1
|
Qin F, Shui G, Li Z, Tu M, Zang X. Expression Profiling Reveals the Possible Involvement of the Ubiquitin-Proteasome Pathway in Abiotic Stress Regulation in Gracilariopsis lemaneiformis. Int J Mol Sci 2023; 24:12313. [PMID: 37569689 PMCID: PMC10418974 DOI: 10.3390/ijms241512313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Gracilariopsis lemaneiformis is an economically important red macroalga, the cultivation of which is affected by abiotic stresses. This research intends to study the response mechanism of various components of the ubiquitin-protease pathway to abiotic stress in G. lemaneiformis. The algae were treated with five common external stresses (high temperature, low temperature, O3, PEG, and water shortage) to study the macroscopic and microscopic manifestations of the ubiquitin-proteasome pathway. Firstly, the changes in soluble protein and ubiquitin were detected during the five treatments, and the results showed that the content of soluble protein and ubiquitin significantly increased under most stresses. The content of the soluble protein increased the most on the second day after 20% PEG treatment, which was 1.38 times higher than that of the control group, and the content of ubiquitin increased the most 30 min after water shortage treatment, which was 3.6 times higher than that of the control group. Then, 12 key genes (E1, E2, UPL1, HRD1, UFD1, Cul3, Cul4, DDB2, PIAS1, FZR1, APC8, and COP1) of the ubiquitin-proteasome pathway were studied, including an estimation of the probably regulatory elements in putative promoter regions and an analysis of transcript levels. The results showed that CAAT box, LTR, GC motif, and MBS elements were present in the putative promoter regions, which might have endowed the genes with the ability to respond to stress. The transcript analysis showed that under high temperature, low temperature, PEG, O3, and water shortage, all of the genes exhibited instant and significant up-regulation, and different genes had different response levels to different stresses. Many of them also showed the synergistic effect of transcript up-regulation under various stress treatments. In particular, E1, E2, Cul3, Cul4, UPL1, HRD1, and COP1 performed most significantly under the five stresses. Collectively, our exploration of the ubiquitin-proteasome pathway and the transcript levels of key genes suggest a significant role to cope with adversity, and potential candidate genes can be selected for transformation to obtain stress-resistant strains.
Collapse
Affiliation(s)
| | | | | | | | - Xiaonan Zang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China; (F.Q.); (G.S.); (Z.L.); (M.T.)
| |
Collapse
|
2
|
Prodić I, Krstić Ristivojević M, Smiljanić K. Antioxidant Properties of Protein-Rich Plant Foods in Gastrointestinal Digestion—Peanuts as Our Antioxidant Friend or Foe in Allergies. Antioxidants (Basel) 2023; 12:antiox12040886. [PMID: 37107261 PMCID: PMC10135473 DOI: 10.3390/antiox12040886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Thermally processed peanuts are ideal plant models for studying the relationship between allergenicity and antioxidant capacity of protein-rich foods, besides lipids, carbohydrates and phytochemicals. Peanut is highly praised in the human diet; however, it is rich in allergens (>75% of total proteins). One-third of peanut allergens belong to the products of genes responsible for the defence of plants against stress conditions. The proximate composition of major peanut macromolecules and polyphenols is reviewed, focusing on the identity and relative abundance of all peanut proteins derived from recent proteomic studies. The importance of thermal processing, gastrointestinal digestion (performed by INFOGEST protocol) and their influence on allergenicity and antioxidant properties of protein-rich plant food matrices is elaborated. Antioxidant properties of bioactive peptides from nuts were also considered. Moreover, there are no studies dealing simultaneously with the antioxidant and allergenic properties of protein- and polyphenol-rich foods, considering all the molecules that can significantly contribute to the antioxidant capacity during and after gastrointestinal digestion. In summary, proteins and carbohydrates are underappreciated sources of antioxidant power released during the gastrointestinal digestion of protein-rich plant foods, and it is crucial to decipher their antioxidant contribution in addition to polyphenols and vitamins before and after gastrointestinal digestion.
