1
|
Garde R, Dea A, Herwig MF, Ali A, Pincus D. Feedback control of the heat shock response by spatiotemporal regulation of Hsp70. J Cell Biol 2024; 223:e202401082. [PMID: 39302312 PMCID: PMC11415305 DOI: 10.1083/jcb.202401082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/31/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
Cells maintain homeostasis via dynamic regulation of stress response pathways. Stress pathways transiently induce response regulons via negative feedback loops, but the extent to which individual genes provide feedback has not been comprehensively measured for any pathway. Here, we disrupted the induction of each gene in the Saccharomyces cerevisiae heat shock response (HSR) and quantified cell growth and HSR dynamics following heat shock. The screen revealed a core feedback loop governing the expression of the chaperone Hsp70 reinforced by an auxiliary feedback loop controlling Hsp70 subcellular localization. Mathematical modeling and live imaging demonstrated that multiple HSR targets converge to promote Hsp70 nuclear localization via its release from cytosolic condensates. Following ethanol stress, a distinct set of factors similarly converged on Hsp70, suggesting that nonredundant subsets of the HSR regulon confer feedback under different conditions. Flexible spatiotemporal feedback loops may broadly organize stress response regulons and expand their adaptive capacity.
Collapse
Affiliation(s)
- Rania Garde
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Annisa Dea
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Madeline F. Herwig
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Asif Ali
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - David Pincus
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Rubio LS, Mohajan S, Gross DS. Heat Shock Factor 1 forms nuclear condensates and restructures the yeast genome before activating target genes. eLife 2024; 12:RP92464. [PMID: 39405097 PMCID: PMC11479590 DOI: 10.7554/elife.92464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
In insects and mammals, 3D genome topology has been linked to transcriptional states yet whether this link holds for other eukaryotes is unclear. Using both ligation proximity and fluorescence microscopy assays, we show that in Saccharomyces cerevisiae, Heat Shock Response (HSR) genes dispersed across multiple chromosomes and under the control of Heat Shock Factor (Hsf1) rapidly reposition in cells exposed to acute ethanol stress and engage in concerted, Hsf1-dependent intergenic interactions. Accompanying 3D genome reconfiguration is equally rapid formation of Hsf1-containing condensates. However, in contrast to the transience of Hsf1-driven intergenic interactions that peak within 10-20 min and dissipate within 1 hr in the presence of 8.5% (v/v) ethanol, transcriptional condensates are stably maintained for hours. Moreover, under the same conditions, Pol II occupancy of HSR genes, chromatin remodeling, and RNA expression are detectable only later in the response and peak much later (>1 hr). This contrasts with the coordinate response of HSR genes to thermal stress (39°C) where Pol II occupancy, transcription, histone eviction, intergenic interactions, and formation of Hsf1 condensates are all rapid yet transient (peak within 2.5-10 min and dissipate within 1 hr). Therefore, Hsf1 forms condensates, restructures the genome and transcriptionally activates HSR genes in response to both forms of proteotoxic stress but does so with strikingly different kinetics. In cells subjected to ethanol stress, Hsf1 forms condensates and repositions target genes before transcriptionally activating them.
Collapse
Affiliation(s)
- Linda S Rubio
- Department of Biochemistry and Molecular Biology Louisiana State University Health Sciences CenterShreveportUnited States
| | - Suman Mohajan
- Department of Biochemistry and Molecular Biology Louisiana State University Health Sciences CenterShreveportUnited States
| | - David S Gross
- Department of Biochemistry and Molecular Biology Louisiana State University Health Sciences CenterShreveportUnited States
| |
Collapse
|
3
|
Lee J, Simpson L, Li Y, Becker S, Zou F, Zhang X, Bai L. Transcription factor condensates, 3D clustering, and gene expression enhancement of the MET regulon. eLife 2024; 13:RP96028. [PMID: 39347738 PMCID: PMC11441978 DOI: 10.7554/elife.96028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Some transcription factors (TFs) can form liquid-liquid phase separated (LLPS) condensates. However, the functions of these TF condensates in 3-Dimentional (3D) genome organization and gene regulation remain elusive. In response to methionine (met) starvation, budding yeast TF Met4 and a few co-activators, including Met32, induce a set of genes involved in met biosynthesis. Here, we show that the endogenous Met4 and Met32 form co-localized puncta-like structures in yeast nuclei upon met depletion. Recombinant Met4 and Met32 form mixed droplets with LLPS properties in vitro. In relation to chromatin, Met4 puncta co-localize with target genes, and at least a subset of these target genes is clustered in 3D in a Met4-dependent manner. A MET3pr-GFP reporter inserted near several native Met4-binding sites becomes co-localized with Met4 puncta and displays enhanced transcriptional activity. A Met4 variant with a partial truncation of an intrinsically disordered region (IDR) shows less puncta formation, and this mutant selectively reduces the reporter activity near Met4-binding sites to the basal level. Overall, these results support a model where Met4 and co-activators form condensates to bring multiple target genes into a vicinity with higher local TF concentrations, which facilitates a strong response to methionine depletion.
