946 kills experimental cancer cell lines. SJ572946 also cooperates with the endogenous BAK activator BID in activating a misfolded BAK mutant substantially impaired in activation. SJ572946 is a proof-of-concept tool for probing BAK-mediated apoptosis in preclinical cancer research.
Collapse
Affiliation(s)
- Giridhar Sekar
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Geetika Singh
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Children’s GMP, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Xingping Qin
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston,02115 MA, USA,Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, 02115 MA, USA,Laboratory of Systems Pharmacology, Harvard Medical School, Boston,02115 MA, USA
| | - Cristina D. Guibao
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Brittany Schwam
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zintis Inde
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston,02115 MA, USA,Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, 02115 MA, USA,Laboratory of Systems Pharmacology, Harvard Medical School, Boston,02115 MA, USA
| | - Christy R. Grace
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Weixing Zhang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - P. Jake Slavish
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Kristopher Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston,02115 MA, USA,Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, 02115 MA, USA,Laboratory of Systems Pharmacology, Harvard Medical School, Boston,02115 MA, USA
| | - Tudor Moldoveanu
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Roeck, AR 72205, USA,Corresponding author
| |
Collapse
|
16
|
Robin AY, Miller MS, Iyer S, Shi MX, Wardak AZ, Lio D, Smith NA, Smith BJ, Birkinshaw RW, Czabotar PE, Kluck RM, Colman PM. Structure of the BAK-activating antibody 7D10 bound to BAK reveals an unexpected role for the α1-α2 loop in BAK activation. Cell Death Differ 2022; 29:1757-1768. [PMID: 35279694 PMCID: PMC9433411 DOI: 10.1038/s41418-022-00961-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/08/2022] Open
Abstract
Pro-apoptotic BAK and BAX are activated by BH3-only proteins to permeabilise the outer mitochondrial membrane. The antibody 7D10 also activates BAK on mitochondria and its epitope has previously been mapped to BAK residues in the loop connecting helices α1 and α2 of BAK. A crystal structure of the complex between the Fv fragment of 7D10 and the BAK mutant L100A suggests a possible mechanism of activation involving the α1-α2 loop residue M60. M60 mutants of BAK have reduced stability and elevated sensitivity to activation by BID, illustrating that M60, through its contacts with residues in helices α1, α5 and α6, is a linchpin stabilising the inert, monomeric structure of BAK. Our data demonstrate that BAK's α1-α2 loop is not a passive covalent connector between secondary structure elements, but a direct restraint on BAK's activation.
Collapse
Affiliation(s)
- Adeline Y Robin
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Michelle S Miller
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Sweta Iyer
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Melissa X Shi
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Ahmad Z Wardak
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Daisy Lio
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Nicholas A Smith
- Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Brian J Smith
- Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Richard W Birkinshaw
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Peter E Czabotar
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Ruth M Kluck
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.
| | - Peter M Colman
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
17
|
Protein-protein and protein-lipid interactions of pore-forming BCL-2 family proteins in apoptosis initiation. Biochem Soc Trans 2022; 50:1091-1103. [PMID: 35521828 DOI: 10.1042/bst20220323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 01/26/2023]
Abstract
Apoptosis is a common cell death program that is important in human health and disease. Signaling in apoptosis is largely driven through protein-protein interactions. The BCL-2 family proteins function in protein-protein interactions as key regulators of mitochondrial poration, the process that initiates apoptosis through the release of cytochrome c, which activates the apoptotic caspase cascade leading to cellular demolition. The BCL-2 pore-forming proteins BAK and BAX are the key executors of mitochondrial poration. We review the state of knowledge of protein-protein and protein-lipid interactions governing the apoptotic function of BAK and BAX, as determined through X-ray crystallography and NMR spectroscopy studies. BAK and BAX are dormant, globular α-helical proteins that participate in protein-protein interactions with other pro-death BCL-2 family proteins, transforming them into active, partially unfolded proteins that dimerize and associate with and permeabilize mitochondrial membranes. We compare the protein-protein interactions observed in high-resolution structures with those derived in silico by AlphaFold, making predictions based on combining experimental and in silico approaches to delineate the structural basis for novel protein-protein interaction complexes of BCL-2 family proteins.
