1
|
Meyers PA, Federman N, Daw N, Anderson PM, Davis LE, Kim A, Macy ME, Pietrofeso A, Ratan R, Riedel RF, Trucco M, Breitmeyer JB, Toretsky JA, Ludwig JA. Open-Label, Multicenter, Phase I/II, First-in-Human Trial of TK216: A First-Generation EWS::FLI1 Fusion Protein Antagonist in Ewing Sarcoma. J Clin Oncol 2024; 42:3725-3734. [PMID: 38954782 PMCID: PMC11521759 DOI: 10.1200/jco.24.00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Ewing Sarcoma (ES), a rare cancer with a pathognomonic translocation resulting in the Ewing sarcoma gene (EWS)::FLI1 oncoprotein, has a poor prognosis in the relapsed/refractory (R/R) setting. Tokalas (TK)216 was designed to bind EWS::FLI1 proteins directly, disrupt protein-protein interactions, and inhibit transcription factor function. TK216 plus vincristine showed synergistic activity in preclinical tumor models. To our knowledge, we report the results of a first-in-class, first-in-human phase I/II trial of TK216 in R/R ES. PATIENTS AND METHODS TK216 was administered intravenously as a continuous infusion to patients with R/R ES in 11 cohorts. The dosing duration of 7 days was later extended to 10, 14, and 28 days. Vincristine could be added on day 1 after cycle 2, per investigators' choice. The trial used a 3 + 3 design with an expansion cohort at the recommended phase II dose (RP2D). RESULTS A total of 85 patients with a median age of 27 years (range, 11-77) were enrolled. The maximum tolerated dose for the 14-day infusion of TK216, 200 mg/m2 once daily, was determined in cohort 9 and selected as the RP2D. The median previous number of systemic therapies regimens was three (range, 1-10). The most frequent-related adverse events in patients treated at the RP2D included neutropenia (44.7%), anemia (29.4%), leukopenia (29.4%), febrile neutropenia (15.3%), thrombocytopenia (11.8%), and infections (17.6%). In cohorts 9 and 10, two patients had a complete response, one had a partial response, and 14 had stable disease; the 6-month progression-free survival was 11.9%. There were no responses among the eight patients in cohort 11. CONCLUSION TK216 administered as 14-day continuous infusion with or without vincristine was well tolerated and showed limited activity at the RP2D in R/R ES.
Collapse
Affiliation(s)
- Paul A Meyers
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Noah Federman
- University of California Los Angeles, Los Angeles, CA
| | - Najat Daw
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Lara E Davis
- Oregon Health and Science University, Portland, OR
| | - AeRang Kim
- Children's National Hospital, Washington, DC
| | - Margaret E Macy
- University of Colorado School of Medicine and Children's Hospital Colorado, Denver, CO
| | | | - Ravin Ratan
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | - Joseph A Ludwig
- The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
2
|
Deutsch EW, Kok LW, Mudge JM, Ruiz-Orera J, Fierro-Monti I, Sun Z, Abelin JG, Alba MM, Aspden JL, Bazzini AA, Bruford EA, Brunet MA, Calviello L, Carr SA, Carvunis AR, Chothani S, Clauwaert J, Dean K, Faridi P, Frankish A, Hubner N, Ingolia NT, Magrane M, Martin MJ, Martinez TF, Menschaert G, Ohler U, Orchard S, Rackham O, Roucou X, Slavoff SA, Valen E, Wacholder A, Weissman JS, Wu W, Xie Z, Choudhary J, Bassani-Sternberg M, Vizcaíno JA, Ternette N, Moritz RL, Prensner JR, van Heesch S. High-quality peptide evidence for annotating non-canonical open reading frames as human proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612016. [PMID: 39314370 PMCID: PMC11419116 DOI: 10.1101/2024.09.09.612016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
A major scientific drive is to characterize the protein-coding genome as it provides the primary basis for the study of human health. But the fundamental question remains: what has been missed in prior genomic analyses? Over the past decade, the translation of non-canonical open reading frames (ncORFs) has been observed across human cell types and disease states, with major implications for proteomics, genomics, and clinical science. However, the impact of ncORFs has been limited by the absence of a large-scale understanding of their contribution to the human proteome. Here, we report the collaborative efforts of stakeholders in proteomics, immunopeptidomics, Ribo-seq ORF discovery, and gene annotation, to produce a consensus landscape of protein-level evidence for ncORFs. We show that at least 25% of a set of 7,264 ncORFs give rise to translated gene products, yielding over 3,000 peptides in a pan-proteome analysis encompassing 3.8 billion mass spectra from 95,520 experiments. With these data, we developed an annotation framework for ncORFs and created public tools for researchers through GENCODE and PeptideAtlas. This work will provide a platform to advance ncORF-derived proteins in biomedical discovery and, beyond humans, diverse animals and plants where ncORFs are similarly observed.