Collapse
Affiliation(s)
- James Lee
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, United States
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, United States
- Microbiology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, United States
| | - Leman Simpson
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, United States
- Department of Chemistry, The Pennsylvania State University, Universtiy Park, United States
| | - Yi Li
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, United States
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, United States
| | - Samuel Becker
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, United States
| | - Fan Zou
- Department of Physics, The Pennsylvania State University, University Park, United States
| | - Xin Zhang
- Department of Chemistry, The Pennsylvania State University, Universtiy Park, United States
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, United States
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, United States
- Department of Physics, The Pennsylvania State University, University Park, United States
| |
Collapse
|
4
|
Hebenstreit D, Karmakar P. Transcriptional bursting: from fundamentals to novel insights. Biochem Soc Trans 2024; 52:1695-1702. [PMID: 39119657 DOI: 10.1042/bst20231286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Transcription occurs as irregular bursts in a very wide range of systems, including numerous different species and many genes within these. In this review, we examine the underlying theories, discuss how these relate to experimental measurements, and explore some of the discrepancies that have emerged among various studies. Finally, we consider more recent works that integrate novel concepts, such as the involvement of biomolecular condensates in enhancer-promoter interactions and their effects on the dynamics of transcriptional bursting.
Collapse
Affiliation(s)
| | - Pradip Karmakar
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, U.K
| |
Collapse
|
5
|
Rubio LS, Mohajan S, Gross DS. Heat Shock Factor 1 forms nuclear condensates and restructures the yeast genome before activating target genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.28.560064. [PMID: 37808805 PMCID: PMC10557744 DOI: 10.1101/2023.09.28.560064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
In insects and mammals, 3D genome topology has been linked to transcriptional states yet whether this link holds for other eukaryotes is unclear. Using both ligation proximity and fluorescence microscopy assays, we show that in Saccharomyces cerevisiae, Heat Shock Response (HSR) genes dispersed across multiple chromosomes and under the control of Heat Shock Factor (Hsf1) rapidly reposition in cells exposed to acute ethanol stress and engage in concerted, Hsf1-dependent intergenic interactions. Accompanying 3D genome reconfiguration is equally rapid formation of Hsf1-containing condensates. However, in contrast to the transience of Hsf1-driven intergenic interactions that peak within 10-20 min and dissipate within 1 h in the presence of 8.5% (v/v) ethanol, transcriptional condensates are stably maintained for hours. Moreover, under the same conditions, Pol II occupancy of HSR genes, chromatin remodeling, and RNA expression are detectable only later in the response and peak much later (>1 h). This contrasts with the coordinate response of HSR genes to thermal stress (39°C) where Pol II occupancy, transcription, histone eviction, intergenic interactions, and formation of Hsf1 condensates are all rapid yet transient (peak within 2.5-10 min and dissipate within 1 h). Therefore, Hsf1 forms condensates, restructures the genome and transcriptionally activates HSR genes in response to both forms of proteotoxic stress but does so with strikingly different kinetics. In cells subjected to ethanol stress, Hsf1 forms condensates and repositions target genes before transcriptionally activating them.
Collapse
Affiliation(s)
- Linda S. Rubio
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| | - Suman Mohajan
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| | - David S. Gross
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| |
Collapse
|
6
|
Dea A, Pincus D. The Heat Shock Response as a Condensate Cascade. J Mol Biol 2024; 436:168642. [PMID: 38848866 PMCID: PMC11214683 DOI: 10.1016/j.jmb.2024.168642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
The heat shock response (HSR) is a gene regulatory program controlling expression of molecular chaperones implicated in aging, cancer, and neurodegenerative disease. Long presumed to be activated by toxic protein aggregates, recent work suggests a new functional paradigm for the HSR in yeast. Rather than toxic aggregates, adaptive biomolecular condensates comprised of orphan ribosomal proteins (oRP) and stress granule components have been shown to be physiological chaperone clients. By titrating away the chaperones Sis1 and Hsp70 from the transcription factor Hsf1, these condensates activate the HSR. Upon release from Hsp70, Hsf1 forms spatially distinct transcriptional condensates that drive high expression of HSR genes. In this manner, the negative feedback loop controlling HSR activity - in which Hsf1 induces Hsp70 expression and Hsp70 represses Hsf1 activity - is embedded in the biophysics of the system. By analogy to phosphorylation cascades that transmit information via the dynamic activity of kinases, we propose that the HSR is organized as a condensate cascade that transmits information via the localized activity of molecular chaperones.
