1
|
Brüll M, Multrus S, Schäfer M, Celardo I, Karreman C, Leist M. Programmed neurite degeneration in human central nervous system neurons driven by changes in NAD + metabolism. Cell Death Dis 2025; 16:24. [PMID: 39824831 PMCID: PMC11742042 DOI: 10.1038/s41419-024-07326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 01/20/2025]
Abstract
Neurite degeneration (ND) precedes cell death in many neurodegenerative diseases. However, it remains unclear how this compartmentalized cell death process is orchestrated in the central nervous system (CNS). The establishment of a CNS axotomy model (using modified 3D LUHMES cultures) allowed us to study metabolic control of ND in human midbrain-derived neurons without the use of toxicants or other direct disturbance of cellular metabolism. Axotomy lead to a loss of the NAD+ synthesis enzyme NMNAT2 within 2 h and a depletion of NAD+ within 4-6 h. This process appeared specific, as isolated neurites maintained ATP levels and a coupled mitochondrial respiration for at least 6 h. In the peripheral nervous system (PNS) many studies observed that NAD+ metabolism, in particular by the NADase SARM1, plays a major role in the ND occurring after axotomy. Since neither ferroptosis nor necroptosis, nor caspase-dependent apoptosis seemed to be involved in neurite loss, we investigated SARM1 as potential executioner (or controller). Knock-down or expression of a dominant-negative isoform of SARM1 indeed drastically delayed ND. Various modifications of NAD+ metabolism known to modulate SARM1 activity showed the corresponding effects on ND. Moreover, supplementation with NAD+ attenuated ND. As a third approach to investigate the role of altered NAD+ metabolism, we made use of the WLD(s) protein, which has been found in a mutant mouse to inhibit Wallerian degeneration of axons. This protein, which has a stable NMNAT activity, and thus can buffer the loss of NMNAT2, protected the neurites by stabilizing neurite NAD+ levels. Thus CNS-type ND was tightly linked to neurite metabolism in multiple experimental setups. Based on this knowledge, several new strategies for treating neurodegenerative diseases can be envisaged.
Collapse
Affiliation(s)
- Markus Brüll
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Selina Multrus
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Michael Schäfer
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Ivana Celardo
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Christiaan Karreman
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Marcel Leist
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany.
- CAAT-Europe, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
2
|
Huang S, Li E, Jia F, Han Z, Chai J. Assembly and functional mechanisms of plant NLR resistosomes. Curr Opin Struct Biol 2025; 90:102977. [PMID: 39808854 DOI: 10.1016/j.sbi.2024.102977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025]
Abstract
Nucleotide-binding and leucine-rich repeat (NLR) proteins are essential intracellular immune receptors in both animal and plant kingdoms. Sensing of pathogen-derived signals induces oligomerization of NLR proteins, culminating in the formation of higher-order protein complexes known as resistosomes in plants. The NLR resistosomes play a pivotal role in mediating the plant immune response against invading pathogens. Over the past few years, our understanding of NLR biology has significantly advanced, particularly in the structural and biochemical aspects of the NLR resistosomes. Here, we highlight the recent advancements in the structural knowledge of how NLR resistosomes are activated and assembled, and how the structural knowledge provides insights into the biochemical functions of these NLR resistosomes, which converge on Ca2+ signals. Signaling mechanisms of the resistosomes that underpin plant immunity are also briefly discussed.
Collapse
Affiliation(s)
- Shijia Huang
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Ertong Li
- School of Pharmaceutical Sciences, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450000, China.
| | - Fangshuai Jia
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Zhifu Han
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Jijie Chai
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
3
|
Chakravarti A, Patel DJ. Structure-guided insights into TIR-mediated bacterial and eukaryotic immunity. Structure 2025:S0969-2126(24)00553-7. [PMID: 39837332 DOI: 10.1016/j.str.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
Within the course of evolution, TIR (Toll/interleukin-1 receptor) domains acquired a myriad of functional specificities. This has significantly added to their well-established roles in innate immune signaling. These additional functions include nicotinamide adenine dinucleotide (NAD)(P) hydrolase, RNA/DNA nuclease (in plants), CN (cyclic nucleotide) cyclase, and base exchanger activities. Owing to these diverse functions, TIR domains can either generate CN second messengers or act as effectors, many of which can accomplish depletion of the essential metabolite NAD+, leading to cell death prior to pathogen-induced cell lysis. Despite their functional diversity, activated TIR domains have retained their ability to form multimers that adopt varying topologies, thereby creating composite NADase active sites between adjacent TIR monomers. This structure-based review on the functional diversity of TIR domains focuses primarily across bacterial antiphage defense systems while also addressing their eukaryotic counterparts, throughout highlighting multimerization, including filament formation, as the conserved topological characteristic.
Collapse
Affiliation(s)
- Arpita Chakravarti
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
4
|
Chen X, Lv S, Liu J, Guan Y, Xu C, Ma X, Li M, Bai X, Liu K, Zhang H, Yan Q, Zhou F, Chen Y. Exploring the Role of Axons in ALS from Multiple Perspectives. Cells 2024; 13:2076. [PMID: 39768167 PMCID: PMC11674045 DOI: 10.3390/cells13242076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS), commonly known as motor neuron disease, is a neurodegenerative disorder characterized by the progressive degeneration of both upper and lower motor neurons. This pathological process results in muscle weakness and can culminate in paralysis. To date, the precise etiology of ALS remains unclear. However, a burgeoning body of research indicates that axonal dysfunction is a pivotal element in the pathogenesis of ALS and significantly influences the progression of disease. Dysfunction of axons in ALS can result in impediments to nerve impulse transmission, leading to motor impairment, muscle atrophy, and other associated complications that severely compromise patients' quality of life and survival prognosis. In this review, we concentrate on several key areas: the ultrastructure of axons, the mechanisms of axonal degeneration in ALS, the impact of impaired axonal transport on disease progression in ALS, and the potential for axonal regeneration within the central nervous system (CNS). Our objective is to achieve a more holistic and profound understanding of the multifaceted role that axons play in ALS, thereby offering a more intricate and refined perspective on targeted axonal therapeutic interventions.
Collapse
Affiliation(s)
- Xiaosu Chen
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Shuchang Lv
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Jinmeng Liu
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Yingjun Guan
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Chunjie Xu
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Xiaonan Ma
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Mu Li
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Xue Bai
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Kexin Liu
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Haoyun Zhang
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Qiupeng Yan
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Fenghua Zhou
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Yanchun Chen
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| |
Collapse
|
5
|
Tse-Kang SY, Pukkila-Worley R. Lysosome-related organelle integrity suppresses TIR-1 aggregation to restrain toxic propagation of p38 innate immunity. Cell Rep 2024; 43:114674. [PMID: 39299237 PMCID: PMC11492801 DOI: 10.1016/j.celrep.2024.114674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/19/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024] Open
Abstract
Innate immunity in bacteria, plants, and animals requires the specialized subset of Toll/interleukin-1/resistance gene (TIR) domain proteins that are nicotinamide adenine dinucleotide (NAD+) hydrolases. Aggregation of these TIR proteins engages their enzymatic activity, but it is unknown how this protein multimerization is regulated. Here, we discover that TIR oligomerization is controlled to prevent immune toxicity. We find that p38 propagates its own activation in a positive feedback loop, which promotes the aggregation of the lone enzymatic TIR protein in the nematode C. elegans (TIR-1, homologous to human sterile alpha and TIR motif-containing 1 [SARM1]). We perform a forward genetic screen to determine how the p38 positive feedback loop is regulated. We discover that the integrity of the specific lysosomal subcompartment that expresses TIR-1 is actively maintained to limit inappropriate TIR-1 aggregation on the membranes of these organelles, which restrains toxic propagation of p38 innate immunity. Thus, innate immunity in C. elegans intestinal epithelial cells is regulated by specific control of TIR-1 multimerization.
Collapse
Affiliation(s)
- Samantha Y Tse-Kang
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Bhatt A, Mishra BP, Gu W, Sorbello M, Xu H, Ve T, Kobe B. Structural characterization of TIR-domain signalosomes through a combination of structural biology approaches. IUCRJ 2024; 11:695-707. [PMID: 39190506 PMCID: PMC11364022 DOI: 10.1107/s2052252524007693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
The TIR (Toll/interleukin-1 receptor) domain represents a vital structural element shared by proteins with roles in immunity signalling pathways across phyla (from humans and plants to bacteria). Decades of research have finally led to identifying the key features of the molecular basis of signalling by these domains, including the formation of open-ended (filamentous) assemblies (responsible for the signalling by cooperative assembly formation mechanism, SCAF) and enzymatic activities involving the cleavage of nucleotides. We present a historical perspective of the research that led to this understanding, highlighting the roles that different structural methods played in this process: X-ray crystallography (including serial crystallography), microED (micro-crystal electron diffraction), NMR (nuclear magnetic resonance) spectroscopy and cryo-EM (cryogenic electron microscopy) involving helical reconstruction and single-particle analysis. This perspective emphasizes the complementarity of different structural approaches.
Collapse
Affiliation(s)
- Akansha Bhatt
- Institute for GlycomicsGriffith UniversitySouthportQLD4222Australia
- School of Pharmacy and Medical SciencesGriffith UniversitySouthportQLD4222Australia
| | - Biswa P. Mishra
- Institute for GlycomicsGriffith UniversitySouthportQLD4222Australia
| | - Weixi Gu
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneQLD4072Australia
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
- Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQLD4072Australia
| | - Mitchell Sorbello
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneQLD4072Australia
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
- Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQLD4072Australia
| | - Hongyi Xu
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneQLD4072Australia
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSweden
| | - Thomas Ve
- Institute for GlycomicsGriffith UniversitySouthportQLD4222Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneQLD4072Australia
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
- Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQLD4072Australia
| |
Collapse
|
7
|
Naidoo D, de Lencastre A. Regulation of TIR-1/SARM-1 by miR-71 Protects Dopaminergic Neurons in a C. elegans Model of LRRK2-Induced Parkinson's Disease. Int J Mol Sci 2024; 25:8795. [PMID: 39201481 PMCID: PMC11354575 DOI: 10.3390/ijms25168795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by symptoms such as bradykinesia, resting tremor, and rigidity, primarily driven by the degradation of dopaminergic (DA) neurons in the substantia nigra. A significant contributor to familial autosomal dominant PD cases is mutations in the LRRK2 gene, making it a primary therapeutic target. This study explores the role of microRNAs (miRNAs) in regulating the proteomic stress responses associated with neurodegeneration in PD using C. elegans models. Our focus is on miR-71, a miRNA known to affect stress resistance and act as a pro-longevity factor in C. elegans. We investigated miR-71's function in C. elegans models of PD, where mutant LRRK2 expression correlates with dopaminergic neuronal death. Our findings reveal that miR-71 overexpression rescues motility defects and slows dopaminergic neurodegeneration in these models, suggesting its critical role in mitigating the proteotoxic effects of mutant LRRK2. Conversely, miR-71 knockout exacerbates neuronal death caused by mutant LRRK2. Additionally, our data indicate that miR-71's neuroprotective effect involves downregulating the toll receptor domain protein tir-1, implicating miR-71 repression of tir-1 as vital in the response to LRRK2-induced proteotoxicity. These insights into miR-71's role in C. elegans models of PD not only enhance our understanding of molecular mechanisms in neurodegeneration but also pave the way for potential research into human neurodegenerative diseases, leveraging the conservation of miRNAs and their targets across species.
