1
|
Tang Y, Yang X, Huang A, Seong K, Ye M, Li M, Zhao Q, Krasileva K, Gu Y. Proxiome assembly of the plant nuclear pore reveals an essential hub for gene expression regulation. NATURE PLANTS 2024; 10:1005-1017. [PMID: 38773271 DOI: 10.1038/s41477-024-01698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/11/2024] [Indexed: 05/23/2024]
Abstract
The nuclear pore complex (NPC) is vital for nucleocytoplasmic communication. Recent evidence emphasizes its extensive association with proteins of diverse functions, suggesting roles beyond cargo transport. Yet, our understanding of NPC's composition and functionality at this extended level remains limited. Here, through proximity-labelling proteomics, we uncover both local and global NPC-associated proteome in Arabidopsis, comprising over 500 unique proteins, predominantly associated with NPC's peripheral extension structures. Compositional analysis of these proteins revealed that the NPC concentrates chromatin remodellers, transcriptional regulators and mRNA processing machineries in the nucleoplasmic region while recruiting translation regulatory machinery on the cytoplasmic side, achieving a remarkable orchestration of the genetic information flow by coupling RNA transcription, maturation, transport and translation regulation. Further biochemical and structural modelling analyses reveal that extensive interactions with nucleoporins, along with phase separation mediated by substantial intrinsically disordered proteins, may drive the formation of the unexpectedly large nuclear pore proteome assembly.
Collapse
Affiliation(s)
- Yu Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Institute of Advanced Agricultural Sciences, Peking University, Weifang, Shandong, China
| | - Xiangyun Yang
- Institute of Advanced Agricultural Sciences, Peking University, Weifang, Shandong, China
| | - Aobo Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Kyungyong Seong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Mao Ye
- Institute of Advanced Agricultural Sciences, Peking University, Weifang, Shandong, China
| | - Mengting Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiao Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ksenia Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
2
|
Ikliptikawati DK, Hirai N, Makiyama K, Sabit H, Kinoshita M, Matsumoto K, Lim K, Meguro-Horike M, Horike SI, Hazawa M, Nakada M, Wong RW. Nuclear transport surveillance of p53 by nuclear pores in glioblastoma. Cell Rep 2023; 42:112882. [PMID: 37552992 DOI: 10.1016/j.celrep.2023.112882] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/30/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023] Open
Abstract
Nuclear pore complexes (NPCs) are the central apparatus of nucleocytoplasmic transport. Disease-specific alterations of NPCs contribute to the pathogenesis of many cancers; however, the roles of NPCs in glioblastoma (GBM) are unknown. In this study, we report genomic amplification of NUP107, a component of NPCs, in GBM and show that NUP107 is overexpressed simultaneously with MDM2, a critical E3 ligase that mediates p53 degradation. Depletion of NUP107 inhibits the growth of GBM cell lines through p53 protein stabilization. Mechanistically, NPCs establish a p53 degradation platform via an export pathway coupled with 26S proteasome tethering. NUP107 is the keystone for NPC assembly; the loss of NUP107 affects the integrity of the NPC structure, and thus the proportion of 26S proteasome in the vicinity of nuclear pores significantly decreases. Together, our findings establish roles of NPCs in transport surveillance and provide insights into p53 inactivation in GBM.
Collapse
Affiliation(s)
- Dini Kurnia Ikliptikawati
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 9201192, Japan; Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 9201192, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 9201192, Japan
| | - Nozomi Hirai
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 9208641, Japan; Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 1538515, Japan
| | - Kei Makiyama
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 9201192, Japan
| | - Hemragul Sabit
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 9208641, Japan
| | - Masashi Kinoshita
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 9208641, Japan
| | - Koki Matsumoto
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 9201192, Japan
| | - Keesiang Lim
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 9201192, Japan
| | - Makiko Meguro-Horike
- Advanced Science Research Center, Institute for Gene Research, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shin-Ichi Horike
- Advanced Science Research Center, Institute for Gene Research, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 9201192, Japan; Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 9201192, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 9201192, Japan.
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 9208641, Japan.
| | - Richard W Wong
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 9201192, Japan; Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 9201192, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 9201192, Japan.
| |
Collapse
|
3
|
Mauro MS, Celma G, Zimyanin V, Magaj MM, Gibson KH, Redemann S, Bahmanyar S. Ndc1 drives nuclear pore complex assembly independent of membrane biogenesis to promote nuclear formation and growth. eLife 2022; 11:75513. [PMID: 35852146 PMCID: PMC9296133 DOI: 10.7554/elife.75513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
The nuclear envelope (NE) assembles and grows from bilayer lipids produced at the endoplasmic reticulum (ER). How ER membrane incorporation coordinates with assembly of nuclear pore complexes (NPCs) to generate a functional NE is not well understood. Here, we use the stereotypical first division of the early C. elegans embryo to test the role of the membrane-associated nucleoporin Ndc1 in coupling NPC assembly to NE formation and growth. 3D-EM tomography of reforming and expanded NEs establishes that Ndc1 determines NPC density. Loss of ndc1 results in faster turnover of the outer scaffold nucleoporin Nup160 at the NE, providing an explanation for how Ndc1 controls NPC number. NE formation fails in the absence of both Ndc1 and the inner ring component Nup53, suggesting partially redundant roles in NPC assembly. Importantly, upregulation of membrane synthesis restored the slow rate of nuclear growth resulting from loss of ndc1 but not from loss of nup53. Thus, membrane biogenesis can be decoupled from Ndc1-mediated NPC assembly to promote nuclear growth. Together, our data suggest that Ndc1 functions in parallel with Nup53 and membrane biogenesis to control NPC density and nuclear size.
Collapse
Affiliation(s)
- Michael Sean Mauro
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Gunta Celma
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Vitaly Zimyanin
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States,Department of Molecular Physiology and Biological Physics, University of Virginia, School of MedicineCharlottesvilleUnited States
| | - Magdalena M Magaj
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States,Department of Molecular Physiology and Biological Physics, University of Virginia, School of MedicineCharlottesvilleUnited States
| | - Kimberley H Gibson
- Center for Cellular and Molecular Imaging: Electron Microscopy, Department of Cell Biology, Yale School of MedicineNew HavenUnited States
| | - Stefanie Redemann
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States,Department of Molecular Physiology and Biological Physics, University of Virginia, School of MedicineCharlottesvilleUnited States,Department of Cell Biology, University of VirginiaCharlottesvilleUnited States
| | - Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| |
Collapse
|