Collapse
Affiliation(s)
- Annisa Dea
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States
| | - David Pincus
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, United States; Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
7
|
Mathias KM, Liu Y, Wan L. Dysregulation of transcriptional condensates in human disease: mechanisms, biological functions, and open questions. Curr Opin Genet Dev 2024; 86:102203. [PMID: 38788489 PMCID: PMC11162900 DOI: 10.1016/j.gde.2024.102203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Precise gene expression, crucial for normal development and health, depends on the co-ordinated assembly and function of various factors within the crowded nucleus. Recent evidence suggests that this process is in part regulated by mesoscale compartmentalization and concentration of transcriptional components within condensates, offering a new perspective on gene regulation. Dysregulation of transcriptional condensates is increasingly associated with diseases, indicating a potential role in pathogenesis. In this mini-review, we provide a concise overview of the current understanding of the formation and function of transcriptional condensates, with a specific focus on recent advances in their dysregulation and implications in diseases, notably cancer. We also address limitations in the field and highlight open questions for future research.
Collapse
Affiliation(s)
- Kaeli M Mathias
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry Biophysics Chemical Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yiman Liu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liling Wan
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Bohn L, Huang J, Weidig S, Yang Z, Heidersberger C, Genty B, Falter-Braun P, Christmann A, Grill E. The temperature sensor TWA1 is required for thermotolerance in Arabidopsis. Nature 2024; 629:1126-1132. [PMID: 38750356 PMCID: PMC11136664 DOI: 10.1038/s41586-024-07424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/15/2024] [Indexed: 05/31/2024]
Abstract
Plants exposed to incidences of excessive temperatures activate heat-stress responses to cope with the physiological challenge and stimulate long-term acclimation1,2. The mechanism that senses cellular temperature for inducing thermotolerance is still unclear3. Here we show that TWA1 is a temperature-sensing transcriptional co-regulator that is needed for basal and acquired thermotolerance in Arabidopsis thaliana. At elevated temperatures, TWA1 changes its conformation and allows physical interaction with JASMONATE-ASSOCIATED MYC-LIKE (JAM) transcription factors and TOPLESS (TPL) and TOPLESS-RELATED (TPR) proteins for repressor complex assembly. TWA1 is a predicted intrinsically disordered protein that has a key thermosensory role functioning through an amino-terminal highly variable region. At elevated temperatures, TWA1 accumulates in nuclear subdomains, and physical interactions with JAM2 and TPL appear to be restricted to these nuclear subdomains. The transcriptional upregulation of the heat shock transcription factor A2 (HSFA2) and heat shock proteins depended on TWA1, and TWA1 orthologues provided different temperature thresholds, consistent with the sensor function in early signalling of heat stress. The identification of the plant thermosensors offers a molecular tool for adjusting thermal acclimation responses of crops by breeding and biotechnology, and a sensitive temperature switch for thermogenetics.
Collapse
Affiliation(s)
- Lisa Bohn
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany
| | - Jin Huang
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany
- Chengdu Newsun Crop Science, Chengdu, China
| | - Susan Weidig
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany
| | - Zhenyu Yang
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany
| | - Christoph Heidersberger
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany
| | - Bernard Genty
- Aix-Marseille University, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biosciences et Biotechnologies Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Alexander Christmann
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany.
| | - Erwin Grill
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany.
| |
Collapse
|
9
|
Ryu K, Park G, Cho WK. Emerging insights into transcriptional condensates. Exp Mol Med 2024; 56:820-826. [PMID: 38658705 PMCID: PMC11059374 DOI: 10.1038/s12276-024-01228-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 04/26/2024] Open
Abstract
Eukaryotic transcription, a fundamental process that governs cell-specific gene expression, has long been the subject of extensive investigations in the fields of molecular biology, biochemistry, and structural biology. Recent advances in microscopy techniques have led to a fascinating concept known as "transcriptional condensates." These dynamic assemblies are the result of a phenomenon called liquid‒liquid phase separation, which is driven by multivalent interactions between the constituent proteins in cells. The essential proteins associated with transcription are concentrated in transcriptional condensates. Recent studies have shed light on the temporal dynamics of transcriptional condensates and their potential role in enhancing the efficiency of transcription. In this article, we explore the properties of transcriptional condensates, investigate how they evolve over time, and evaluate the significant impact they have on the process of transcription. Furthermore, we highlight innovative techniques that allow us to manipulate these condensates, thus demonstrating their responsiveness to cellular signals and their connection to transcriptional bursting. As our understanding of transcriptional condensates continues to grow, they are poised to revolutionize our understanding of eukaryotic gene regulation.