Collapse
|
18
|
Risso V, Lafont E, Le Gallo M. Therapeutic approaches targeting CD95L/CD95 signaling in cancer and autoimmune diseases. Cell Death Dis 2022; 13:248. [PMID: 35301281 PMCID: PMC8931059 DOI: 10.1038/s41419-022-04688-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Cell death plays a pivotal role in the maintenance of tissue homeostasis. Key players in the controlled induction of cell death are the Death Receptors (DR). CD95 is a prototypic DR activated by its cognate ligand CD95L triggering programmed cell death. As a consequence, alterations in the CD95/CD95L pathway have been involved in several disease conditions ranging from autoimmune diseases to inflammation and cancer. CD95L-induced cell death has multiple roles in the immune response since it constitutes one of the mechanisms by which cytotoxic lymphocytes kill their targets, but it is also involved in the process of turning off the immune response. Furthermore, beyond the canonical pro-death signals, CD95L, which can be membrane-bound or soluble, also induces non-apoptotic signaling that contributes to its tumor-promoting and pro-inflammatory roles. The intent of this review is to describe the role of CD95/CD95L in the pathophysiology of cancers, autoimmune diseases and chronic inflammation and to discuss recently patented and emerging therapeutic strategies that exploit/block the CD95/CD95L system in these diseases.
Collapse
Affiliation(s)
- Vesna Risso
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Elodie Lafont
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Matthieu Le Gallo
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France.
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
19
|
The concept of intrinsic versus extrinsic apoptosis. Biochem J 2022; 479:357-384. [PMID: 35147165 DOI: 10.1042/bcj20210854] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
Regulated cell death is a vital and dynamic process in multicellular organisms that maintains tissue homeostasis and eliminates potentially dangerous cells. Apoptosis, one of the better-known forms of regulated cell death, is activated when cell-surface death receptors like Fas are engaged by their ligands (the extrinsic pathway) or when BCL-2-family pro-apoptotic proteins cause the permeabilization of the mitochondrial outer membrane (the intrinsic pathway). Both the intrinsic and extrinsic pathways of apoptosis lead to the activation of a family of proteases, the caspases, which are responsible for the final cell demise in the so-called execution phase of apoptosis. In this review, I will first discuss the most common types of regulated cell death on a morphological basis. I will then consider in detail the molecular pathways of intrinsic and extrinsic apoptosis, discussing how they are activated in response to specific stimuli and are sometimes overlapping. In-depth knowledge of the cellular mechanisms of apoptosis is becoming more and more important not only in the field of cellular and molecular biology but also for its translational potential in several pathologies, including neurodegeneration and cancer.
Collapse
|
20
|
Smith NA, Wardak AZ, Cowan AD, Colman PM, Czabotar PE, Smith BJ. The Bak core dimer focuses triacylglycerides in the membrane. Biophys J 2022; 121:347-360. [PMID: 34973947 PMCID: PMC8822611 DOI: 10.1016/j.bpj.2021.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/15/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023] Open
Abstract
Apoptosis, the intrinsic programmed cell death process, is mediated by the Bcl-2 family members Bak and Bax. Activation via formation of symmetric core dimers and oligomerization on the mitochondrial outer membrane (MOM) leads to permeabilization and cell death. Although this process is linked to the MOM, the role of the membrane in facilitating such pores is poorly understood. We recently described Bak core domain dimers, revealing lipid binding sites and an initial role of lipids in oligomerization. Here we describe simulations that identified localized clustering and interaction of triacylglycerides (TAGs) with a minimized Bak dimer construct. Coalescence of TAGs occurred beneath this Bak dimer, mitigating dimer-induced local membrane thinning and curvature in representative coarse-grain MOM and model membrane systems. Furthermore, the effects observed as a result of coarse-grain TAG cluster formation was concentration dependent, scaling from low physiological MOM concentrations to those found in other organelles. We find that increasing the TAG concentration in liposomes mimicking the MOM decreased the ability of activated Bak to permeabilize these liposomes. These results suggest that the presence of TAGs within a Bak-lipid membrane preserves membrane integrity and is associated with reduced membrane stress, suggesting a possible role of TAGs in Bak-mediated apoptosis.