Collapse
Affiliation(s)
- Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, WA, 98109, USA
| | - Leron W Kok
- Princess Máxima Center for Pediatric Oncology, Utrecht, 3584 CS, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, 13125, Germany
| | - Ivo Fierro-Monti
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, WA, 98109, USA
| | | | - M Mar Alba
- Hospital del Mar Research Institute, Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Julie L Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee (HGNC), Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Marie A Brunet
- Pediatrics Department, University of Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke, Québec, Canada
| | | | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sonia Chothani
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS (National University of Singapore) Medical School, Singapore
| | - Jim Clauwaert
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Kellie Dean
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pouya Faridi
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Monash Proteomics & Metabolomics Platform, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, 13125, Germany
- Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
- Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg, 69117, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, 13347, Germany
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, Center for Computational Biology, University of California, Berkeley, Berkeley, CA, 94720-3202, USA
| | - Michele Magrane
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Maria Jesus Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Thomas F Martinez
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, 92617, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92617, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, 92617, USA
| | - Gerben Menschaert
- Biobix, Lab of Bioinformatics and Computational Genomics, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium
| | - Uwe Ohler
- Department of Biology, Humboldt University Berlin, Berlin, 10117, Germany
- Berlin Institute of Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, 10115, Germany
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | | | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT, 06516, USA
| | - Eivind Valen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Aaron Wacholder
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02138, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wei Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Pharmacy & Pharmaceutical sciences, National University of Singapore (NUS), Singapore
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jyoti Choudhary
- Functional Proteomics Group, Institute of Cancer Research, Chester Betty Labs, London, SW3 6JB, UK
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, 1005, Switzerland
- Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Lausanne, 1005, Switzerland
- Agora Cancer Research Centre, Lausanne, 1011, Switzerland
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Nicola Ternette
- School of Life Sciences, Division Cell Signalling and Immunology, University of Dundee, Dundee, DD1 5EH, UK
- Centre for Immuno-Oncology, University of Oxford, Oxford, OX37DQ, UK
| | - Robert L Moritz
- Institute for Systems Biology (ISB), Seattle, WA, 98109, USA
| | - John R Prensner
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Utrecht, 3584 CS, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
3
|
Magrath JW, Espinosa-Cotton M, Flinchum DA, Sampath SS, Cheung NK, Lee SB. Desmoplastic small round cell tumor: from genomics to targets, potential paths to future therapeutics. Front Cell Dev Biol 2024; 12:1442488. [PMID: 39139449 PMCID: PMC11319132 DOI: 10.3389/fcell.2024.1442488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 08/15/2024] Open
Abstract
Desmoplastic Small Round Cell Tumor (DSRCT) is a highly aggressive pediatric cancer caused by a reciprocal translocation between chromosomes 11 and 22, leading to the formation of the EWSR1::WT1 oncoprotein. DSRCT presents most commonly in the abdominal and pelvic peritoneum and remains refractory to current treatment regimens which include chemotherapy, radiotherapy, and surgery. As a rare cancer, sample and model availability have been a limiting factor to DSRCT research. However, the establishment of rare tumor banks and novel cell lines have recently propelled critical advances in the understanding of DSRCT biology and the identification of potentially promising targeted therapeutics. Here we review model and dataset availability, current understanding of the EWSR1::WT1 oncogenic mechanism, and promising preclinical therapeutics, some of which are now advancing to clinical trials. We discuss efforts to inhibit critical dependencies including NTRK3, EGFR, and CDK4/6 as well as novel immunotherapy strategies targeting surface markers highly expressed in DSRCT such as B7-H3 or neopeptides either derived from or driven by the fusion oncoprotein. Finally, we discuss the prospect of combination therapies and strategies for prioritizing clinical translation.