Collapse
Affiliation(s)
- Kwangmin Ryu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Gunhee Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, Korea.
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, Korea.
| |
Collapse
|
10
|
Goncalves D, Duy DL, Peffer S, Morano KA. Cytoplasmic redox imbalance in the thioredoxin system activates Hsf1 and results in hyperaccumulation of the sequestrase Hsp42 with misfolded proteins. Mol Biol Cell 2024; 35:ar53. [PMID: 38381577 PMCID: PMC11064659 DOI: 10.1091/mbc.e23-07-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Abstract
Cells employ multiple systems to maintain homeostasis when experiencing environmental stress. For example, the folding of nascent polypeptides is exquisitely sensitive to proteotoxic stressors including heat, pH, and oxidative stress, and is safeguarded by a network of protein chaperones that concentrate potentially toxic misfolded proteins into transient assemblies to promote folding or degradation. The redox environment itself is buffered by both cytosolic and organellar thioredoxin and glutathione pathways. How these systems are linked is poorly understood. Here, we determine that specific disruption of the cytosolic thioredoxin system resulted in constitutive activation of the heat shock response in Saccharomyces cerevisiae and accumulation of the sequestrase Hsp42 into an exaggerated and persistent juxtanuclear quality control (JUNQ) compartment. Terminally misfolded proteins also accumulated in this compartment in thioredoxin reductase (TRR1)-deficient cells, despite apparently normal formation and dissolution of transient cytoplasmic quality control (CytoQ) bodies during heat shock. Notably, cells lacking TRR1 and HSP42 exhibited severe synthetic slow growth exacerbated by oxidative stress, signifying a critical role for Hsp42 under redox-challenged conditions. Finally, we demonstrated that Hsp42 localization patterns in trr1∆ cells mimic those observed in chronically aging and glucose-starved cells, linking nutrient depletion and redox imbalance with management of misfolded proteins via a process of long-term sequestration.
Collapse
Affiliation(s)
- Davi Goncalves
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, TX 77030
| | - Duong Long Duy
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, TX 77030
| | - Sara Peffer
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, TX 77030
- Microbiology and Infectious Disease Program, MD Anderson UTHealth Graduate School at UTHealth Houston, Houston, TX 77030
| | - Kevin A. Morano
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, TX 77030
| |
Collapse
|
11
|
Stortz M, Presman DM, Levi V. Transcriptional condensates: a blessing or a curse for gene regulation? Commun Biol 2024; 7:187. [PMID: 38365945 PMCID: PMC10873363 DOI: 10.1038/s42003-024-05892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Whether phase-separation is involved in the organization of the transcriptional machinery and if it aids or inhibits the transcriptional process is a matter of intense debate. In this Mini Review, we will cover the current knowledge regarding the role of transcriptional condensates on gene expression regulation. We will summarize the latest discoveries on the relationship between condensate formation, genome organization, and transcriptional activity, focusing on the strengths and weaknesses of the experimental approaches used to interrogate these aspects of transcription in living cells. Finally, we will discuss the challenges for future research.
Collapse
Grants
- PICT 2020-00818 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2018-1921 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT 2019-0397 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- 20020190100101BA University of Buenos Aires | Secretaría de Ciencia y Técnica, Universidad de Buenos Aires (Secretaría de Ciencia y Técnica de la Universidad de Buenos Aires)
- 2022-11220210100212CO Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
Collapse
Affiliation(s)
- Martin Stortz
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Diego M Presman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, C1428EGA, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina.