Collapse
Affiliation(s)
- Devin Naidoo
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT 06473, USA
| | | |
Collapse
|
8
|
McGuinness HY, Gu W, Shi Y, Kobe B, Ve T. SARM1-Dependent Axon Degeneration: Nucleotide Signaling, Neurodegenerative Disorders, Toxicity, and Therapeutic Opportunities. Neuroscientist 2024; 30:473-492. [PMID: 37002660 PMCID: PMC11282687 DOI: 10.1177/10738584231162508] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Axons are an essential component of the nervous system, and axon degeneration is an early feature of many neurodegenerative disorders. The NAD+ metabolome plays an essential role in regulating axonal integrity. Axonal levels of NAD+ and its precursor NMN are controlled in large part by the NAD+ synthesizing survival factor NMNAT2 and the pro-neurodegenerative NADase SARM1, whose activation triggers axon destruction. SARM1 has emerged as a promising axon-specific target for therapeutic intervention, and its function, regulation, structure, and role in neurodegenerative diseases have been extensively characterized in recent years. In this review, we first introduce the key molecular players involved in the SARM1-dependent axon degeneration program. Next, we summarize recent major advances in our understanding of how SARM1 is kept inactive in healthy neurons and how it becomes activated in injured or diseased neurons, which has involved important insights from structural biology. Finally, we discuss the role of SARM1 in neurodegenerative disorders and environmental neurotoxicity and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Helen Y. McGuinness
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Yun Shi
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| |
Collapse
|
9
|
Geisler S. Augustus Waller's foresight realized: SARM1 in peripheral neuropathies. Curr Opin Neurobiol 2024; 87:102884. [PMID: 38852438 PMCID: PMC11600426 DOI: 10.1016/j.conb.2024.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024]
Abstract
Peripheral neuropathy is a common neurodegenerative condition characterized by numbness, tingling, pain, and weakness that frequently starts in the distal limbs. Arising from multiple etiologies, many peripheral neuropathies exhibit a slowly progressive course due to axon degeneration for which no effective treatments exist. During the past decade, numerous crucial insights into mechanisms of axon degeneration in peripheral neuropathies emerged from experiments involving nerve-cutting procedures, revealing the central role of the SARM1 axon degeneration pathway in both. Here I review commonalities and differences in the role of SARM1 after nerve cut and in several acquired and inherited peripheral neuropathies. This new knowledge now paves the way for the development of therapeutics that directly address root causes of various kinds of neuropathies.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Neurology, Washington University School of Medicine in St. Louis, 660S. Euclid Ave, Box 8111, St. Louis, MO 63110, USA.
| |
Collapse
|
10
|
Shi Y, Masic V, Mosaiab T, Rajaratman P, Hartley-Tassell L, Sorbello M, Goulart CC, Vasquez E, Mishra BP, Holt S, Gu W, Kobe B, Ve T. Structural characterization of macro domain-containing Thoeris antiphage defense systems. SCIENCE ADVANCES 2024; 10:eadn3310. [PMID: 38924412 PMCID: PMC11204291 DOI: 10.1126/sciadv.adn3310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Thoeris defense systems protect bacteria from infection by phages via abortive infection. In these systems, ThsB proteins serve as sensors of infection and generate signaling nucleotides that activate ThsA effectors. Silent information regulator and SMF/DprA-LOG (SIR2-SLOG) containing ThsA effectors are activated by cyclic ADP-ribose (ADPR) isomers 2'cADPR and 3'cADPR, triggering abortive infection via nicotinamide adenine dinucleotide (NAD+) depletion. Here, we characterize Thoeris systems with transmembrane and macro domain (TM-macro)-containing ThsA effectors. We demonstrate that ThsA macro domains bind ADPR and imidazole adenine dinucleotide (IAD), but not 2'cADPR or 3'cADPR. Combining crystallography, in silico predictions, and site-directed mutagenesis, we show that ThsA macro domains form nucleotide-induced higher-order oligomers, enabling TM domain clustering. We demonstrate that ThsB can produce both ADPR and IAD, and we identify a ThsA TM-macro-specific ThsB subfamily with an active site resembling deoxy-nucleotide and deoxy-nucleoside processing enzymes. Collectively, our study demonstrates that Thoeris systems with SIR2-SLOG and TM-macro ThsA effectors trigger abortive infection via distinct mechanisms.
Collapse
Affiliation(s)
- Yun Shi
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Veronika Masic
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Tamim Mosaiab
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Premraj Rajaratman
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | | | - Mitchell Sorbello
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cassia C. Goulart
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Eduardo Vasquez
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Biswa P. Mishra
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Stephanie Holt
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| |
Collapse
|
11
|
Kottur J, Malik R, Aggarwal AK. Nucleic acid mediated activation of a short prokaryotic Argonaute immune system. Nat Commun 2024; 15:4852. [PMID: 38844755 PMCID: PMC11156904 DOI: 10.1038/s41467-024-49271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
A short prokaryotic Argonaute (pAgo) TIR-APAZ (SPARTA) defense system, activated by invading DNA to unleash its TIR domain for NAD(P)+ hydrolysis, was recently identified in bacteria. We report the crystal structure of SPARTA heterodimer in the absence of guide-RNA/target-ssDNA (2.66 Å) and a cryo-EM structure of the SPARTA oligomer (tetramer of heterodimers) bound to guide-RNA/target-ssDNA at nominal 3.15-3.35 Å resolution. The crystal structure provides a high-resolution view of SPARTA, revealing the APAZ domain as equivalent to the N, L1, and L2 regions of long pAgos and the MID domain containing a unique insertion (insert57). Cryo-EM structure reveals regions of the PIWI (loop10-9) and APAZ (helix αN) domains that reconfigure for nucleic-acid binding and decrypts regions/residues that reorganize to expose a positively charged pocket for higher-order assembly. The TIR domains amass in a parallel-strands arrangement for catalysis. We visualize SPARTA before and after RNA/ssDNA binding and uncover the basis of its active assembly leading to abortive infection.
Collapse
Affiliation(s)
- Jithesh Kottur
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Antiviral Drug Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, 695317, India.
| | - Radhika Malik
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
12
|
Olasz B, Smithers L, Evans GL, Anandan A, Murcha MW, Vrielink A. Structural analysis of the SAM domain of the Arabidopsis mitochondrial tRNA import receptor. J Biol Chem 2024; 300:107258. [PMID: 38582448 PMCID: PMC11063897 DOI: 10.1016/j.jbc.2024.107258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024] Open
Abstract
Mitochondria are membrane-bound organelles of endosymbiotic origin with limited protein-coding capacity. The import of nuclear-encoded proteins and nucleic acids is required and essential for maintaining organelle mass, number, and activity. As plant mitochondria do not encode all the necessary tRNA types required, the import of cytosolic tRNA is vital for organelle maintenance. Recently, two mitochondrial outer membrane proteins, named Tric1 and Tric2, for tRNA import component, were shown to be involved in the import of cytosolic tRNA. Tric1/2 binds tRNAalavia conserved residues in the C-terminal Sterile Alpha Motif (SAM) domain. Here we report the X-ray crystal structure of the Tric1 SAM domain. We identified the ability of the SAM domain to form a helical superstructure with six monomers per helical turn and key amino acid residues responsible for its formation. We determined that the oligomerization of the Tric1 SAM domain may play a role in protein function whereby mutation of Gly241 introducing a larger side chain at this position disrupted the oligomer and resulted in the loss of RNA binding capability. Furthermore, complementation of Arabidopsis thaliana Tric1/2 knockout lines with a mutated Tric1 failed to restore the defective plant phenotype. AlphaFold2 structure prediction of both the SAM domain and Tric1 support a cyclic pentameric or hexameric structure. In the case of a hexameric structure, a pore of sufficient dimensions to transfer tRNA across the mitochondrial membrane is observed. Our results highlight the importance of oligomerization of Tric1 for protein function.
Collapse
Affiliation(s)
- Bence Olasz
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Luke Smithers
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Genevieve L Evans
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Anandhi Anandan
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| | - Alice Vrielink
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
13
|
Zhang JT, Wei XY, Cui N, Tian R, Jia N. Target ssDNA activates the NADase activity of prokaryotic SPARTA immune system. Nat Chem Biol 2024; 20:503-511. [PMID: 37932528 DOI: 10.1038/s41589-023-01479-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023]
Abstract
Argonaute proteins (Agos), which use small RNAs or DNAs as guides to recognize complementary nucleic acid targets, mediate RNA silencing in eukaryotes. In prokaryotes, Agos are involved in immunity: the short prokaryotic Ago/TIR-APAZ (SPARTA) immune system triggers cell death by degrading NAD+ in response to invading plasmids, but its molecular mechanisms remain unknown. Here we used cryo-electron microscopy to determine the structures of inactive monomeric and active tetrameric Crenotalea thermophila SPARTA complexes, revealing mechanisms underlying SPARTA assembly, RNA-guided recognition of target single-stranded DNA (ssDNA) and subsequent SPARTA tetramerization, as well as tetramerization-dependent NADase activation. The small RNA guides Ago to recognize its ssDNA target, inducing SPARTA tetramerization via both Ago- and TIR-mediated interactions and resulting in a two-stranded, parallel, head-to-tail TIR rearrangement primed for NAD+ hydrolysis. Our findings thus identify the molecular basis for target ssDNA-mediated SPARTA activation, which will facilitate the development of SPARTA-based biotechnological tools.
Collapse
Affiliation(s)
- Jun-Tao Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xin-Yang Wei
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Ning Cui
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Ruilin Tian
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China
| | - Ning Jia
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China.
- Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
14
|
Guo L, Huang P, Li Z, Shin YC, Yan P, Lu M, Chen M, Xiao Y. Auto-inhibition and activation of a short Argonaute-associated TIR-APAZ defense system. Nat Chem Biol 2024; 20:512-520. [PMID: 37932527 DOI: 10.1038/s41589-023-01478-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023]
Abstract
Short prokaryotic Ago accounts for most prokaryotic Argonaute proteins (pAgos) and is involved in defending bacteria against invading nucleic acids. Short pAgo associated with TIR-APAZ (SPARTA) has been shown to oligomerize and deplete NAD+ upon guide-mediated target DNA recognition. However, the molecular basis of SPARTA inhibition and activation remains unknown. In this study, we determined the cryogenic electron microscopy structures of Crenotalea thermophila SPARTA in its inhibited, transient and activated states. The SPARTA monomer is auto-inhibited by its acidic tail, which occupies the guide-target binding channel. Guide-mediated target binding expels this acidic tail and triggers substantial conformational changes to expose the Ago-Ago dimerization interface. As a result, SPARTA assembles into an active tetramer, where the four TIR domains are rearranged and packed to form NADase active sites. Together with biochemical evidence, our results provide a panoramic vision explaining SPARTA auto-inhibition and activation and expand understanding of pAgo-mediated bacterial defense systems.