Collapse
Affiliation(s)
- Justin W. Magrath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Madelyn Espinosa-Cotton
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Dane A. Flinchum
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Shruthi Sanjitha Sampath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Nai Kong Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sean B. Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
4
|
Camarena ME, Theunissen P, Ruiz M, Ruiz-Orera J, Calvo-Serra B, Castelo R, Castro C, Sarobe P, Fortes P, Perera-Bel J, Albà MM. Microproteins encoded by noncanonical ORFs are a major source of tumor-specific antigens in a liver cancer patient meta-cohort. SCIENCE ADVANCES 2024; 10:eadn3628. [PMID: 38985879 PMCID: PMC11235171 DOI: 10.1126/sciadv.adn3628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
The expression of tumor-specific antigens during cancer progression can trigger an immune response against the tumor. Here, we investigate if microproteins encoded by noncanonical open reading frames (ncORFs) are a relevant source of tumor-specific antigens. We analyze RNA sequencing data from 117 hepatocellular carcinoma (HCC) tumors and matched healthy tissue together with ribosome profiling and immunopeptidomics data. Combining human leukocyte antigen-epitope binding predictions and experimental validation experiments, we conclude that around 40% of the tumor-specific antigens in HCC are likely to be derived from ncORFs, including two peptides that can trigger an immune response in humanized mice. We identify a subset of 33 tumor-specific long noncoding RNAs expressing novel cancer antigens shared by more than 10% of the HCC samples analyzed, which, when combined, cover a large proportion of the patients. The results of the study open avenues for extending the range of anticancer vaccines.
Collapse
Affiliation(s)
| | - Patrick Theunissen
- Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Marta Ruiz
- Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Jorge Ruiz-Orera
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Beatriz Calvo-Serra
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Robert Castelo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carla Castro
- Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Pablo Sarobe
- Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Cancer Clinic University of Navarra (CCUN), Pamplona, Spain
| | - Puri Fortes
- Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Cancer Clinic University of Navarra (CCUN), Pamplona, Spain
- Spanish Network for Advanced Therapies (TERAV ISCIII), Madrid, Spain
| | | | - M Mar Albà
- Hospital del Mar Research Institute, Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
5
|
Henon C, Vibert J, Eychenne T, Gruel N, Colmet-Daage L, Ngo C, Garrido M, Dorvault N, Marques Da Costa ME, Marty V, Signolle N, Marchais A, Herbel N, Kawai-Kawachi A, Lenormand M, Astier C, Chabanon R, Verret B, Bahleda R, Le Cesne A, Mechta-Grigoriou F, Faron M, Honoré C, Delattre O, Waterfall JJ, Watson S, Postel-Vinay S. Single-cell multiomics profiling reveals heterogeneous transcriptional programs and microenvironment in DSRCTs. Cell Rep Med 2024; 5:101582. [PMID: 38781959 PMCID: PMC11228554 DOI: 10.1016/j.xcrm.2024.101582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/28/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Desmoplastic small round cell tumor (DSRCT) is a rare, aggressive sarcoma driven by the EWSR1::WT1 chimeric transcription factor. Despite this unique oncogenic driver, DSRCT displays a polyphenotypic differentiation of unknown causality. Using single-cell multi-omics on 12 samples from five patients, we find that DSRCT tumor cells cluster into consistent subpopulations with partially overlapping lineage- and metabolism-related transcriptional programs. In vitro modeling shows that high EWSR1::WT1 DNA-binding activity associates with most lineage-related states, in contrast to glycolytic and profibrotic states. Single-cell chromatin accessibility analysis suggests that EWSR1::WT1 binding site variability may drive distinct lineage-related transcriptional programs, supporting some level of cell-intrinsic plasticity. Spatial transcriptomics reveals that glycolytic and profibrotic states specifically localize within hypoxic niches at the periphery of tumor cell islets, suggesting an additional role of tumor cell-extrinsic microenvironmental cues. We finally identify a single-cell transcriptomics-derived epithelial signature associated with improved patient survival, highlighting the clinical relevance of our findings.
Collapse
Affiliation(s)
- Clémence Henon
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France; Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
| | - Julien Vibert
- INSERM U830, Équipe labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France; INSERM U830, Integrative Functional Genomics of Cancer Lab, PSL Research University, Institut Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Thomas Eychenne
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Nadège Gruel
- INSERM U830, Équipe labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Léo Colmet-Daage
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Carine Ngo
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France; Department of Pathology, Gustave Roussy, Villejuif, France
| | - Marlène Garrido
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Nicolas Dorvault
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Maria Eugenia Marques Da Costa
- INSERM U1015, Gustave Roussy, Paris Saclay University, Villejuif, France; Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Virginie Marty
- Experimental and Translational Pathology Platform (PETRA), AMMICa, INSERM US23/UAR3655, Gustave Roussy, Villejuif, France
| | - Nicolas Signolle
- Experimental and Translational Pathology Platform (PETRA), AMMICa, INSERM US23/UAR3655, Gustave Roussy, Villejuif, France
| | - Antonin Marchais
- INSERM U1015, Gustave Roussy, Paris Saclay University, Villejuif, France; Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Noé Herbel
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Asuka Kawai-Kawachi
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Madison Lenormand
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Clémence Astier
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Roman Chabanon
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Benjamin Verret
- Department of Medical Oncology, Gustave Roussy, Villejuif, France; Breast Cancer Translational Research Group, INSERM U981, Gustave Roussy, Villejuif, France
| | - Rastislav Bahleda
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
| | - Axel Le Cesne
- Department of Medical Oncology, Gustave Roussy, Villejuif, France; International Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Fatima Mechta-Grigoriou
- INSERM U830, Equipe labellisée LNCC, Stress et Cancer, PSL Research University, Institut Curie Research Center, Paris, France
| | | | | | - Olivier Delattre
- INSERM U830, Équipe labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Joshua J Waterfall
- INSERM U830, Integrative Functional Genomics of Cancer Lab, PSL Research University, Institut Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Sarah Watson
- INSERM U830, Équipe labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Sophie Postel-Vinay
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France; Drug Development Department, DITEP, Gustave Roussy, Villejuif, France; University College of London, Cancer Institute, London, UK.