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina.
| |
Collapse
|
12
|
Meeussen JVW, Lenstra TL. Time will tell: comparing timescales to gain insight into transcriptional bursting. Trends Genet 2024; 40:160-174. [PMID: 38216391 PMCID: PMC10860890 DOI: 10.1016/j.tig.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024]
Abstract
Recent imaging studies have captured the dynamics of regulatory events of transcription inside living cells. These events include transcription factor (TF) DNA binding, chromatin remodeling and modification, enhancer-promoter (E-P) proximity, cluster formation, and preinitiation complex (PIC) assembly. Together, these molecular events culminate in stochastic bursts of RNA synthesis, but their kinetic relationship remains largely unclear. In this review, we compare the timescales of upstream regulatory steps (input) with the kinetics of transcriptional bursting (output) to generate mechanistic models of transcription dynamics in single cells. We highlight open questions and potential technical advances to guide future endeavors toward a quantitative and kinetic understanding of transcription regulation.
Collapse
Affiliation(s)
- Joseph V W Meeussen
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, The Netherlands
| | - Tineke L Lenstra
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, The Netherlands.
| |
Collapse
|
13
|
Garde R, Dea A, Herwig MF, Pincus D. Feedback control of the heat shock response by spatiotemporal regulation of Hsp70. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574867. [PMID: 38260373 PMCID: PMC10802473 DOI: 10.1101/2024.01.09.574867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cells maintain homeostasis via dynamic regulation of stress response pathways. Stress pathways transiently induce response regulons via negative feedback loops, but the extent to which individual genes provide feedback has not been comprehensively measured for any pathway. Here, we disrupted induction of each gene in the Saccharomyces cerevisiae heat shock response (HSR) and quantified cell growth and HSR dynamics following heat shock. The screen revealed a core feedback loop governing expression of the chaperone Hsp70 reinforced by an auxiliary feedback loop controlling Hsp70 subcellular localization. Mathematical modeling and live imaging demonstrated that multiple HSR targets converge to promote Hsp70 nuclear localization via its release from cytosolic condensates. Following ethanol stress, a distinct set of factors similarly converged on Hsp70, suggesting that nonredundant subsets of the HSR regulon confer feedback under different conditions. Flexible spatiotemporal feedback loops may broadly organize stress response regulons and expand their adaptive capacity.
Collapse
Affiliation(s)
- Rania Garde
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL
| | - Annisa Dea
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL
| | - Madeline F. Herwig
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL
| | - David Pincus
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL
- Center for Physics of Evolving Systems, University of Chicago, Chicago, IL
| |
Collapse
|
14
|
Pessa JC, Joutsen J, Sistonen L. Transcriptional reprogramming at the intersection of the heat shock response and proteostasis. Mol Cell 2024; 84:80-93. [PMID: 38103561 DOI: 10.1016/j.molcel.2023.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Cellular homeostasis is constantly challenged by a myriad of extrinsic and intrinsic stressors. To mitigate the stress-induced damage, cells activate transient survival programs. The heat shock response (HSR) is an evolutionarily well-conserved survival program that is activated in response to proteotoxic stress. The HSR encompasses a dual regulation of transcription, characterized by rapid activation of genes encoding molecular chaperones and concomitant global attenuation of non-chaperone genes. Recent genome-wide approaches have delineated the molecular depth of stress-induced transcriptional reprogramming. The dramatic rewiring of gene and enhancer networks is driven by key transcription factors, including heat shock factors (HSFs), that together with chromatin-modifying enzymes remodel the 3D chromatin architecture, determining the selection of either gene activation or repression. Here, we highlight the current advancements of molecular mechanisms driving transcriptional reprogramming during acute heat stress. We also discuss the emerging implications of HSF-mediated stress signaling in the context of physiological and pathological conditions.
Collapse
Affiliation(s)
- Jenny C Pessa
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jenny Joutsen
- Department of Pathology, Lapland Central Hospital, Lapland Wellbeing Services County, Rovaniemi, Finland
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
15
|
Demmerle J, Hao S, Cai D. Transcriptional condensates and phase separation: condensing information across scales and mechanisms. Nucleus 2023; 14:2213551. [PMID: 37218279 PMCID: PMC10208215 DOI: 10.1080/19491034.2023.2213551] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Transcription is the fundamental process of gene expression, which in eukaryotes occurs within the complex physicochemical environment of the nucleus. Decades of research have provided extreme detail in the molecular and functional mechanisms of transcription, but the spatial and genomic organization of transcription remains mysterious. Recent discoveries show that transcriptional components can undergo phase separation and create distinct compartments inside the nucleus, providing new models through which to view the transcription process in eukaryotes. In this review, we focus on transcriptional condensates and their phase separation-like behaviors. We suggest differentiation between physical descriptions of phase separation and the complex and dynamic biomolecular assemblies required for productive gene expression, and we discuss how transcriptional condensates are central to organizing the three-dimensional genome across spatial and temporal scales. Finally, we map approaches for therapeutic manipulation of transcriptional condensates and ask what technical advances are needed to understand transcriptional condensates more completely.