Collapse
Affiliation(s)
- Lijie Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Pingping Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhaoxing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Young-Cheul Shin
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Purui Yan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Meiling Lu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Meirong Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, China.
| |
Collapse
|
15
|
Wang X, Yu D, Yu J, Hu H, Hang R, Amador Z, Chen Q, Chai J, Chen X. Toll/interleukin-1 receptor (TIR) domain-containing proteins have NAD-RNA decapping activity. Nat Commun 2024; 15:2261. [PMID: 38480720 PMCID: PMC10937652 DOI: 10.1038/s41467-024-46499-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
The occurrence of NAD+ as a non-canonical RNA cap has been demonstrated in diverse organisms. TIR domain-containing proteins present in all kingdoms of life act in defense responses and can have NADase activity that hydrolyzes NAD+. Here, we show that TIR domain-containing proteins from several bacterial and one archaeal species can remove the NAM moiety from NAD-capped RNAs (NAD-RNAs). We demonstrate that the deNAMing activity of AbTir (from Acinetobacter baumannii) on NAD-RNA specifically produces a cyclic ADPR-RNA, which can be further decapped in vitro by known decapping enzymes. Heterologous expression of the wild-type but not a catalytic mutant AbTir in E. coli suppressed cell propagation and reduced the levels of NAD-RNAs from a subset of genes before cellular NAD+ levels are impacted. Collectively, the in vitro and in vivo analyses demonstrate that TIR domain-containing proteins can function as a deNAMing enzyme of NAD-RNAs, raising the possibility of TIR domain proteins acting in gene expression regulation.
Collapse
Affiliation(s)
- Xufeng Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Dongli Yu
- Institute of Biochemistry, University of Cologne, Cologne, 50674, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Jiancheng Yu
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Hao Hu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Runlai Hang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Zachary Amador
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Qi Chen
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Molecular Medicine Program, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Jijie Chai
- Institute of Biochemistry, University of Cologne, Cologne, 50674, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Xuemei Chen
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China.
| |
Collapse
|
16
|
Finocchio G, Koopal B, Potocnik A, Heijstek C, Westphal AH, Jinek M, Swarts DC. Target DNA-dependent activation mechanism of the prokaryotic immune system SPARTA. Nucleic Acids Res 2024; 52:2012-2029. [PMID: 38224450 PMCID: PMC10899771 DOI: 10.1093/nar/gkad1248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024] Open
Abstract
In both prokaryotic and eukaryotic innate immune systems, TIR domains function as NADases that degrade the key metabolite NAD+ or generate signaling molecules. Catalytic activation of TIR domains requires oligomerization, but how this is achieved varies in distinct immune systems. In the Short prokaryotic Argonaute (pAgo)/TIR-APAZ (SPARTA) immune system, TIR NADase activity is triggered upon guide RNA-mediated recognition of invading DNA by an unknown mechanism. Here, we describe cryo-EM structures of SPARTA in the inactive monomeric and target DNA-activated tetrameric states. The monomeric SPARTA structure reveals that in the absence of target DNA, a C-terminal tail of TIR-APAZ occupies the nucleic acid binding cleft formed by the pAgo and TIR-APAZ subunits, inhibiting SPARTA activation. In the active tetrameric SPARTA complex, guide RNA-mediated target DNA binding displaces the C-terminal tail and induces conformational changes in pAgo that facilitate SPARTA-SPARTA dimerization. Concurrent release and rotation of one TIR domain allow it to form a composite NADase catalytic site with the other TIR domain within the dimer, and generate a self-complementary interface that mediates cooperative tetramerization. Combined, this study provides critical insights into the structural architecture of SPARTA and the molecular mechanism underlying target DNA-dependent oligomerization and catalytic activation.
Collapse
Affiliation(s)
- Giada Finocchio
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Balwina Koopal
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Ana Potocnik
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Clint Heijstek
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Daan C Swarts
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
17
|
Cirilli I, Amici A, Gilley J, Coleman MP, Orsomando G. Adaptation of a Commercial NAD + Quantification Kit to Assay the Base-Exchange Activity and Substrate Preferences of SARM1. Molecules 2024; 29:847. [PMID: 38398599 PMCID: PMC10891823 DOI: 10.3390/molecules29040847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Here, we report an adapted protocol using the Promega NAD/NADH-Glo™ Assay kit. The assay normally allows quantification of trace amounts of both oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD) by enzymatic cycling, but we now show that the NAD analog 3-acetylpyridine adenine dinucleotide (AcPyrAD) also acts as a substrate for this enzyme-cycling assay. In fact, AcPyrAD generates amplification signals of a larger amplitude than those obtained with NAD. We exploited this finding to devise and validate a novel method for assaying the base-exchange activity of SARM1 in reactions containing NAD and an excess of the free base 3-acetylpyridine (AcPyr), where the product is AcPyrAD. We then used this assay to study competition between AcPyr and other free bases to rank the preference of SARM1 for different base-exchange substrates, identifying isoquinoline as a highly effect substrate that completely outcompetes even AcPyr. This has significant advantages over traditional HPLC methods for assaying SARM1 base exchange as it is rapid, sensitive, cost-effective, and easily scalable. This could represent a useful tool given current interest in the role of SARM1 base exchange in programmed axon death and related human disorders. It may also be applicable to other multifunctional NAD glycohydrolases (EC 3.2.2.6) that possess similar base-exchange activity.
Collapse
Affiliation(s)
- Ilenia Cirilli
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131 Ancona, Italy; (I.C.); (A.A.)
| | - Adolfo Amici
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131 Ancona, Italy; (I.C.); (A.A.)
| | - Jonathan Gilley
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK; (J.G.); (M.P.C.)
| | - Michael P. Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK; (J.G.); (M.P.C.)
| | - Giuseppe Orsomando
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131 Ancona, Italy; (I.C.); (A.A.)
| |
Collapse
|
18
|
Guarente L, Sinclair DA, Kroemer G. Human trials exploring anti-aging medicines. Cell Metab 2024; 36:354-376. [PMID: 38181790 DOI: 10.1016/j.cmet.2023.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
Here, we summarize the current knowledge on eight promising drugs and natural compounds that have been tested in the clinic: metformin, NAD+ precursors, glucagon-like peptide-1 receptor agonists, TORC1 inhibitors, spermidine, senolytics, probiotics, and anti-inflammatories. Multiple clinical trials have commenced to evaluate the efficacy of such agents against age-associated diseases including diabetes, cardiovascular disease, cancer, and neurodegenerative diseases. There are reasonable expectations that drugs able to decelerate or reverse aging processes will also exert broad disease-preventing or -attenuating effects. Hence, the outcome of past, ongoing, and future disease-specific trials may pave the way to the development of new anti-aging medicines. Drugs approved for specific disease indications may subsequently be repurposed for the treatment of organism-wide aging consequences.
Collapse
Affiliation(s)
- Leonard Guarente
- Department of Biology, Massachusetts Institute for Technology, Cambridge, MA 02139; Academy for Healthspan and Lifespan Research (AHLR), New York, NY, USA.
| | - David A Sinclair
- Academy for Healthspan and Lifespan Research (AHLR), New York, NY, USA; Blavatnik Institute, Genetics Department, Harvard Medical School, Boston, MA 02115, USA
| | - Guido Kroemer
- Academy for Healthspan and Lifespan Research (AHLR), New York, NY, USA; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
19
|
Miao X, Wu Q, Du S, Xiang L, Zhou S, Zhu J, Chen Z, Wang H, Pan X, Fan Y, Zhang L, Qian J, Xing Y, Xie Y, Hu L, Xu H, Wang W, Wang Y, Huang Z. SARM1 Promotes Neurodegeneration and Memory Impairment in Mouse Models of Alzheimer's Disease. Aging Dis 2024; 15:390-407. [PMID: 37307837 PMCID: PMC10796105 DOI: 10.14336/ad.2023.0516-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
Neuroinflammation plays a crucial role in the pathogenesis and progression of Alzheimer's disease (AD). The Sterile Alpha and Toll Interleukin Receptor Motif-containing protein 1 (SARM1) has been shown to promote axonal degeneration and is involved in neuroinflammation. However, the role of SARM1 in AD remains unclear. In this study, we found that SARM1 was reduced in hippocampal neurons of AD model mice. Interestingly, conditional knockout (CKO) of SARM1 in the central nervous system (CNS, SARM1Nestin-CKO mice) delayed the cognitive decline in APP/PS1 AD model mice. Furthermore, SARM1 deletion reduced the Aβ deposition and inflammatory infiltration in the hippocampus and inhibited neurodegeneration in APP/PS1 AD model mice. Further investigation into the underlying mechanisms revealed that the signaling of tumor necrosis factor-α (TNF-α) was downregulated in the hippocampus tissues of APP/PS1;SARM1Nestin-CKO mice, thereby alleviating the cognitive decline, Aβ deposition and inflammatory infiltration. These findings identify unrecognized functions of SARM1 in promoting AD and reveal the SARM1-TNF-α pathway in AD model mice.
Collapse
Affiliation(s)
- Xuemeng Miao
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Qian Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Siyu Du
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Ludan Xiang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Siyao Zhou
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Junzhe Zhu
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Zirun Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Hui Wang
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Xuyi Pan
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Yiren Fan
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Lihan Zhang
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Jingkang Qian
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Yuxuan Xing
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Yiyang Xie
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Lixin Hu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Haiyun Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Ying Wang
- Clinical Research Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Zhihui Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
20
|
Li F, Wu C, Wang G. Targeting NAD Metabolism for the Therapy of Age-Related Neurodegenerative Diseases. Neurosci Bull 2024; 40:218-240. [PMID: 37253984 PMCID: PMC10838897 DOI: 10.1007/s12264-023-01072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023] Open
Abstract
As the aging population continues to grow rapidly, age-related diseases are becoming an increasing burden on the healthcare system and a major concern for the well-being of elderly individuals. While aging is an inevitable process for all humans, it can be slowed down and age-related diseases can be treated or alleviated. Nicotinamide adenine dinucleotide (NAD) is a critical coenzyme or cofactor that plays a central role in metabolism and is involved in various cellular processes including the maintenance of metabolic homeostasis, post-translational protein modifications, DNA repair, and immune responses. As individuals age, their NAD levels decline, and this decrease has been suggested to be a contributing factor to the development of numerous age-related diseases, such as cancer, diabetes, cardiovascular diseases, and neurodegenerative diseases. In pursuit of healthy aging, researchers have investigated approaches to boost or maintain NAD levels. Here, we provide an overview of NAD metabolism and the role of NAD in age-related diseases and summarize recent progress in the development of strategies that target NAD metabolism for the treatment of age-related diseases, particularly neurodegenerative diseases.