| |
Collapse
|
6
|
Dong N, Qi W, Wu L, Li J, Zhang X, Wu H, Zhang W, Jiang J, Zhang S, Fu W, Liu Q, Qi G, Wang L, Lu Y, Luo J, Kong Y, Liu Y, Zhao RC, Wang J. LINC00606 promotes glioblastoma progression through sponge miR-486-3p and interaction with ATP11B. J Exp Clin Cancer Res 2024; 43:139. [PMID: 38725030 PMCID: PMC11080186 DOI: 10.1186/s13046-024-03058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND LncRNAs regulate tumorigenesis and development in a variety of cancers. We substantiate for the first time that LINC00606 is considerably expressed in glioblastoma (GBM) patient specimens and is linked with adverse prognosis. This suggests that LINC00606 may have the potential to regulate glioma genesis and progression, and that the biological functions and molecular mechanisms of LINC00606 in GBM remain largely unknown. METHODS The expression of LINC00606 and ATP11B in glioma and normal brain tissues was evaluated by qPCR, and the biological functions of the LINC00606/miR-486-3p/TCF12/ATP11B axis in GBM were verified through a series of in vitro and in vivo experiments. The molecular mechanism of LINC00606 was elucidated by immunoblotting, FISH, RNA pulldown, CHIP-qPCR, and a dual-luciferase reporter assay. RESULTS We demonstrated that LINC00606 promotes glioma cell proliferation, clonal expansion and migration, while reducing apoptosis levels. Mechanistically, on the one hand, LINC00606 can sponge miR-486-3p; the target gene TCF12 of miR-486-3p affects the transcriptional initiation of LINC00606, PTEN and KLLN. On the other hand, it can also regulate the PI3K/AKT signaling pathway to mediate glioma cell proliferation, migration and apoptosis by binding to ATP11B protein. CONCLUSIONS Overall, the LINC00606/miR-486-3p/TCF12/ATP11B axis is involved in the regulation of GBM progression and plays a role in tumor regulation at transcriptional and post-transcriptional levels primarily through LINC00606 sponging miR-486-3p and targeted binding to ATP11B. Therefore, our research on the regulatory network LINC00606 could be a novel therapeutic strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Naijun Dong
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, China
| | - Wenxin Qi
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, China
| | - Lingling Wu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, China
| | - Jie Li
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xueqi Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Hao Wu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wen Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiawen Jiang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Shibo Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wenjun Fu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Qian Liu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Guandong Qi
- Residential College, Shanghai University, Shanghai, China
| | - Lukai Wang
- Residential College, Shanghai University, Shanghai, China
| | - Yanyuan Lu
- Residential College, Shanghai University, Shanghai, China
| | - Jingyi Luo
- Residential College, Shanghai University, Shanghai, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihao Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.
- Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China.