Collapse
Affiliation(s)
- Justin Demmerle
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Siyuan Hao
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Danfeng Cai
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Ali A, Garde R, Schaffer OC, Bard JAM, Husain K, Kik SK, Davis KA, Luengo-Woods S, Igarashi MG, Drummond DA, Squires AH, Pincus D. Adaptive preservation of orphan ribosomal proteins in chaperone-dispersed condensates. Nat Cell Biol 2023; 25:1691-1703. [PMID: 37845327 PMCID: PMC10868727 DOI: 10.1038/s41556-023-01253-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Ribosome biogenesis is among the most resource-intensive cellular processes, with ribosomal proteins accounting for up to half of all newly synthesized proteins in eukaryotic cells. During stress, cells shut down ribosome biogenesis in part by halting rRNA synthesis, potentially leading to massive accumulation of aggregation-prone 'orphan' ribosomal proteins (oRPs). Here we show that, during heat shock in yeast and human cells, oRPs accumulate as reversible peri-nucleolar condensates recognized by the Hsp70 co-chaperone Sis1/DnaJB6. oRP condensates are liquid-like in cell-free lysate but solidify upon depletion of Sis1 or inhibition of Hsp70. When cells recover from heat shock, oRP condensates disperse in a Sis1- and Hsp70-dependent manner, and the oRP constituents are incorporated into functional ribosomes in the cytosol, enabling cells to efficiently resume growth. Preserving biomolecules in reversible condensates-like mRNAs in cytosolic stress granules and oRPs at the nucleolar periphery-may be a primary function of the Hsp70 chaperone system.
Collapse
Affiliation(s)
- Asif Ali
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA.
| | - Rania Garde
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Olivia C Schaffer
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Jared A M Bard
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Kabir Husain
- Department of Physics, University of Chicago, Chicago, IL, USA
| | - Samantha Keyport Kik
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Kathleen A Davis
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Sofia Luengo-Woods
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Maya G Igarashi
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
| | - D Allan Drummond
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, USA
| | - Allison H Squires
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, USA
| | - David Pincus
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
- Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
17
|
Wysocki R, Rodrigues JI, Litwin I, Tamás MJ. Mechanisms of genotoxicity and proteotoxicity induced by the metalloids arsenic and antimony. Cell Mol Life Sci 2023; 80:342. [PMID: 37904059 PMCID: PMC10616229 DOI: 10.1007/s00018-023-04992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023]
Abstract
Arsenic and antimony are metalloids with profound effects on biological systems and human health. Both elements are toxic to cells and organisms, and exposure is associated with several pathological conditions including cancer and neurodegenerative disorders. At the same time, arsenic- and antimony-containing compounds are used in the treatment of multiple diseases. Although these metalloids can both cause and cure disease, their modes of molecular action are incompletely understood. The past decades have seen major advances in our understanding of arsenic and antimony toxicity, emphasizing genotoxicity and proteotoxicity as key contributors to pathogenesis. In this review, we highlight mechanisms by which arsenic and antimony cause toxicity, focusing on their genotoxic and proteotoxic effects. The mechanisms used by cells to maintain proteostasis during metalloid exposure are also described. Furthermore, we address how metalloid-induced proteotoxicity may promote neurodegenerative disease and how genotoxicity and proteotoxicity may be interrelated and together contribute to proteinopathies. A deeper understanding of cellular toxicity and response mechanisms and their links to pathogenesis may promote the development of strategies for both disease prevention and treatment.
Collapse
Affiliation(s)
- Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland.
| | - Joana I Rodrigues
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden
| | - Ireneusz Litwin
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden.
| |
Collapse
|
18
|
Meeussen JVW, Pomp W, Brouwer I, de Jonge WJ, Patel HP, Lenstra TL. Transcription factor clusters enable target search but do not contribute to target gene activation. Nucleic Acids Res 2023; 51:5449-5468. [PMID: 36987884 PMCID: PMC10287935 DOI: 10.1093/nar/gkad227] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Many transcription factors (TFs) localize in nuclear clusters of locally increased concentrations, but how TF clustering is regulated and how it influences gene expression is not well understood. Here, we use quantitative microscopy in living cells to study the regulation and function of clustering of the budding yeast TF Gal4 in its endogenous context. Our results show that Gal4 forms clusters that overlap with the GAL loci. Cluster number, density and size are regulated in different growth conditions by the Gal4-inhibitor Gal80 and Gal4 concentration. Gal4 truncation mutants reveal that Gal4 clustering is facilitated by, but does not completely depend on DNA binding and intrinsically disordered regions. Moreover, we discover that clustering acts as a double-edged sword: self-interactions aid TF recruitment to target genes, but recruited Gal4 molecules that are not DNA-bound do not contribute to, and may even inhibit, transcription activation. We propose that cells need to balance the different effects of TF clustering on target search and transcription activation to facilitate proper gene expression.