Collapse
Affiliation(s)
- Nicholas A. Smith
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Ahmad Z. Wardak
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Angus D. Cowan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter M. Colman
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter E. Czabotar
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Brian J. Smith
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia,Corresponding author
| |
Collapse
|
21
|
Singh G, Guibao CD, Seetharaman J, Aggarwal A, Grace CR, McNamara DE, Vaithiyalingam S, Waddell MB, Moldoveanu T. Structural basis of BAK activation in mitochondrial apoptosis initiation. Nat Commun 2022; 13:250. [PMID: 35017502 PMCID: PMC8752837 DOI: 10.1038/s41467-021-27851-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
BCL-2 proteins regulate mitochondrial poration in apoptosis initiation. How the pore-forming BCL-2 Effector BAK is activated remains incompletely understood mechanistically. Here we investigate autoactivation and direct activation by BH3-only proteins, which cooperate to lower BAK threshold in membrane poration and apoptosis initiation. We define in trans BAK autoactivation as the asymmetric “BH3-in-groove” triggering of dormant BAK by active BAK. BAK autoactivation is mechanistically similar to direct activation. The structure of autoactivated BAK BH3-BAK complex reveals the conformational changes leading to helix α1 destabilization, which is a hallmark of BAK activation. Helix α1 is destabilized and restabilized in structures of BAK engaged by rationally designed, high-affinity activating and inactivating BID-like BH3 ligands, respectively. Altogether our data support the long-standing hit-and-run mechanism of BAK activation by transient binding of BH3-only proteins, demonstrating that BH3-induced structural changes are more important in BAK activation than BH3 ligand affinity. The authors show that the mechanism of BAK activation in mitochondrial apoptosis involves cooperation between direct activation by BH3-only protein BID and BAK autoactivation, providing a unifying basis for BAK triggering by BH3 ligands.
Collapse
Affiliation(s)
- Geetika Singh
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.,Integrative Biomedical Sciences Program, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA
| | - Cristina D Guibao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jayaraman Seetharaman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anup Aggarwal
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christy R Grace
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dan E McNamara
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - M Brett Waddell
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tudor Moldoveanu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA. .,Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
22
|
Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer 2022; 22:45-64. [PMID: 34663943 DOI: 10.1038/s41568-021-00407-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Apoptosis is a form of programmed cell death that is regulated by the balance between prosurvival and proapoptotic BCL-2 protein family members. Evasion of apoptosis is a hallmark of cancer that arises when this balance is tipped in favour of survival. One form of anticancer therapeutic, termed 'BH3-mimetic drugs', has been developed to directly activate the apoptosis machinery in malignant cells. These drugs bind to and inhibit specific prosurvival BCL-2 family proteins, thereby mimicking their interaction with the BH3 domains of proapoptotic BCL-2 family proteins. The BCL-2-specific inhibitor venetoclax is approved by the US Food and Drug Administration and many regulatory authorities worldwide for the treatment of chronic lymphocytic leukaemia and acute myeloid leukaemia. BH3-mimetic drugs targeting other BCL-2 prosurvival proteins have been tested in preclinical models of cancer, and drugs targeting MCL-1 or BCL-XL have advanced into phase I clinical trials for certain cancers. As with all therapeutics, efficacy and tolerability need to be carefully balanced to achieve a therapeutic window whereby there is significant anticancer activity with an acceptable safety profile. In this Review, we outline the current state of BH3-mimetic drugs targeting various prosurvival BCL-2 family proteins and discuss emerging data regarding primary and acquired resistance to these agents and approaches that may overcome this. We highlight issues that need to be addressed to further advance the clinical application of BH3-mimetic drugs, both alone and in combination with additional anticancer agents (for example, standard chemotherapeutic drugs or inhibitors of oncogenic kinases), for improved responses in patients with cancer.
Collapse
Affiliation(s)
- Sarah T Diepstraten
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Mary Ann Anderson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
23
|
VDAC2 and the BCL-2 family of proteins. Biochem Soc Trans 2021; 49:2787-2795. [PMID: 34913469 PMCID: PMC8786305 DOI: 10.1042/bst20210753] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022]
Abstract
The BCL-2 protein family govern whether a cell dies or survives by controlling mitochondrial apoptosis. As dysregulation of mitochondrial apoptosis is a common feature of cancer cells, targeting protein–protein interactions within the BCL-2 protein family is a key strategy to seize control of apoptosis and provide favourable outcomes for cancer patients. Non-BCL-2 family proteins are emerging as novel regulators of apoptosis and are potential drug targets. Voltage dependent anion channel 2 (VDAC2) can regulate apoptosis. However, it is unclear how this occurs at the molecular level, with conflicting evidence in the literature for its role in regulating the BCL-2 effector proteins, BAK and BAX. Notably, VDAC2 is required for efficient BAX-mediated apoptosis, but conversely inhibits BAK-mediated apoptosis. This review focuses on the role of VDAC2 in apoptosis, discussing the current knowledge of the interaction between VDAC2 and BCL-2 family proteins and the recent development of an apoptosis inhibitor that targets the VDAC2–BAK interaction.