Collapse
Affiliation(s)
- Feifei Li
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Chou Wu
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gelin Wang
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
21
|
Guo Y, Mehrabian Z, Milbrandt J, DiAntonio A, Bernstein SL. Synergistic Protection of Retinal Ganglion Cells (RGCs) by SARM1 Inactivation with CNTF in a Rodent Model of Nonarteritic Anterior Ischemic Optic Neuropathy. Cells 2024; 13:202. [PMID: 38334594 PMCID: PMC10854792 DOI: 10.3390/cells13030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
We evaluated whether inhibiting sterile alpha and (Toll/interleukin receptor (TIR)) motif-containing 1 (SARM1) activity protects retinal ganglion cells (RGCs) following ischemic axonopathy (rodent nonarteritic anterior ischemic optic neuropathy: rNAION) by itself and combined with ciliary neurotrophic factor (CNTF). Genetically modified SARM1(-) rats were rNAION-induced in one eye and compared against equivalently induced wild-type animals of the same background. Optic nerve (ON) diameters were quantified using optical coherence tomography (SD-OCT). RGCs were quantified 30 d post-induction using retinal stereology for Brn3a(+) nuclei. ON sections were analyzed by TEM and immunohistochemistry. SARM1(-)(-) and WT animals were then bilaterally sequentially rNAION-induced. One eye received intravitreal vehicle injection following induction; the contralateral side received CNTF and was analyzed 30 d post-induction. Inhibiting SARM1 activity suppressed axonal collapse following ischemic axonopathy. SARM1(-) animals significantly reduced RGC loss, compared with WT animals (49.4 ± 6.8% RGC loss in SARM1(-) vs. 63.6 ± 3.2% sem RGC loss in WT; Mann-Whitney one-tailed U-test, (p = 0.049)). IVT-CNTF treatment vs. IVT-vehicle in SARM1(-) animals further reduced RGC loss by 24% at 30 d post-induction, but CNTF did not, by itself, improve long-term RGC survival in WT animals compared with vehicle (Mann-Whitney one-tailed t-test; p = 0.033). While inhibiting SARM1 activity is itself neuroprotective, combining SARM1 inhibition and CNTF treatment generated a long-term, synergistic neuroprotective effect in ischemic neuropathy. Combinatorial treatments for NAION utilizing independent neuroprotective mechanisms may thus provide a greater effect than individual treatment modalities.
Collapse
Affiliation(s)
- Yan Guo
- Departments of Ophthalmology and Visual Sciences, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (Y.G.); (Z.M.)
| | - Zara Mehrabian
- Departments of Ophthalmology and Visual Sciences, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (Y.G.); (Z.M.)
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO 63110, USA;
| | - Aaron DiAntonio
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO 63110, USA;
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven L. Bernstein
- Departments of Ophthalmology and Visual Sciences, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (Y.G.); (Z.M.)
- Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
22
|
Tarasiuk O, Molteni L, Malacrida A, Nicolini G. The Role of NMNAT2/SARM1 in Neuropathy Development. BIOLOGY 2024; 13:61. [PMID: 38275737 PMCID: PMC10813049 DOI: 10.3390/biology13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) commonly arises as a side effect of diverse cancer chemotherapy treatments. This condition presents symptoms such as numbness, tingling, and altered sensation in patients, often accompanied by neuropathic pain. Pathologically, CIPN is characterized by an intensive "dying-back" axonopathy, starting at the intra-epidermal sensory innervations and advancing retrogradely. The lack of comprehensive understanding regarding its underlying mechanisms explains the absence of effective treatments for CIPN. Recent investigations into axon degeneration mechanisms have pinpointed nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) and sterile alpha and TIR motif-containing 1 protein (SARM1) as pivotal mediators of injury-induced axonal degeneration. In this review, we aim to explore various studies shedding light on the interplay between NMNAT2 and SARM1 proteins and their roles in the progression of CIPN.
Collapse
Affiliation(s)
- Olga Tarasiuk
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.M.); (A.M.); (G.N.)
| | | | | | | |
Collapse
|
23
|
Gao X, Shang K, Zhu K, Wang L, Mu Z, Fu X, Yu X, Qin B, Zhu H, Ding W, Cui S. Nucleic-acid-triggered NADase activation of a short prokaryotic Argonaute. Nature 2024; 625:822-831. [PMID: 37783228 DOI: 10.1038/s41586-023-06665-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Argonaute (Ago) proteins mediate RNA- or DNA-guided inhibition of nucleic acids1,2. Although the mechanisms used by eukaryotic Ago proteins and long prokaryotic Ago proteins (pAgos) are known, that used by short pAgos remains elusive. Here we determined the cryo-electron microscopy structures of a short pAgo and the associated TIR-APAZ proteins (SPARTA) from Crenotalea thermophila (Crt): a free-state Crt-SPARTA; a guide RNA-target DNA-loaded Crt-SPARTA; two Crt-SPARTA dimers with distinct TIR organization; and a Crt-SPARTA tetramer. These structures reveal that Crt-SPARTA is composed of a bilobal-fold Ago lobe that connects with a TIR lobe. Whereas the Crt-Ago contains a MID and a PIWI domain, Crt-TIR-APAZ has a TIR domain, an N-like domain, a linker domain and a trigger domain. The bound RNA-DNA duplex adopts a B-form conformation that is recognized by base-specific contacts. Nucleic acid binding causes conformational changes because the trigger domain acts as a 'roadblock' that prevents the guide RNA 5' ends and the target DNA 3' ends from reaching their canonical pockets; this disorders the MID domain and promotes Crt-SPARTA dimerization. Two RNA-DNA-loaded Crt-SPARTA dimers form a tetramer through their TIR domains. Four Crt-TIR domains assemble into two parallel head-to-tail-organized TIR dimers, indicating an NADase-active conformation, which is supported by our mutagenesis study. Our results reveal the structural basis of short-pAgo-mediated defence against invading nucleic acids, and provide insights for optimizing the detection of SPARTA-based programmable DNA sequences.
Collapse
Affiliation(s)
- Xiaopan Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Kun Shang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Medical School, Yan'an University, Yan'an, China
| | - Kaixiang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Linyue Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Zhixia Mu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Xingke Fu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xia Yu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Hongtao Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
| | - Wei Ding
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China.
| |
Collapse
|
24
|
Locci F, Parker JE. Plant NLR immunity activation and execution: a biochemical perspective. Open Biol 2024; 14:230387. [PMID: 38262605 PMCID: PMC10805603 DOI: 10.1098/rsob.230387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Plants deploy cell-surface and intracellular receptors to detect pathogen attack and trigger innate immune responses. Inside host cells, families of nucleotide-binding/leucine-rich repeat (NLR) proteins serve as pathogen sensors or downstream mediators of immune defence outputs and cell death, which prevent disease. Established genetic underpinnings of NLR-mediated immunity revealed various strategies plants adopt to combat rapidly evolving microbial pathogens. The molecular mechanisms of NLR activation and signal transmission to components controlling immunity execution were less clear. Here, we review recent protein structural and biochemical insights to plant NLR sensor and signalling functions. When put together, the data show how different NLR families, whether sensors or signal transducers, converge on nucleotide-based second messengers and cellular calcium to confer immunity. Although pathogen-activated NLRs in plants engage plant-specific machineries to promote defence, comparisons with mammalian NLR immune receptor counterparts highlight some shared working principles for NLR immunity across kingdoms.
Collapse
Affiliation(s)
- Federica Locci
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Jane E. Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Chiarugi A. Glaucoma: neuroprotection with NAD-based therapeutic interventions. Trends Pharmacol Sci 2023; 44:869-879. [PMID: 37880000 DOI: 10.1016/j.tips.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Clinical evidence shows that intraocular hypertension is not the primary pathogenetic event of glaucoma, whereas early neurodegeneration of retinal ganglion cells (RGCs) represents a key therapeutic target. Unfortunately, failure of clinical trials with neuroprotective agents, in particular those testing the anti-excitotoxic drug memantine, generated widespread skepticism regarding the possibility of counteracting neurodegeneration during glaucoma. New avenues for neuroprotective approaches to counteract glaucoma evolution have been opened by the identification of a programmed axonal degeneration (PAD) program triggered by increased nicotinamide mononucleotide (NMN)/NAD concentration ratio. Positive results of proof-of-concept clinical studies based on sustaining axonal NAD homeostasis facilitated the design of Phase 2/3 trials. Here, I share my opinion on how neurodegeneration in glaucoma should be put into context, together with an appraisal of the pharmacological rationale of NAD-supporting therapies for use during glaucoma progression.
Collapse
Affiliation(s)
- Alberto Chiarugi
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy; Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
26
|
Loreto A, Antoniou C, Merlini E, Gilley J, Coleman MP. NMN: The NAD precursor at the intersection between axon degeneration and anti-ageing therapies. Neurosci Res 2023; 197:18-24. [PMID: 36657725 DOI: 10.1016/j.neures.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
The past 20 years of research on axon degeneration has revealed fine details on how NAD biology controls axonal survival. Extensive data demonstrate that the NAD precursor NMN binds to and activates the pro-degenerative enzyme SARM1, so a failure to convert sufficient NMN into NAD leads to toxic NMN accumulation and axon degeneration. This involvement of NMN brings the axon degeneration field to an unexpected overlap with research into ageing and extending healthy lifespan. A decline in NAD levels throughout life, at least in some tissues, is believed to contribute to age-related functional decay and boosting NAD production with supplementation of NMN or other NAD precursors has gained attention as a potential anti-ageing therapy. Recent years have witnessed an influx of NMN-based products and related molecules on the market, sold as food supplements, with many people taking these supplements daily. While several clinical trials are ongoing to check the safety profiles and efficacy of NAD precursors, sufficient data to back their therapeutic use are still lacking. Here, we discuss NMN supplementation, SARM1 and anti-ageing strategies, with an important question in mind: considering that NMN accumulation can lead to axon degeneration, how is this compatible with its beneficial effect in ageing and are there circumstances in which NMN supplementation could become harmful?
Collapse
Affiliation(s)
- Andrea Loreto
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, CB2 0PY Cambridge, UK.
| | - Christina Antoniou
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, CB2 0PY Cambridge, UK
| | - Elisa Merlini
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, CB2 0PY Cambridge, UK
| | - Jonathan Gilley
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, CB2 0PY Cambridge, UK
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, CB2 0PY Cambridge, UK.
| |
Collapse
|
27
|
Zuo Z, Zhang Z, Zhang S, Fan B, Li G. The Molecular Mechanisms Involved in Axonal Degeneration and Retrograde Retinal Ganglion Cell Death. DNA Cell Biol 2023; 42:653-667. [PMID: 37819746 DOI: 10.1089/dna.2023.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Axonal degeneration is a pathologic change common to multiple retinopathies and optic neuropathies. Various pathologic factors, such as mechanical injury, inflammation, and ischemia, can damage retinal ganglion cell (RGC) somas and axons, eventually triggering axonal degeneration and RGC death. The molecular mechanisms of somal and axonal degeneration are distinct but also overlap, and axonal degeneration can result in retrograde somal degeneration. While the mitogen-activated protein kinase pathway acts as a central node in RGC axon degeneration, several newly discovered molecules, such as sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 and nicotinamide mononucleotide adenylyltransferase 2, also play a critical role in this pathological process following different types of injury. Therefore, we summarize the types of injury that cause RGC axon degeneration and retrograde RGC death and important underlying molecular mechanisms, providing a reference for the identification of targets for protecting axons and RGCs.