Collapse
Affiliation(s)
- Joseph V W Meeussen
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| | - Wim Pomp
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| | - Ineke Brouwer
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| | - Wim J de Jonge
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| | - Heta P Patel
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| | - Tineke L Lenstra
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
19
|
Li C, Li Z, Wu Z, Lu H. Phase separation in gene transcription control. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1052-1063. [PMID: 37265348 PMCID: PMC10415188 DOI: 10.3724/abbs.2023099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Phase separation provides a general mechanism for the formation of biomolecular condensates, and it plays a vital role in regulating diverse cellular processes, including gene expression. Although the role of transcription factors and coactivators in regulating transcription has long been understood, how phase separation is involved in this process is just beginning to be explored. In this review, we highlight recent advance in elucidating the molecular mechanisms and functions of transcriptional condensates in gene expression control. We discuss the different condensates formed at each stage of the transcription cycle and how they are dynamically regulated in response to diverse cellular and extracellular cues that cause rapid changes in gene expression. Furthermore, we present new findings regarding the dysregulation of transcription condensates and their implications in human diseases.
Collapse
Affiliation(s)
- Chengyu Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Zhuo Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Zhibing Wu
- Department of OncologyAffiliated Zhejiang HospitalZhejiang University School of MedicineHangzhou310058China
| | - Huasong Lu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhou310058China
| |
Collapse
|
20
|
Garde R, Singh A, Ali A, Pincus D. Transcriptional regulation of Sis1 promotes fitness but not feedback in the heat shock response. eLife 2023; 12:e79444. [PMID: 37158601 PMCID: PMC10191621 DOI: 10.7554/elife.79444] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
The heat shock response (HSR) controls expression of molecular chaperones to maintain protein homeostasis. Previously, we proposed a feedback loop model of the HSR in which heat-denatured proteins sequester the chaperone Hsp70 to activate the HSR, and subsequent induction of Hsp70 deactivates the HSR (Krakowiak et al., 2018; Zheng et al., 2016). However, recent work has implicated newly synthesized proteins (NSPs) - rather than unfolded mature proteins - and the Hsp70 co-chaperone Sis1 in HSR regulation, yet their contributions to HSR dynamics have not been determined. Here, we generate a new mathematical model that incorporates NSPs and Sis1 into the HSR activation mechanism, and we perform genetic decoupling and pulse-labeling experiments to demonstrate that Sis1 induction is dispensable for HSR deactivation. Rather than providing negative feedback to the HSR, transcriptional regulation of Sis1 by Hsf1 promotes fitness by coordinating stress granules and carbon metabolism. These results support an overall model in which NSPs signal the HSR by sequestering Sis1 and Hsp70, while induction of Hsp70 - but not Sis1 - attenuates the response.
Collapse
Affiliation(s)
- Rania Garde
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
- Committee on Genetics, Genomics, and Systems Biology, University of ChicagoChicagoUnited States
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of DelawareNewarkUnited States
- Department of Biomedical Engineering, University of DelawareNewarkUnited States
- Department of Mathematical Sciences, University of DelawareNewarkUnited States
- Center for Bioinformatics and Computational Biology, University of DelawareNewarkUnited States
| | - Asif Ali
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
| | - David Pincus
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
- Center for Physics of Evolving Systems, University of ChicagoChicagoUnited States
| |
Collapse
|
21
|
Kravchuk EV, Ashniev GA, Gladkova MG, Orlov AV, Vasileva AV, Boldyreva AV, Burenin AG, Skirda AM, Nikitin PI, Orlova NN. Experimental Validation and Prediction of Super-Enhancers: Advances and Challenges. Cells 2023; 12:cells12081191. [PMID: 37190100 DOI: 10.3390/cells12081191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Super-enhancers (SEs) are cis-regulatory elements of the human genome that have been widely discussed since the discovery and origin of the term. Super-enhancers have been shown to be strongly associated with the expression of genes crucial for cell differentiation, cell stability maintenance, and tumorigenesis. Our goal was to systematize research studies dedicated to the investigation of structure and functions of super-enhancers as well as to define further perspectives of the field in various applications, such as drug development and clinical use. We overviewed the fundamental studies which provided experimental data on various pathologies and their associations with particular super-enhancers. The analysis of mainstream approaches for SE search and prediction allowed us to accumulate existing data and propose directions for further algorithmic improvements of SEs' reliability levels and efficiency. Thus, here we provide the description of the most robust algorithms such as ROSE, imPROSE, and DEEPSEN and suggest their further use for various research and development tasks. The most promising research direction, which is based on topic and number of published studies, are cancer-associated super-enhancers and prospective SE-targeted therapy strategies, most of which are discussed in this review.