Collapse
|
24
|
Ojoawo AM, Moldoveanu T. A killer metamorphosis: catching BAK in action at the membrane. EMBO J 2021; 40:e109529. [PMID: 34542920 DOI: 10.15252/embj.2021109529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
Permeabilization of the outer mitochondrial membrane initiates apoptotic cell death. B-cell lymphoma 2 (BCL-2) antagonist killer (BAK) and BCL-2-associated X (BAX) mediate mitochondrial poration, but how this process unfolds remains poorly defined. Two studies in this issue investigate the transition of dormant, inactive BAK monomer to a highly dynamic membrane-associated, pore-forming oligomer.
Collapse
Affiliation(s)
- Adedolapo M Ojoawo
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tudor Moldoveanu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
25
|
Sandow JJ, Tan IK, Huang AS, Masaldan S, Bernardini JP, Wardak AZ, Birkinshaw RW, Ninnis RL, Liu Z, Dalseno D, Lio D, Infusini G, Czabotar PE, Webb AI, Dewson G. Dynamic reconfiguration of pro-apoptotic BAK on membranes. EMBO J 2021; 40:e107237. [PMID: 34523147 DOI: 10.15252/embj.2020107237] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
BAK and BAX, the effectors of intrinsic apoptosis, each undergo major reconfiguration to an activated conformer that self-associates to damage mitochondria and cause cell death. However, the dynamic structural mechanisms of this reconfiguration in the presence of a membrane have yet to be fully elucidated. To explore the metamorphosis of membrane-bound BAK, we employed hydrogen-deuterium exchange mass spectrometry (HDX-MS). The HDX-MS profile of BAK on liposomes comprising mitochondrial lipids was consistent with known solution structures of inactive BAK. Following activation, HDX-MS resolved major reconfigurations in BAK. Mutagenesis guided by our HDX-MS profiling revealed that the BCL-2 homology (BH) 4 domain maintains the inactive conformation of BAK, and disrupting this domain is sufficient for constitutive BAK activation. Moreover, the entire N-terminal region preceding the BAK oligomerisation domains became disordered post-activation and remained disordered in the activated oligomer. Removal of the disordered N-terminus did not impair, but rather slightly potentiated, BAK-mediated membrane permeabilisation of liposomes and mitochondria. Together, our HDX-MS analyses reveal new insights into the dynamic nature of BAK activation on a membrane, which may provide new opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Jarrod J Sandow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Iris Kl Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Alan S Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Shashank Masaldan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Jonathan P Bernardini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Ahmad Z Wardak
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Richard W Birkinshaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Robert L Ninnis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Ziyan Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Destiny Dalseno
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Daisy Lio
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Giuseppi Infusini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Grant Dewson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
26
|
Sperl LE, Rührnößl F, Schiller A, Haslbeck M, Hagn F. High-resolution analysis of the conformational transition of pro-apoptotic Bak at the lipid membrane. EMBO J 2021; 40:e107159. [PMID: 34523144 PMCID: PMC8521305 DOI: 10.15252/embj.2020107159] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022] Open
Abstract
Permeabilization of the outer mitochondrial membrane by pore-forming Bcl2 proteins is a crucial step for the induction of apoptosis. Despite a large set of data suggesting global conformational changes within pro-apoptotic Bak during pore formation, high-resolution structural details in a membrane environment remain sparse. Here, we used NMR and HDX-MS (Hydrogen deuterium exchange mass spectrometry) in lipid nanodiscs to gain important high-resolution structural insights into the conformational changes of Bak at the membrane that are dependent on a direct activation by BH3-only proteins. Furthermore, we determined the first high-resolution structure of the Bak transmembrane helix. Upon activation, α-helix 1 in the soluble domain of Bak dissociates from the protein and adopts an unfolded and dynamic potentially membrane-bound state. In line with this finding, comparative protein folding experiments with Bak and anti-apoptotic BclxL suggest that α-helix 1 in Bak is a metastable structural element contributing to its pro-apoptotic features. Consequently, mutagenesis experiments aimed at stabilizing α-helix 1 yielded Bak variants with delayed pore-forming activity. These insights will contribute to a better mechanistic understanding of Bak-mediated membrane permeabilization.
Collapse
Affiliation(s)
- Laura E Sperl
- Bavarian NMR Center at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Florian Rührnößl
- Center for Functional Protein Assemblies and Department of ChemistryTechnical University of MunichGarchingGermany
| | - Anita Schiller
- Bavarian NMR Center at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Martin Haslbeck
- Center for Functional Protein Assemblies and Department of ChemistryTechnical University of MunichGarchingGermany
| | - Franz Hagn
- Bavarian NMR Center at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| |
Collapse
|