Collapse
Affiliation(s)
- Zhaoyang Zuo
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Ziyuan Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Siming Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Bin Fan
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Guangyu Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Icso JD, Thompson PR. A phase transition reduces the threshold for nicotinamide mononucleotide-based activation of SARM1, an NAD(P) hydrolase, to physiologically relevant levels. J Biol Chem 2023; 299:105284. [PMID: 37742918 PMCID: PMC10624580 DOI: 10.1016/j.jbc.2023.105284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
Axonal degeneration is a hallmark feature of neurodegenerative diseases. Activation of the NAD(P)ase sterile alpha and toll-interleukin receptor motif containing protein 1 (SARM1) is critical for this process. In resting neurons, SARM1 activity is inhibited, but upon damage, SARM1 is activated and catalyzes one of three NAD(P)+ dependent reactions: (1) NAD(P)+ hydrolysis to form ADP-ribose (ADPR[P]) and nicotinamide; (2) the formation of cyclic-ADPR (cADPR[P]); or (3) a base exchange reaction with nicotinic acid (NA) and NADP+ to form NA adenine dinucleotide phosphate. Production of these metabolites triggers axonal death. Two activation mechanisms have been proposed: (1) an increase in the nicotinamide mononucleotide (NMN) concentration, which leads to the allosteric activation of SARM1, and (2) a phase transition, which stabilizes the active conformation of the enzyme. However, neither of these mechanisms have been shown to occur at the same time. Using in vitro assay systems, we show that the liquid-to-solid phase transition lowers the NMN concentration required to activate the catalytic activity of SARM1 by up to 140-fold. These results unify the proposed activation mechanisms and show for the first time that a phase transition reduces the threshold for NMN-based SARM1 activation to physiologically relevant levels. These results further our understanding of SARM1 activation and will be important for the future development of therapeutics targeting SARM1.
Collapse
Affiliation(s)
- Janneke Doedée Icso
- Program in Chemical Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medial School, Worcester, Massachusetts, USA
| | - Paul Ryan Thompson
- Program in Chemical Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medial School, Worcester, Massachusetts, USA.
| |
Collapse
|
29
|
Klontz E, Obi JO, Wang Y, Glendening G, Carr J, Tsibouris C, Buddula S, Nallar S, Soares AS, Beckett D, Redzic JS, Eisenmesser E, Palm C, Schmidt K, Scudder AH, Obiorah T, Essuman K, Milbrandt J, Diantonio A, Ray K, Snyder MLD, Deredge D, Snyder GA. The structure of NAD + consuming protein Acinetobacter baumannii TIR domain shows unique kinetics and conformations. J Biol Chem 2023; 299:105290. [PMID: 37758001 PMCID: PMC10641520 DOI: 10.1016/j.jbc.2023.105290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Toll-like and interleukin-1/18 receptor/resistance (TIR) domain-containing proteins function as important signaling and immune regulatory molecules. TIR domain-containing proteins identified in eukaryotic and prokaryotic species also exhibit NAD+ hydrolase activity in select bacteria, plants, and mammalian cells. We report the crystal structure of the Acinetobacter baumannii TIR domain protein (AbTir-TIR) with confirmed NAD+ hydrolysis and map the conformational effects of its interaction with NAD+ using hydrogen-deuterium exchange-mass spectrometry. NAD+ results in mild decreases in deuterium uptake at the dimeric interface. In addition, AbTir-TIR exhibits EX1 kinetics indicative of large cooperative conformational changes, which are slowed down upon substrate binding. Additionally, we have developed label-free imaging using the minimally invasive spectroscopic method 2-photon excitation with fluorescence lifetime imaging, which shows differences in bacteria expressing native and mutant NAD+ hydrolase-inactivated AbTir-TIRE208A protein. Our observations are consistent with substrate-induced conformational changes reported in other TIR model systems with NAD+ hydrolase activity. These studies provide further insight into bacterial TIR protein mechanisms and their varying roles in biology.
Collapse
Affiliation(s)
- Erik Klontz
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Juliet O Obi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Yajing Wang
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Physiology, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Gabrielle Glendening
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Jahid Carr
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Constantine Tsibouris
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Sahthi Buddula
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Shreeram Nallar
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Alexei S Soares
- Brookhaven National Laboratory, National Synchrotron Light Source II, Structural Biology Program, Upton, New York, USA
| | - Dorothy Beckett
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
| | - Elan Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
| | - Cheyenne Palm
- Department of Biological Sciences, Towson University, Towson, Maryland, USA
| | - Katrina Schmidt
- Department of Biological Sciences, Towson University, Towson, Maryland, USA
| | - Alexis H Scudder
- Department of Biological Sciences, Towson University, Towson, Maryland, USA
| | - Trinity Obiorah
- Department of Biological Sciences, Towson University, Towson, Maryland, USA
| | - Kow Essuman
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jeffrey Milbrandt
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Aaron Diantonio
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Krishanu Ray
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Biochemistry and Molecular Biology at the University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | | | - Daniel Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Greg A Snyder
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
| |
Collapse
|
30
|
Montoro-Gámez C, Nolte H, Molinié T, Evangelista G, Tröder SE, Barth E, Popovic M, Trifunovic A, Zevnik B, Langer T, Rugarli EI. SARM1 deletion delays cerebellar but not spinal cord degeneration in an enhanced mouse model of SPG7 deficiency. Brain 2023; 146:4117-4131. [PMID: 37086482 DOI: 10.1093/brain/awad136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/16/2023] [Accepted: 04/10/2023] [Indexed: 04/24/2023] Open
Abstract
Hereditary spastic paraplegia is a neurological condition characterized by predominant axonal degeneration in long spinal tracts, leading to weakness and spasticity in the lower limbs. The nicotinamide adenine dinucleotide (NAD+)-consuming enzyme SARM1 has emerged as a key executioner of axonal degeneration upon nerve transection and in some neuropathies. An increase in the nicotinamide mononucleotide/NAD+ ratio activates SARM1, causing catastrophic NAD+ depletion and axonal degeneration. However, the role of SARM1 in the pathogenesis of hereditary spastic paraplegia has not been investigated. Here, we report an enhanced mouse model for hereditary spastic paraplegia caused by mutations in SPG7. The eSpg7 knockout mouse carries a deletion in both Spg7 and Afg3l1, a redundant homologue expressed in mice but not in humans. The eSpg7 knockout mice recapitulate the phenotypic features of human patients, showing progressive symptoms of spastic-ataxia and degeneration of axons in the spinal cord as well as the cerebellum. We show that the lack of SPG7 rewires the mitochondrial proteome in both tissues, leading to an early onset decrease in mito-ribosomal subunits and a remodelling of mitochondrial solute carriers and transporters. To interrogate mechanisms leading to axonal degeneration in this mouse model, we explored the involvement of SARM1. Deletion of SARM1 delays the appearance of ataxic signs, rescues mitochondrial swelling and axonal degeneration of cerebellar granule cells and dampens neuroinflammation in the cerebellum. The loss of SARM1 also prevents endoplasmic reticulum abnormalities in long spinal cord axons, but does not halt the degeneration of these axons. Our data thus reveal a neuron-specific interplay between SARM1 and mitochondrial dysfunction caused by lack of SPG7 in hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Carolina Montoro-Gámez
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Thibaut Molinié
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Giovanna Evangelista
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Simon E Tröder
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
- in vivo Research Facility, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Esther Barth
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Milica Popovic
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Aleksandra Trifunovic
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne 50931, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne 50931, Germany
| | - Branko Zevnik
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
- in vivo Research Facility, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Thomas Langer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Elena I Rugarli
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
31
|
Yue W, Zhang K, Jiang M, Long W, Cui J, Li Y, Zhang Y, Li A, Fang Y. Deubiquitination of SARM1 by USP13 regulates SARM1 activation and axon degeneration. LIFE MEDICINE 2023; 2:lnad040. [PMID: 39872893 PMCID: PMC11749472 DOI: 10.1093/lifemedi/lnad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/24/2023] [Indexed: 01/30/2025]
Abstract
Sterile alpha and Toll/interleukin 1 receptor motif-containing protein 1 (SARM1) is regarded as a key protein and a central executor of the self-destruction of injured axons. To identify novel molecular players and understand the mechanisms regulating SARM1 function, we investigated the interactome of SARM1 by proximity labeling and proteomic profiling. Among the SARM1-associated proteins, we uncovered that overexpression (OE) of ubiquitin-specific peptidase 13 (USP13) delayed injury-induced axon degeneration. OE of an enzyme-dead USP13 failed to protect injured axons, indicating that the deubiquitinase activity of USP13 was required for its axonal protective effect. Further investigation revealed that USP13 deubiquitinated SARM1, which increased the inhibitory interaction between the N-terminal armadillo repeat motif (ARM) and C-terminal Toll/interleukin-1 receptor (TIR) domains of the SARM1 protein, thereby suppressing SARM1 activation in axon injury. Collectively, these findings suggest that increase of USP13 activity enhances the self-inhibition of SARM1, which may provide a strategy to mitigate axon degeneration in injury and disease.
Collapse
Affiliation(s)
- Wenkai Yue
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingsheng Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Long
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jihong Cui
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yunxia Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ang Li
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Khazma T, Grossman A, Guez-Haddad J, Feng C, Dabas H, Sain R, Weitman M, Zalk R, Isupov MN, Hammarlund M, Hons M, Opatowsky Y. Structure-function analysis of ceTIR-1/hSARM1 explains the lack of Wallerian axonal degeneration in C. elegans. Cell Rep 2023; 42:113026. [PMID: 37635352 PMCID: PMC10675840 DOI: 10.1016/j.celrep.2023.113026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/05/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Wallerian axonal degeneration (WD) does not occur in the nematode C. elegans, in contrast to other model animals. However, WD depends on the NADase activity of SARM1, a protein that is also expressed in C. elegans (ceSARM/ceTIR-1). We hypothesized that differences in SARM between species might exist and account for the divergence in WD. We first show that expression of the human (h)SARM1, but not ceTIR-1, in C. elegans neurons is sufficient to confer axon degeneration after nerve injury. Next, we determined the cryoelectron microscopy structure of ceTIR-1 and found that, unlike hSARM1, which exists as an auto-inhibited ring octamer, ceTIR-1 forms a readily active 9-mer. Enzymatically, the NADase activity of ceTIR-1 is substantially weaker (10-fold higher Km) than that of hSARM1, and even when fully active, it falls short of consuming all cellular NAD+. Our experiments provide insight into the molecular mechanisms and evolution of SARM orthologs and WD across species.