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
7
|
Wachtel M, Surdez D, Grünewald TGP, Schäfer BW. Functional Classification of Fusion Proteins in Sarcoma. Cancers (Basel) 2024; 16:1355. [PMID: 38611033 PMCID: PMC11010897 DOI: 10.3390/cancers16071355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Sarcomas comprise a heterogeneous group of malignant tumors of mesenchymal origin. More than 80 entities are associated with different mesenchymal lineages. Sarcomas with fibroblastic, muscle, bone, vascular, adipocytic, and other characteristics are distinguished. Nearly half of all entities contain specific chromosomal translocations that give rise to fusion proteins. These are mostly pathognomonic, and their detection by various molecular techniques supports histopathologic classification. Moreover, the fusion proteins act as oncogenic drivers, and their blockade represents a promising therapeutic approach. This review summarizes the current knowledge on fusion proteins in sarcoma. We categorize the different fusion proteins into functional classes, including kinases, epigenetic regulators, and transcription factors, and describe their mechanisms of action. Interestingly, while fusion proteins acting as transcription factors are found in all mesenchymal lineages, the others have a more restricted pattern. Most kinase-driven sarcomas belong to the fibroblastic/myofibroblastic lineage. Fusion proteins with an epigenetic function are mainly associated with sarcomas of unclear differentiation, suggesting that epigenetic dysregulation leads to a major change in cell identity. Comparison of mechanisms of action reveals recurrent functional modes, including antagonism of Polycomb activity by fusion proteins with epigenetic activity and recruitment of histone acetyltransferases by fusion transcription factors of the myogenic lineage. Finally, based on their biology, we describe potential approaches to block the activity of fusion proteins for therapeutic intervention. Overall, our work highlights differences as well as similarities in the biology of fusion proteins from different sarcomas and provides the basis for a functional classification.
Collapse
Affiliation(s)
- Marco Wachtel
- Department of Oncology and Children’s Research Center, University Children’s Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - Didier Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), CH-8008 Zurich, Switzerland
| | - Thomas G. P. Grünewald
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Hopp-Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership between DKFZ and Heidelberg University Hospital, 69120 Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Beat W. Schäfer
- Department of Oncology and Children’s Research Center, University Children’s Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| |
Collapse
|
8
|
Goyal A, Bauer J, Hey J, Papageorgiou DN, Stepanova E, Daskalakis M, Scheid J, Dubbelaar M, Klimovich B, Schwarz D, Märklin M, Roerden M, Lin YY, Ma T, Mücke O, Rammensee HG, Lübbert M, Loayza-Puch F, Krijgsveld J, Walz JS, Plass C. DNMT and HDAC inhibition induces immunogenic neoantigens from human endogenous retroviral element-derived transcripts. Nat Commun 2023; 14:6731. [PMID: 37872136 PMCID: PMC10593957 DOI: 10.1038/s41467-023-42417-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Immunotherapies targeting cancer-specific neoantigens have revolutionized the treatment of cancer patients. Recent evidence suggests that epigenetic therapies synergize with immunotherapies, mediated by the de-repression of endogenous retroviral element (ERV)-encoded promoters, and the initiation of transcription. Here, we use deep RNA sequencing from cancer cell lines treated with DNA methyltransferase inhibitor (DNMTi) and/or Histone deacetylase inhibitor (HDACi), to assemble a de novo transcriptome and identify several thousand ERV-derived, treatment-induced novel polyadenylated transcripts (TINPATs). Using immunopeptidomics, we demonstrate the human leukocyte antigen (HLA) presentation of 45 spectra-validated treatment-induced neopeptides (t-neopeptides) arising from TINPATs. We illustrate the potential of the identified t-neopeptides to elicit a T-cell response to effectively target cancer cells. We further verify the presence of t-neopeptides in AML patient samples after in vivo treatment with the DNMT inhibitor Decitabine. Our findings highlight the potential of ERV-derived neoantigens in epigenetic and immune therapies.
Collapse
Affiliation(s)
- Ashish Goyal
- Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens Bauer
- Department of Peptide-based Immunotherapy, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Joschka Hey
- Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German-Israeli Helmholtz Research School in Cancer Biology, Heidelberg, Germany
- German Center for Lung Research, (DZL) partner site Heidelberg, Heidelberg, Germany
| | - Dimitris N Papageorgiou
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Ekaterina Stepanova
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Daskalakis
- Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern, University Hospital, University of Bern, Bern, Switzerland
| | - Jonas Scheid
- Department of Peptide-based Immunotherapy, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Marissa Dubbelaar
- Department of Peptide-based Immunotherapy, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Boris Klimovich
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Dominic Schwarz
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Märklin
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Malte Roerden
- Department of Peptide-based Immunotherapy, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Yu-Yu Lin
- Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Ma
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Mücke
- Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Michael Lübbert
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fabricio Loayza-Puch
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Juliane S Walz
- Department of Peptide-based Immunotherapy, University of Tübingen and University Hospital Tübingen, Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.