Collapse
Affiliation(s)
- Ekaterina V Kravchuk
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, MSU, 1-12, 119991 Moscow, Russia
| | - German A Ashniev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, MSU, 1-12, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, 119234 Moscow, Russia
| | - Marina G Gladkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, 119234 Moscow, Russia
| | - Alexey V Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Anastasiia V Vasileva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Anna V Boldyreva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Alexandr G Burenin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Artemiy M Skirda
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Petr I Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Natalia N Orlova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
22
|
Rubio LS, Gross DS. Dynamic coalescence of yeast Heat Shock Protein genes bypasses the requirement for actin. Genetics 2023; 223:iyad006. [PMID: 36659814 PMCID: PMC10319981 DOI: 10.1093/genetics/iyad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/22/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Nuclear actin has been implicated in dynamic chromatin rearrangements in diverse eukaryotes. In mammalian cells, it is required to reposition double-strand DNA breaks to enable homologous recombination repair and to enhance transcription by facilitating RNA Pol II recruitment to gene promoters. In the yeast Saccharomyces cerevisiae, nuclear actin modulates interphase chromosome dynamics and is required to reposition the induced INO1 gene to the nuclear periphery. Here, we have investigated the role of actin in driving intergenic interactions between Heat Shock Factor 1 (Hsf1)-regulated Heat Shock Protein (HSP) genes in budding yeast. These genes, dispersed on multiple chromosomes, dramatically reposition following exposure of cells to acute thermal stress, leading to their clustering within dynamic biomolecular condensates. Using an auxin-induced degradation strategy, we found that conditional depletion of nucleators of either linear or branched F-actin (Bni1/Bnr1 and Arp2, respectively) had little or no effect on heat shock-induced HSP gene coalescence or transcription. In addition, we found that pretreatment of cells with latrunculin A, an inhibitor of both filamentous and monomeric actin, failed to affect intergenic interactions between activated HSP genes and their heat shock-induced intragenic looping and folding. Moreover, latrunculin A pretreatment had little effect on HSP gene expression at either RNA or protein levels. In notable contrast, we confirmed that repositioning of activated INO1 to the nuclear periphery and its proper expression do require actin. Collectively, our work suggests that transcriptional activation and 3D genome restructuring of thermally induced, Hsf1-regulated genes can occur in the absence of actin.
Collapse
Affiliation(s)
- Linda S Rubio
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - David S Gross
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
23
|
Waters PD, Graves JAM, Whiteley SL, Georges A, Ruiz-Herrera A. Three dimensions of thermolabile sex determination. Bioessays 2023; 45:e2200123. [PMID: 36529688 DOI: 10.1002/bies.202200123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/14/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The molecular mechanism of temperature-dependent sex determination (TSD) is a long-standing mystery. How is the thermal signal sensed, captured and transduced to regulate key sex genes? Although there is compelling evidence for pathways via which cells capture the temperature signal, there is no known mechanism by which cells transduce those thermal signals to affect gene expression. Here we propose a novel hypothesis we call 3D-TSD (the three dimensions of thermolabile sex determination). We postulate that the genome has capacity to remodel in response to temperature by changing 3D chromatin conformation, perhaps via temperature-sensitive transcriptional condensates. This could rewire enhancer-promoter interactions to alter the expression of key sex-determining genes. This hypothesis can accommodate monogenic or multigenic thermolabile sex-determining systems, and could be combined with upstream thermal sensing and transduction to the epigenome to commit gonadal fate.
Collapse
Affiliation(s)
- Paul D Waters
- Faculty of Science, School of Biotechnology and Biomolecular Science, UNSW Sydney, Sydney, NSW, Australia
| | - Jennifer A Marshall Graves
- Department of Environment and Genetics, La Trobe University, Bundoora, Australia.,Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Sarah L Whiteley
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|