Collapse
Affiliation(s)
- Tami Khazma
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Atira Grossman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Julia Guez-Haddad
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Chengye Feng
- Departments of Neuroscience and Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Hadas Dabas
- Departments of Neuroscience and Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Radhika Sain
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Michal Weitman
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | - Ran Zalk
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michail N Isupov
- Henry Wellcome Building for Biocatalysis, Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Marc Hammarlund
- Departments of Neuroscience and Genetics, Yale School of Medicine, New Haven, CT, USA.
| | - Michael Hons
- European Molecular Biology Laboratory, Grenoble, France.
| | - Yarden Opatowsky
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
33
|
Kottur J, Malik R, Aggarwal AK. Nucleic Acid Mediated Activation of a Short Prokaryotic Argonaute Immune System. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.558117. [PMID: 37745538 PMCID: PMC10516056 DOI: 10.1101/2023.09.17.558117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The continual pressure of invading DNA has led bacteria to develop numerous immune systems, including a short prokaryotic Argonaute (pAgo) TIR-APAZ system (SPARTA) that is activated by invading DNA to unleash its TIR domain for NAD(P)+ hydrolysis. To gain a molecular understanding of this activation process, we resolved a crystal structure of SPARTA heterodimer in the absence of guide RNA/target ssDNA at 2.66Å resolution and a cryo-EM structure of the SPARTA oligomer (tetramer of heterodimers) bound to guide RNA/target ssDNA at nominal 3.15-3.35Å resolution. The crystal structure provides a high-resolution view of the TIR-APAZ protein and the MID-PIWI domains of short pAgo - wherein, the APAZ domain emerges as equivalent to the N, L1 and L2 regions of long pAgos and the MID domain has a unique insertion (insert57). A comparison to cryo-EM structure reveals regions of the PIWI (loop10-9) and APAZ (helix αN) domains that reconfigure to relieve auto-inhibition to permit nucleic acid binding and transition to an active oligomer. Oligomerization is accompanied by the nucleation of the TIR domains in a parallel-strands arrangement for catalysis. Together, the structures provide a visualization of SPARTA before and after RNA/ssDNA binding and reveal the basis of SPARTA's active assembly leading to NAD(P)+ degradation and abortive infection.
Collapse
Affiliation(s)
- Jithesh Kottur
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Radhika Malik
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aneel K. Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
34
|
Kim M, Kim H, Kang BG, Lee J, Kim T, Lee H, Jung J, Oh MJ, Seo S, Ryu MJ, Sung Y, Lee Y, Yeom J, Han G, Cha SS, Jung H, Kim HS. Discovery of a novel NAMPT inhibitor that selectively targets NAPRT-deficient EMT-subtype cancer cells and alleviates chemotherapy-induced peripheral neuropathy. Theranostics 2023; 13:5075-5098. [PMID: 37771778 PMCID: PMC10526665 DOI: 10.7150/thno.85356] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
Background: Exploiting synthetic lethality (SL) relationships between protein pairs has emerged as an important avenue for the development of anti-cancer drugs. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme of the NAD+ salvage pathway, having an SL relationship with nicotinic acid phosphoribosyltransferase (NAPRT), the key enzyme in the NAD+ Preiss-Handler pathway. NAMPT inhibitor holds clinical potential not only as a promising cancer treatment but also as a means of protection against chemotherapy-induced-peripheral-neuropathy (CIPN). However, as NAD+ is essential for normal cells, the clinical use of NAMPT inhibitors is challenging. This study aimed to identify a novel NAMPT inhibitor with enhanced selective cytotoxicity against NAPRT-deficient cancer cells as well as prominent efficacy in alleviating CIPN. Methods: We began by conducting drug derivatives screening in a panel of lung cancer cell lines to select an agent with the broadest therapeutic window between the NAPRT-negative and-positive cancer cell lines. Both in vitro and In vivo comparative analyses were conducted between A4276 and other NAMPT inhibitors to evaluate the NAPRT-negative cancer cell selectivity and the underlying distinct NAMPT inhibition mechanism of A4276. Patient-derived tumor transcriptomic data and protein levels in various cancer cell lines were analyzed to confirm the correlation between NAPRT depletion and epithelial-to-mesenchymal transition (EMT)-like features in various cancer types. Finally, the efficacy of A4276 for axonal protection and CIPN remedy was examined in vitro and in vivo. Results: The biomarker-driven phenotypic screening led to a discovery of A4276 with prominent selectivity against NAPRT-negative cancer cells compared with NAPRT-positive cancer cells and normal cells. The cytotoxic effect of A4276 on NAPRT-negative cells is achieved through its direct binding to NAMPT, inhibiting its enzymatic function at an optimal and balanced level allowing NAPRT-positive cells to survive through NAPRT-dependent NAD+ synthesis. NAPRT deficiency serves as a biomarker for the response to A4276 as well as an indicator of EMT-subtype cancer in various tumor types. Notably, A4276 protects axons from Wallerian degeneration more effectively than other NAMPT inhibitors by decreasing NMN-to-NAD+ ratio. Conclusion: This study demonstrates that A4276 selectively targets NAPRT-deficient EMT-subtype cancer cells and prevents chemotherapy-induced peripheral neuropathy, highlighting its potential as a promising anti-cancer agent for use in cancer monotherapy or combination therapy with conventional chemotherapeutics.
Collapse
Affiliation(s)
- Minjee Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyeyoung Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Bu-Gyeong Kang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jooyoung Lee
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Checkmate Therapeutics Inc., Seoul, 07207, Republic of Korea
| | - Taegun Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hwanho Lee
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jane Jung
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Myung Joon Oh
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seungyoon Seo
- Prometabio Research Institute, Prometabio Co., Ltd. Hanam-si, Gyeonggi-do 12939, Republic of Korea
| | - Myung-Jeom Ryu
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yeojin Sung
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yunji Lee
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jeonghun Yeom
- Prometabio Research Institute, Prometabio Co., Ltd. Hanam-si, Gyeonggi-do 12939, Republic of Korea
| | - Gyoonhee Han
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hosung Jung
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyun Seok Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Checkmate Therapeutics Inc., Seoul, 07207, Republic of Korea
| |
Collapse
|
35
|
Wang X, Li X, Yu G, Zhang L, Zhang C, Wang Y, Liao F, Wen Y, Yin H, Liu X, Wei Y, Li Z, Deng Z, Zhang H. Structural insights into mechanisms of Argonaute protein-associated NADase activation in bacterial immunity. Cell Res 2023; 33:699-711. [PMID: 37311833 PMCID: PMC10474274 DOI: 10.1038/s41422-023-00839-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a central metabolite in cellular processes. Depletion of NAD+ has been demonstrated to be a prevalent theme in both prokaryotic and eukaryotic immune responses. Short prokaryotic Argonaute proteins (Agos) are associated with NADase domain-containing proteins (TIR-APAZ or SIR2-APAZ) encoded in the same operon. They confer immunity against mobile genetic elements, such as bacteriophages and plasmids, by inducing NAD+ depletion upon recognition of target nucleic acids. However, the molecular mechanisms underlying the activation of such prokaryotic NADase/Ago immune systems remain unknown. Here, we report multiple cryo-EM structures of NADase/Ago complexes from two distinct systems (TIR-APAZ/Ago and SIR2-APAZ/Ago). Target DNA binding triggers tetramerization of the TIR-APAZ/Ago complex by a cooperative self-assembly mechanism, while the heterodimeric SIR2-APAZ/Ago complex does not assemble into higher-order oligomers upon target DNA binding. However, the NADase activities of these two systems are unleashed via a similar closed-to-open transition of the catalytic pocket, albeit by different mechanisms. Furthermore, a functionally conserved sensor loop is employed to inspect the guide RNA-target DNA base pairing and facilitate the conformational rearrangement of Ago proteins required for the activation of these two systems. Overall, our study reveals the mechanistic diversity and similarity of Ago protein-associated NADase systems in prokaryotic immune response.
Collapse
Affiliation(s)
- Xiaoshen Wang
- National key laboratory of blood science, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xuzichao Li
- National key laboratory of blood science, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guimei Yu
- National key laboratory of blood science, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingling Zhang
- National key laboratory of blood science, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chendi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Yong Wang
- Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fumeng Liao
- National key laboratory of blood science, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanan Wen
- National key laboratory of blood science, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hang Yin
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Yong Wei
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zhuang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China.
| | - Zengqin Deng
- Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| | - Heng Zhang
- National key laboratory of blood science, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Tianjin Institute of Immunology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
36
|
Huang S, Jia A, Ma S, Sun Y, Chang X, Han Z, Chai J. NLR signaling in plants: from resistosomes to second messengers. Trends Biochem Sci 2023; 48:776-787. [PMID: 37394345 DOI: 10.1016/j.tibs.2023.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023]
Abstract
Nucleotide binding and leucine-rich repeat-containing receptors (NLRs) have a critical role in plant immunity through direct or indirect recognition of pathogen effectors. Recent studies have demonstrated that such recognition induces formation of large protein complexes called resistosomes to mediate NLR immune signaling. Some NLR resistosomes activate Ca2+ influx by acting as Ca2+-permeable channels, whereas others function as active NADases to catalyze the production of nucleotide-derived second messengers. In this review we summarize these studies on pathogen effector-induced assembly of NLR resistosomes and resistosome-mediated production of the second messengers of Ca2+ and nucleotide derivatives. We also discuss downstream events and regulation of resistosome signaling.
Collapse
Affiliation(s)
- Shijia Huang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Aolin Jia
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Shoucai Ma
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Yue Sun
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Chang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Zhifu Han
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Jijie Chai
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China; Institute of Biochemistry, University of Cologne, Cologne 50674, Germany; Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Cologne 50829, Germany; School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
37
|
Shen Z, Yang XY, Xia S, Huang W, Taylor DJ, Nakanishi K, Fu TM. Oligomerization-mediated activation of a short prokaryotic Argonaute. Nature 2023; 621:154-161. [PMID: 37494956 PMCID: PMC11332595 DOI: 10.1038/s41586-023-06456-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Although eukaryotic and long prokaryotic Argonaute proteins (pAgos) cleave nucleic acids, some short pAgos lack nuclease activity and hydrolyse NAD(P)+ to induce bacterial cell death1. Here we present a hierarchical activation pathway for SPARTA, a short pAgo consisting of an Argonaute (Ago) protein and TIR-APAZ, an associated protein2. SPARTA progresses through distinct oligomeric forms, including a monomeric apo state, a monomeric RNA-DNA-bound state, two dimeric RNA-DNA-bound states and a tetrameric RNA-DNA-bound active state. These snapshots together identify oligomerization as a mechanistic principle of SPARTA activation. The RNA-DNA-binding channel of apo inactive SPARTA is occupied by an auto-inhibitory motif in TIR-APAZ. After the binding of RNA-DNA, SPARTA transitions from a monomer to a symmetric dimer and then an asymmetric dimer, in which two TIR domains interact through charge and shape complementarity. Next, two dimers assemble into a tetramer with a central TIR cluster responsible for hydrolysing NAD(P)+. In addition, we observe unique features of interactions between SPARTA and RNA-DNA, including competition between the DNA 3' end and the auto-inhibitory motif, interactions between the RNA G2 nucleotide and Ago, and splaying of the RNA-DNA duplex by two loops exclusive to short pAgos. Together, our findings provide a mechanistic basis for the activation of short pAgos, a large section of the Ago superfamily.