| | - Christoph Plass
- Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Center for Lung Research, (DZL) partner site Heidelberg, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
9
|
Dupuy M, Lamoureux F, Mullard M, Postec A, Regnier L, Baud’huin M, Georges S, Brounais-Le Royer B, Ory B, Rédini F, Verrecchia F. Ewing sarcoma from molecular biology to the clinic. Front Cell Dev Biol 2023; 11:1248753. [PMID: 37752913 PMCID: PMC10518617 DOI: 10.3389/fcell.2023.1248753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
In Europe, with an incidence of 7.5 cases per million, Ewing sarcoma (ES) is the second most common primary malignant bone tumor in children, adolescents and young adults, after osteosarcoma. Since the 1980s, conventional treatment has been based on the use of neoadjuvant and adjuvant chemotherapeutic agents combined with surgical resection of the tumor when possible. These treatments have increased the patient survival rate to 70% for localized forms, which drops drastically to less than 30% when patients are resistant to chemotherapy or when pulmonary metastases are present at diagnosis. However, the lack of improvement in these survival rates over the last decades points to the urgent need for new therapies. Genetically, ES is characterized by a chromosomal translocation between a member of the FET family and a member of the ETS family. In 85% of cases, the chromosomal translocation found is (11; 22) (q24; q12), between the EWS RNA-binding protein and the FLI1 transcription factor, leading to the EWS-FLI1 fusion protein. This chimeric protein acts as an oncogenic factor playing a crucial role in the development of ES. This review provides a non-exhaustive overview of ES from a clinical and biological point of view, describing its main clinical, cellular and molecular aspects.
Collapse
Affiliation(s)
- Maryne Dupuy
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, CRCI2NA, Université d'Angers, Nantes, France
| | | | | | | | | | | | | | | | | | | | - Franck Verrecchia
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, CRCI2NA, Université d'Angers, Nantes, France
| |
Collapse
|
10
|
Chang YS, Hsu MH, Chung CC, Chen HD, Tu SJ, Lee YT, Yen JC, Liu TC, Chang JG. Comprehensive Analysis and Drug Modulation of Human Endogenous Retrovirus in Hepatocellular Carcinomas. Cancers (Basel) 2023; 15:3664. [PMID: 37509325 PMCID: PMC10377948 DOI: 10.3390/cancers15143664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) play an important role in the development of cancer and many diseases. Here, we comprehensively explored the impact of HERVs on hepatocellular carcinomas (HCCs). METHODS We employed Telescope to identify HERVs and quantify their expression in the total RNA sequencing data obtained from 254 HCC samples, comprising 254 tumor tissues and 34 matched normal tissues. RESULTS In total, 3357 locus-specific activations of HERVs were differentially expressed, and 180 were correlated with patient survival. Using these 180 HERVs for classification, we found four subgroups with survival correlation. Higher expression levels of the 180 HERVs were correlated with poorer survival, while age, AFP, some mutations, and copy and structural variants differed among subgroups. The differential expression of host genes in high expression of these 180 HERVs primarily involved the activation of pathways related to immunity and infection, lipid and atherosclerosis, MAPK and NF-kB signaling, and cytokine-cytokine receptor interactions. Conversely, there was a suppression of pathways associated with RNA processing, including nucleocytoplasmic transport, surveillance and ribosome biogenesis, and transcriptional misregulation in cancer pathways. Almost all genes involved in HERV activation restriction, KRAB zinc finger proteins, RNA nucleocytoplasmic transport, stemness, HLA and antigen processing and presentation, and immune checkpoints were overexpressed in cancerous tissues, and many over-expressed HERV-related nearby genes were correlated with high HERV activation and poor survival. Twenty-three immune and stromal cells showed higher expression in non-cancerous than cancerous tissues, and seven were correlated with HERV activation. Small-molecule modulation of alternative splicing (AS) altered the expression of survival-related HERVs and their activation-related genes, as well as nearby genes. CONCLUSION Comprehensive and integrated approaches for evaluating HERV expression and their correlation with specific pathways have the potential to provide new companion diagnostics and therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Ya-Sian Chang
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ming-Hon Hsu
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chin-Chun Chung
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Hong-Da Chen
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Siang-Jyun Tu
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Ya-Ting Lee
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Ju-Chen Yen
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Ta-Chih Liu
- Department of Hematology-Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan
| | - Jan-Gowth Chang
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
11
|
Yu L, Davis IJ, Liu P. Regulation of EWSR1-FLI1 Function by Post-Transcriptional and Post-Translational Modifications. Cancers (Basel) 2023; 15:382. [PMID: 36672331 PMCID: PMC9857208 DOI: 10.3390/cancers15020382] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Ewing sarcoma is the second most common bone tumor in childhood and adolescence. Currently, first-line therapy includes multidrug chemotherapy with surgery and/or radiation. Although most patients initially respond to chemotherapy, recurrent tumors become treatment refractory. Pathologically, Ewing sarcoma consists of small round basophilic cells with prominent nuclei marked by expression of surface protein CD99. Genetically, Ewing sarcoma is driven by a fusion oncoprotein that results from one of a small number of chromosomal translocations composed of a FET gene and a gene encoding an ETS family transcription factor, with ~85% of tumors expressing the EWSR1::FLI1 fusion. EWSR1::FLI1 regulates transcription, splicing, genome instability and other cellular functions. Although a tumor-specific target, EWSR1::FLI1-targeted therapy has yet to be developed, largely due to insufficient understanding of EWSR1::FLI1 upstream and downstream signaling, and the challenges in targeting transcription factors with small molecules. In this review, we summarize the contemporary molecular understanding of Ewing sarcoma, and the post-transcriptional and post-translational regulatory mechanisms that control EWSR1::FLI1 function.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian J. Davis
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Current State of Immunotherapy and Mechanisms of Immune Evasion in Ewing Sarcoma and Osteosarcoma. Cancers (Basel) 2022; 15:cancers15010272. [PMID: 36612267 PMCID: PMC9818129 DOI: 10.3390/cancers15010272] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
We argue here that in many ways, Ewing sarcoma (EwS) is a unique tumor entity and yet, it shares many commonalities with other immunologically cold solid malignancies. From the historical perspective, EwS, osteosarcoma (OS) and other bone and soft-tissue sarcomas were the first types of tumors treated with the immunotherapy approach: more than 100 years ago American surgeon William B. Coley injected his patients with a mixture of heat-inactivated bacteria, achieving survival rates apparently higher than with surgery alone. In contrast to OS which exhibits recurrent somatic copy-number alterations, EwS possesses one of the lowest mutation rates among cancers, being driven by a single oncogenic fusion protein, most frequently EWS-FLI1. In spite these differences, both EwS and OS are allied with immune tolerance and low immunogenicity. We discuss here the potential mechanisms of immune escape in these tumors, including low representation of tumor-specific antigens, low expression levels of MHC-I antigen-presenting molecules, accumulation of immunosuppressive M2 macrophages and myeloid proinflammatory cells, and release of extracellular vesicles (EVs) which are capable of reprogramming host cells in the tumor microenvironment and systemic circulation. We also discuss the vulnerabilities of EwS and OS and potential novel strategies for their targeting.
Collapse
|
13
|
Orth MF, Surdez D, Faehling T, Ehlers AC, Marchetto A, Grossetête S, Volckmann R, Zwijnenburg DA, Gerke JS, Zaidi S, Alonso J, Sastre A, Baulande S, Sill M, Cidre-Aranaz F, Ohmura S, Kirchner T, Hauck SM, Reischl E, Gymrek M, Pfister SM, Strauch K, Koster J, Delattre O, Grünewald TGP. Systematic multi-omics cell line profiling uncovers principles of Ewing sarcoma fusion oncogene-mediated gene regulation. Cell Rep 2022; 41:111761. [PMID: 36476851 DOI: 10.1016/j.celrep.2022.111761] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/25/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Ewing sarcoma (EwS) is characterized by EWSR1-ETS fusion transcription factors converting polymorphic GGAA microsatellites (mSats) into potent neo-enhancers. Although the paucity of additional mutations makes EwS a genuine model to study principles of cooperation between dominant fusion oncogenes and neo-enhancers, this is impeded by the limited number of well-characterized models. Here we present the Ewing Sarcoma Cell Line Atlas (ESCLA), comprising whole-genome, DNA methylation, transcriptome, proteome, and chromatin immunoprecipitation sequencing (ChIP-seq) data of 18 cell lines with inducible EWSR1-ETS knockdown. The ESCLA shows hundreds of EWSR1-ETS-targets, the nature of EWSR1-ETS-preferred GGAA mSats, and putative indirect modes of EWSR1-ETS-mediated gene regulation, converging in the duality of a specific but plastic EwS signature. We identify heterogeneously regulated EWSR1-ETS-targets as potential prognostic EwS biomarkers. Our freely available ESCLA (http://r2platform.com/escla/) is a rich resource for EwS research and highlights the power of comprehensive datasets to unravel principles of heterogeneous gene regulation by chimeric transcription factors.