Collapse
Affiliation(s)
- Zhangfei Shen
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center and Center for Cancer Metabolism, The Ohio State University, Columbus, OH, USA
| | - Xiao-Yuan Yang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center and Center for Cancer Metabolism, The Ohio State University, Columbus, OH, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Shiyu Xia
- Divison of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA.
- Comprehensive Cancer Center and Center for Cancer Metabolism, The Ohio State University, Columbus, OH, USA.
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
38
|
Bhattacharya MRC. A nerve-wracking buzz: lessons from Drosophila models of peripheral neuropathy and axon degeneration. Front Aging Neurosci 2023; 15:1166146. [PMID: 37614471 PMCID: PMC10442544 DOI: 10.3389/fnagi.2023.1166146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
The degeneration of axons and their terminals occurs following traumatic, toxic, or genetically-induced insults. Common molecular mechanisms unite these disparate triggers to execute a conserved nerve degeneration cascade. In this review, we will discuss how models of peripheral nerve injury and neuropathy in Drosophila have led the way in advancing molecular understanding of axon degeneration and nerve injury pathways. Both neuron-intrinsic as well as glial responses to injury will be highlighted. Finally, we will offer perspective on what additional questions should be answered to advance these discoveries toward clinical interventions for patients with neuropathy.
Collapse
|
39
|
Locci F, Wang J, Parker JE. TIR-domain enzymatic activities at the heart of plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102373. [PMID: 37150050 DOI: 10.1016/j.pbi.2023.102373] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023]
Abstract
Toll/interleukin-1/resistance (TIR) domain proteins contribute to innate immunity in all cellular kingdoms. TIR modules are activated by self-association and in plants, mammals and bacteria, some TIRs have enzymatic functions that are crucial for disease resistance and/or cell death. Many plant TIR-only proteins and pathogen effector-activated TIR-domain NLR receptors are NAD+ hydrolysing enzymes. Biochemical, structural and functional studies established that for both plant TIR-protein types, and certain bacterial TIRs, NADase activity generates bioactive signalling intermediates which promote resistance. A set of plant TIR-catalysed nucleotide isomers was discovered which bind to and activate EDS1 complexes, promoting their interactions with co-functioning helper NLRs. Analysis of TIR enzymes across kingdoms fills an important gap in understanding how pathogen disturbance induces TIR-regulated immune responses.
Collapse
Affiliation(s)
- Federica Locci
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Junli Wang
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany; Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany.
| |
Collapse
|
40
|
Chai J, Song W, Parker JE. New Biochemical Principles for NLR Immunity in Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:468-475. [PMID: 37697447 DOI: 10.1094/mpmi-05-23-0073-hh] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
While working for the United States Department of Agriculture on the North Dakota Agricultural College campus in Fargo, North Dakota, in the 1940s and 1950s, Harold H. Flor formulated the genetic principles for coevolving plant host-pathogen interactions that govern disease resistance or susceptibility. His 'gene-for-gene' legacy runs deep in modern plant pathology and continues to inform molecular models of plant immune recognition and signaling. In this review, we discuss recent biochemical insights to plant immunity conferred by nucleotide-binding domain/leucine-rich-repeat (NLR) receptors, which are major gene-for-gene resistance determinants in nature and cultivated crops. Structural and biochemical analyses of pathogen-activated NLR oligomers (resistosomes) reveal how different NLR subtypes converge in various ways on calcium (Ca2+) signaling to promote pathogen immunity and host cell death. Especially striking is the identification of nucleotide-based signals generated enzymatically by plant toll-interleukin 1 receptor (TIR) domain NLRs. These small molecules are part of an emerging family of TIR-produced cyclic and noncyclic nucleotide signals that steer immune and cell-death responses in bacteria, mammals, and plants. A combined genetic, molecular, and biochemical understanding of plant NLR activation and signaling provides exciting new opportunities for combatting diseases in crops. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jijie Chai
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute of Biochemistry, University of Cologne, Cologne 50674, Germany
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Wen Song
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
- Cologne-Duesseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Duesseldorf, Germany
| |
Collapse
|
41
|
Tribble JR, Hui F, Quintero H, El Hajji S, Bell K, Di Polo A, Williams PA. Neuroprotection in glaucoma: Mechanisms beyond intraocular pressure lowering. Mol Aspects Med 2023; 92:101193. [PMID: 37331129 DOI: 10.1016/j.mam.2023.101193] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
Glaucoma is a common, complex, multifactorial neurodegenerative disease characterized by progressive dysfunction and then loss of retinal ganglion cells, the output neurons of the retina. Glaucoma is the most common cause of irreversible blindness and affects ∼80 million people worldwide with many more undiagnosed. The major risk factors for glaucoma are genetics, age, and elevated intraocular pressure. Current strategies only target intraocular pressure management and do not directly target the neurodegenerative processes occurring at the level of the retinal ganglion cell. Despite strategies to manage intraocular pressure, as many as 40% of glaucoma patients progress to blindness in at least one eye during their lifetime. As such, neuroprotective strategies that target the retinal ganglion cell and these neurodegenerative processes directly are of great therapeutic need. This review will cover the recent advances from basic biology to on-going clinical trials for neuroprotection in glaucoma covering degenerative mechanisms, metabolism, insulin signaling, mTOR, axon transport, apoptosis, autophagy, and neuroinflammation. With an increased understanding of both the basic and clinical mechanisms of the disease, we are closer than ever to a neuroprotective strategy for glaucoma.
Collapse
Affiliation(s)
- James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Flora Hui
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Department of Optometry & Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Heberto Quintero
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Sana El Hajji
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Katharina Bell
- NHMRC Clinical Trials Centre, University of Sydney, Australia; Eye ACP Duke-NUS, Singapore
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
42
|
Ni D, Lu X, Stahlberg H, Ekundayo B. Activation mechanism of a short argonaute-TIR prokaryotic immune system. SCIENCE ADVANCES 2023; 9:eadh9002. [PMID: 37467330 PMCID: PMC10355822 DOI: 10.1126/sciadv.adh9002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/08/2023] [Indexed: 07/21/2023]
Abstract
Short prokaryotic argonaute (pAgo) and toll/interleukin-1 receptor/resistance protein (TIR)-analog of PAZ (APAZ) form a heterodimeric SPARTA complex that provides immunity to its prokaryotic host through an abortive infection mechanism. Monomeric SPARTA senses foreign RNA/DNA duplexes to assemble an active tetramer resulting in cell death by nicotinamide adenine dinucleotide (oxidized form) (NAD) depletion via an unknown mechanism. We report nine structures of SPARTA in different functional states at a resolution range of 4.2 to 2.9 angstroms, revealing its activation mechanism. Inactive SPARTA monomers bind to RNA/DNA duplexes to form symmetric dimers mediated by the association of Ago subunits. The initiation of tetramer assembly induces flexibility of the TIR domains enabling a symmetry-breaking rotational movement of a TIR domain in the dimer units which facilitates the TIR oligomerization, resulting in the formation of the substrate binding pocket and the activation of the SPARTA complex's NADase activity. Our findings provide detailed structural and mechanistic insights into activating a short argonaute defense system.
Collapse
Affiliation(s)
- Dongchun Ni
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL, and Dept. Fundamental Microbiology, Faculty of Biology and Medicine, UNIL, Cubotron, Rt. de la Sorge, 1015 Lausanne, Switzerland
| | - Xuhang Lu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL, and Dept. Fundamental Microbiology, Faculty of Biology and Medicine, UNIL, Cubotron, Rt. de la Sorge, 1015 Lausanne, Switzerland
| | - Babatunde Ekundayo
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL, and Dept. Fundamental Microbiology, Faculty of Biology and Medicine, UNIL, Cubotron, Rt. de la Sorge, 1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Icso JD, Barasa L, Thompson PR. SARM1, an Enzyme Involved in Axon Degeneration, Catalyzes Multiple Activities through a Ternary Complex Mechanism. Biochemistry 2023; 62:2065-2078. [PMID: 37307562 DOI: 10.1021/acs.biochem.3c00081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sterile alpha and toll/interleukin receptor (TIR) motif containing protein 1 (SARM1) is an NAD+ hydrolase and cyclase involved in axonal degeneration. In addition to NAD+ hydrolysis and cyclization, SARM1 catalyzes a base exchange reaction between nicotinic acid (NA) and NADP+ to generate NAADP, which is a potent calcium signaling molecule. Herein, we describe efforts to characterize the hydrolysis, cyclization, and base exchange activities of TIR-1, the Caenorhabditis elegans ortholog of SARM1; TIR-1 also catalyzes NAD(P)+ hydrolysis and/or cyclization and regulates axonal degeneration in worms. We show that the catalytic domain of TIR-1 undergoes a liquid-to-solid phase transition that regulates not only the hydrolysis and cyclization reactions but also the base exchange reaction. We define the substrate specificities of the reactions, demonstrate that cyclization and base exchange reactions occur within the same pH range, and establish that TIR-1 uses a ternary complex mechanism. Overall, our findings will aid drug discovery efforts and provide insight into the mechanism of recently described inhibitors.
Collapse
Affiliation(s)
- Janneke D Icso
- Program in Chemical Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medial School, Worcester, Massachusetts 01605, United States
| | - Leonard Barasa
- Program in Chemical Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medial School, Worcester, Massachusetts 01605, United States
| | - Paul R Thompson
- Program in Chemical Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medial School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
44
|
Maruta N, Sorbello M, Lim BYJ, McGuinness HY, Shi Y, Ve T, Kobe B. TIR domain-associated nucleotides with functions in plant immunity and beyond. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102364. [PMID: 37086529 DOI: 10.1016/j.pbi.2023.102364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/19/2023] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
TIR (Toll/interlukin-1 receptor) domains are found in archaea, bacteria and eukaryotes, featured in proteins generally associated with immune functions. In plants, they are found in a large group of NLRs (nucleotide-binding leucine-rich repeat receptors), NLR-like proteins and TIR-only proteins. They are also present in effector proteins from phytopathogenic bacteria that are associated with suppression of host immunity. TIR domains from plants and bacteria are enzymes that cleave NAD+ (nicotinamide adenine dinucleotide, oxidized form) and other nucleotides. In dicot plants, TIR-derived signalling molecules activate downstream immune signalling proteins, the EDS1 (enhanced disease susceptibility 1) family proteins, and in turn helper NLRs. Recent work has brought major advances in understanding how TIR domains work, how they produce signalling molecules and how these products signal.