Collapse
Affiliation(s)
- Martin F Orth
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany
| | - Didier Surdez
- INSERM Unit 830 "Genetics and Biology of Cancers," Institut Curie Research Center, 75005 Paris, France; Balgrist University Hospital, Faculty of Medicine, University of Zürich, 8008 Zürich, Switzerland
| | - Tobias Faehling
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Anna C Ehlers
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Aruna Marchetto
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany
| | - Sandrine Grossetête
- INSERM Unit 830 "Genetics and Biology of Cancers," Institut Curie Research Center, 75005 Paris, France
| | - Richard Volckmann
- Department of Oncogenomics, Amsterdam University Medical Centers (AUMC), 1105 Amsterdam, the Netherlands
| | - Danny A Zwijnenburg
- Department of Oncogenomics, Amsterdam University Medical Centers (AUMC), 1105 Amsterdam, the Netherlands
| | - Julia S Gerke
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany
| | - Sakina Zaidi
- INSERM Unit 830 "Genetics and Biology of Cancers," Institut Curie Research Center, 75005 Paris, France
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CB06/07/1009, CIBERER-ISCIII), 28029 Madrid, Spain
| | - Ana Sastre
- Unidad Hemato-oncología Pediátrica, Hospital Infantil Universitario La Paz, 28029 Madrid, Spain
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, 75005 Paris, France
| | - Martin Sill
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Florencia Cidre-Aranaz
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Shunya Ohmura
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, 80337 Munich, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Eva Reischl
- Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Melissa Gymrek
- Division of Genetics, Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA; Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Department of Pediatric Hematology & Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Konstantin Strauch
- Institute of Medical Biometry, Epidemiology, and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Jan Koster
- Department of Oncogenomics, Amsterdam University Medical Centers (AUMC), 1105 Amsterdam, the Netherlands
| | - Olivier Delattre
- INSERM Unit 830 "Genetics and Biology of Cancers," Institut Curie Research Center, 75005 Paris, France
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany; Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| |
Collapse
|
14
|
Splicing-Disrupting Mutations in Inherited Predisposition to Solid Pediatric Cancer. Cancers (Basel) 2022; 14:cancers14235967. [PMID: 36497448 PMCID: PMC9739414 DOI: 10.3390/cancers14235967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
The prevalence of hereditary cancer in children was estimated to be very low until recent studies suggested that at least 10% of pediatric cancer patients carry a germline mutation in a cancer predisposition gene. A significant proportion of pathogenic variants associated with an increased risk of hereditary cancer are variants affecting splicing. RNA splicing is an essential process involved in different cellular processes such as proliferation, survival, and differentiation, and alterations in this pathway have been implicated in many human cancers. Hereditary cancer genes are highly susceptible to splicing mutations, and among them there are several genes that may contribute to pediatric solid tumors when mutated in the germline. In this review, we have focused on the analysis of germline splicing-disrupting mutations found in pediatric solid tumors, as the discovery of pathogenic splice variants in pediatric cancer is a growing field for the development of personalized therapies. Therapies developed to correct aberrant splicing in cancer are also discussed as well as the options to improve the diagnostic yield based on the increase in the knowledge in splicing.
Collapse
|
15
|
Hai Y, Kawachi A, He X, Yoshimi A. Pathogenic Roles of RNA-Binding Proteins in Sarcomas. Cancers (Basel) 2022; 14:cancers14153812. [PMID: 35954475 PMCID: PMC9367343 DOI: 10.3390/cancers14153812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
RNA-binding proteins (RBPs) are proteins that physically and functionally bind to RNA to regulate the RNA metabolism such as alternative splicing, polyadenylation, transport, maintenance of stability, localization, and translation. There is accumulating evidence that dysregulated RBPs play an essential role in the pathogenesis of malignant tumors including a variety of types of sarcomas. On the other hand, prognosis of patients with sarcoma, especially with sarcoma in advanced stages, is very poor, and almost no effective standard treatment has been established for most of types of sarcomas so far, highlighting the urgent need for identifying novel therapeutic targets based on the deep understanding of pathogenesis. Therefore, defining the network of interactions between RBPs and disease-related RNA targets will contribute to a better understanding of sarcomagenesis and identification of a novel therapeutic target for sarcomas.
Collapse
Affiliation(s)
- Yu Hai
- Cancer RNA Research Unit, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Asuka Kawachi
- Cancer RNA Research Unit, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Xiaodong He
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Akihide Yoshimi
- Cancer RNA Research Unit, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Correspondence: ; Tel.: +81-3-3542-2511
| |
Collapse
|
16
|
Abrash EW, Calabrese JM. Oncogenic transcription factors and neogenes: New opportunities for cancer immunotherapy? Mol Cell 2022; 82:2353-2355. [PMID: 35803214 DOI: 10.1016/j.molcel.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Vibert et al. (2022) demonstrate that oncogenic transcription factor fusion proteins bind otherwise silent genomic regions, producing RNAs that can be spliced, exported, and translated. These "neogenes" represent possible targets for immunotherapy and may even be universal byproducts of altered transcription in cancer.
Collapse
Affiliation(s)
- Elizabeth W Abrash
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| |
Collapse
|