Collapse
Affiliation(s)
- Natsumi Maruta
- The University of Queensland, School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - Mitchell Sorbello
- The University of Queensland, School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - Bryan Y J Lim
- The University of Queensland, School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - Helen Y McGuinness
- The University of Queensland, School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - Yun Shi
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Bostjan Kobe
- The University of Queensland, School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia.
| |
Collapse
|
45
|
Jia A, Huang S, Ma S, Chang X, Han Z, Chai J. TIR-catalyzed nucleotide signaling molecules in plant defense. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102334. [PMID: 36702016 DOI: 10.1016/j.pbi.2022.102334] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 06/10/2023]
Abstract
Toll and interleukin-1 receptor (TIR) domain is a conserved immune module in prokaryotes and eukaryotes. Signaling regulated by TIR-only proteins or TIR domain-containing intracellular immune receptors is critical for plant immunity. Recent studies demonstrated that TIR domains function as enzymes encoding a variety of activities, which manifest different mechanisms for regulation of plant immunity. These enzymatic activities catalyze metabolism of NAD+, ATP and other nucleic acids, generating structurally diversified nucleotide metabolites. Signaling roles have been revealed for some TIR enzymatic products that can act as second messengers to induce plant immunity. Herein, we summarize our current knowledge about catalytic production of these nucleotide metabolites and their roles in plant immune signaling. We also highlight outstanding questions that are likely to be the focus of future investigations about TIR-produced signaling molecules.
Collapse
Affiliation(s)
- Aolin Jia
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shijia Huang
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shoucai Ma
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Chang
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhifu Han
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Jijie Chai
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Biochemistry, University of Cologne, Cologne 50674, Germany; Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Cologne 50829, Germany.
| |
Collapse
|
46
|
Murata H, Yasui Y, Oiso K, Ochi T, Tomonobu N, Yamamoto KI, Kinoshita R, Sakaguchi M. STAT1/3 signaling suppresses axon degeneration and neuronal cell death through regulation of NAD +-biosynthetic and consuming enzymes. Cell Signal 2023; 108:110717. [PMID: 37187216 DOI: 10.1016/j.cellsig.2023.110717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD)+-biosynthetic and consuming enzymes are involved in various intracellular events through the regulation of NAD+ metabolism. Recently, it has become clear that alterations in the expression of NAD+-biosynthetic and consuming enzymes contribute to the axonal stability of neurons. We explored soluble bioactive factor(s) that alter the expression of NAD+-metabolizing enzymes and found that cytokine interferon (IFN)-γ increased the expression of nicotinamide nucleotide adenylyltransferase 2 (NMNAT2), an NAD+-biosynthetic enzyme. IFN-γ activated signal transducers and activators of transcription 1 and 3 (STAT1/3) followed by c-Jun N-terminal kinase (JNK) suppression. As a result, STAT1/3 increased the expression of NMNAT2 at both mRNA and protein levels in a dose- and time-dependent manner and, at the same time, suppressed activation of sterile alpha and Toll/interleukin receptor motif-containing 1 (SARM1), an NAD+-consuming enzyme, and increased intracellular NAD+ levels. We examined the protective effect of STAT1/3 signaling against vincristine-mediated cell injury as a model of chemotherapy-induced peripheral neuropathy (CIPN), in which axonal degeneration is involved in disease progression. We found that IFN-γ-mediated STAT1/3 activation inhibited vincristine-induced downregulation of NMNAT2 and upregulation of SARM1 phosphorylation, resulting in modest suppression of subsequent neurite degradation and cell death. These results indicate that STAT1/3 signaling induces NMNAT2 expression while simultaneously suppressing SARM1 phosphorylation, and that both these actions contribute to suppression of axonal degeneration and cell death.
Collapse
Affiliation(s)
- Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Yu Yasui
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kazuma Oiso
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Toshiki Ochi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
47
|
Li S, Manik MK, Shi Y, Kobe B, Ve T. Toll/interleukin-1 receptor domains in bacterial and plant immunity. Curr Opin Microbiol 2023; 74:102316. [PMID: 37084552 DOI: 10.1016/j.mib.2023.102316] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/23/2023]
Abstract
The Toll/interleukin-1 receptor (TIR) domain is found in animal, plant, and bacterial immune systems. It was first described as a protein-protein interaction module mediating signalling downstream of the Toll-like receptor and interleukin-1 receptor families in animals. However, studies of the pro-neurodegenerative protein sterile alpha and TIR motif containing 1, plant immune receptors, and many bacterial TIR domain-containing proteins revealed that TIR domains have enzymatic activities and can produce diverse nucleotide products using nicotinamide adenine dinucleotide (NAD+) or nucleic acids as substrates. Recent work has led to key advances in understanding how TIR domain enzymes work in bacterial and plant immune systems as well as the function of their signalling molecules.
Collapse
Affiliation(s)
- Sulin Li
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mohammad K Manik
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yun Shi
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia.
| |
Collapse
|
48
|
Bayless AM, Chen S, Ogden SC, Xu X, Sidda JD, Manik MK, Li S, Kobe B, Ve T, Song L, Grant M, Wan L, Nishimura MT. Plant and prokaryotic TIR domains generate distinct cyclic ADPR NADase products. SCIENCE ADVANCES 2023; 9:eade8487. [PMID: 36930706 PMCID: PMC10022894 DOI: 10.1126/sciadv.ade8487] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/10/2023] [Indexed: 05/06/2023]
Abstract
Toll/interleukin-1 receptor (TIR) domain proteins function in cell death and immunity. In plants and bacteria, TIR domains are often enzymes that produce isomers of cyclic adenosine 5'-diphosphate-ribose (cADPR) as putative immune signaling molecules. The identity and functional conservation of cADPR isomer signals is unclear. A previous report found that a plant TIR could cross-activate the prokaryotic Thoeris TIR-immune system, suggesting the conservation of plant and prokaryotic TIR-immune signals. Here, we generate autoactive Thoeris TIRs and test the converse hypothesis: Do prokaryotic Thoeris TIRs also cross-activate plant TIR immunity? Using in planta and in vitro assays, we find that Thoeris and plant TIRs generate overlapping sets of cADPR isomers and further clarify how plant and Thoeris TIRs activate the Thoeris system via producing 3'cADPR. This study demonstrates that the TIR signaling requirements for plant and prokaryotic immune systems are distinct and that TIRs across kingdoms generate a diversity of small-molecule products.
Collapse
Affiliation(s)
- Adam M. Bayless
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sisi Chen
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Sam C. Ogden
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Xiaoyan Xu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - John D. Sidda
- School of Life Sciences, University of Warwick, Coventry CV47AL, UK
| | - Mohammad K. Manik
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Sulin Li
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Bostjan Kobe
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Lijiang Song
- School of Life Sciences, University of Warwick, Coventry CV47AL, UK
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry CV47AL, UK
| | - Li Wan
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Marc T. Nishimura
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
49
|
Czech VL, O'Connor LC, Philippon B, Norman E, Byrne AB. TIR-1/SARM1 inhibits axon regeneration and promotes axon degeneration. eLife 2023; 12:80856. [PMID: 37083456 PMCID: PMC10121217 DOI: 10.7554/elife.80856] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
Growth and destruction are central components of the neuronal injury response. Injured axons that are capable of repair, including axons in the mammalian peripheral nervous system and in many invertebrate animals, often regenerate and degenerate on either side of the injury. Here we show that TIR-1/dSarm/SARM1, a key regulator of axon degeneration, also inhibits regeneration of injured motor axons. The increased regeneration in tir-1 mutants is not a secondary consequence of its effects on degeneration, nor is it determined by the NADase activity of TIR-1. Rather, we found that TIR-1 functions cell-autonomously to regulate each of the seemingly opposite processes through distinct interactions with two MAP kinase pathways. On one side of the injury, TIR-1 inhibits axon regeneration by activating the NSY-1/ASK1 MAPK signaling cascade, while on the other side of the injury, TIR-1 simultaneously promotes axon degeneration by interacting with the DLK-1 mitogen-activated protein kinase (MAPK) signaling cascade. In parallel, we found that the ability to cell-intrinsically inhibit axon regeneration is conserved in human SARM1. Our finding that TIR-1/SARM1 regulates axon regeneration provides critical insight into how axons coordinate a multidimensional response to injury, consequently informing approaches to manipulate the response toward repair.
Collapse
Affiliation(s)
- Victoria L Czech
- Department of Neurobiology, UMass Chan Massachusetts Medical School
| | | | | | - Emily Norman
- Department of Neurobiology, UMass Chan Massachusetts Medical School
| | | |
Collapse
|
50
|
Johanndrees O, Baggs EL, Uhlmann C, Locci F, Läßle HL, Melkonian K, Käufer K, Dongus JA, Nakagami H, Krasileva KV, Parker JE, Lapin D. Variation in plant Toll/Interleukin-1 receptor domain protein dependence on ENHANCED DISEASE SUSCEPTIBILITY 1. PLANT PHYSIOLOGY 2023; 191:626-642. [PMID: 36227084 PMCID: PMC9806590 DOI: 10.1093/plphys/kiac480] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/22/2022] [Indexed: 05/07/2023]
Abstract
Toll/Interleukin-1 receptor (TIR) domains are integral to immune systems across all kingdoms. In plants, TIRs are present in nucleotide-binding leucine-rich repeat (NLR) immune receptors, NLR-like, and TIR-only proteins. Although TIR-NLR and TIR signaling in plants require the ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) protein family, TIRs persist in species that have no EDS1 members. To assess whether particular TIR groups evolved with EDS1, we searched for TIR-EDS1 co-occurrence patterns. Using a large-scale phylogenetic analysis of TIR domains from 39 algal and land plant species, we identified 4 TIR families that are shared by several plant orders. One group occurred in TIR-NLRs of eudicots and another in TIR-NLRs across eudicots and magnoliids. Two further groups were more widespread. A conserved TIR-only group co-occurred with EDS1 and members of this group elicit EDS1-dependent cell death. In contrast, a maize (Zea mays) representative of TIR proteins with tetratricopeptide repeats was also present in species without EDS1 and induced EDS1-independent cell death. Our data provide a phylogeny-based plant TIR classification and identify TIRs that appear to have evolved with and are dependent on EDS1, while others have EDS1-independent activity.
Collapse
Affiliation(s)
| | | | - Charles Uhlmann
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Federica Locci
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Henriette L Läßle
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Katharina Melkonian
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kiara Käufer
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Joram A Dongus
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Hirofumi Nakagami
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Jane E Parker
- Authors for correspondence: (D.L.); (J.E.P.); (K.V.K.)
| | - Dmitry Lapin
- Authors for correspondence: (D.L.); (J.E.P.); (K.V.K.)
| |
Collapse
|