Collapse
Affiliation(s)
- Ivana Prodić
- Innovative Centre of the Faculty of Chemistry in Belgrade Ltd., University of Belgrade, Studentski Trg 12–16, 11158 Belgrade, Serbia
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Maja Krstić Ristivojević
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11158 Belgrade, Serbia
| | - Katarina Smiljanić
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11158 Belgrade, Serbia
| |
Collapse
|
3
|
Sensitive and selective detection of peanut allergen Ara h 1 by ELISA and lateral flow immunoassay. Food Chem 2022; 396:133657. [PMID: 35843000 DOI: 10.1016/j.foodchem.2022.133657] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/17/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
The Ara h1 protein is a peanut allergen and it provides a useful biomarker for the detection of peanut protein. In this manuscript, we describe the generation of monoclonal antibodies (MAbs) against the Ara h1 protein and their development into sensitive and selective immunoassays for peanut detection. Our enzyme-linked immunosorbent assay (sELISA) detects a peanut meal standard with a sensitivity of 10 ng/mL and 500 ng/mL by lateral flow immunoassay (LFIA). MAb Ara h1 binding epitopes were identified, and immunoassay detection was limited to peanut meal varieties irrespective of thermal treatment. No binding was observed from tree nut meals (100-0.4 µg/mL). Peanut allergen detection during food manufacturing can limit the incidence of product recall resulting from cross-contact contamination or improper labeling of finished food products. Detection of Ara h1 by immunoassay can provide a cost-effective method for rapid surveillance of peanut during food production and prior to consumption.
Collapse
|
4
|
Zhang Y, Jin T. Almond allergens: update and perspective on identification and characterization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4657-4663. [PMID: 32270879 DOI: 10.1002/jsfa.10417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Almond (Prunus dulcis) is not only widely used as a human food as a result of its flavor, nutrients, and health benefits, but it is also one of the most likely tree nuts to trigger allergies. Almond allergens, however, have not been studied as extensively as those of peanuts and other selected tree nuts. This review provides an update of the molecular properties of almond allergens to clarify some confusion about the identities of almond allergens and our perspective on characterizing putative almond allergens. At present, the following almond allergens have been designated by the World Health Organization/International Union of Immunological Societies Allergen Nomenclature Sub-Committee: Pru du 3 (a non-specific lipid transfer protein 1, nsLTP1), Pru du 4 (a profilin), Pru du 5 (60S acidic ribosomal protein 2), Pru du 6 (an 11S legumin known as prunin) and Pru du 8 (an antimicrobial protein with cC3C repeats). Besides, almond vicilin and almond γ-conglutin have been identified as food allergens, although further characterization of these allergens is still of interest. In addition, almond 2S albumin was reported as a food allergen as a result of the misidentification of Pru du 8. Two more almond proteins have been called allergens based on their sequence homology with known food allergens and their 'membership' in relevant protein families that contain allergens in many species. These include the pathogenesis related-10 protein (referred to as Pru du 1) and the thaumatin-like protein (referred to as Pru du 2). Almonds thus have five known food allergens and five more likely ones that need to be investigated further. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Yuzhu Zhang
- U.S. Department of Agriculture, Agricultural Research Service, Pacific West Area, Western Regional Research Center, Albany, CA, USA
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
5
|
Che H, Zhang Y, Lyu SC, Nadeau KC, McHugh T. Identification of Almond ( Prunus dulcis) Vicilin As a Food Allergen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:425-432. [PMID: 30512943 DOI: 10.1021/acs.jafc.8b05290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Almond is one of the tree nuts listed by U.S. FDA as a food allergen source. A food allergen identified with patient sera has been debated to be the 2S albumin or the 7S vicilin. However, neither of these proteins has been defined as a food allergen. The purpose of this study was to clone, express, and purify almond vicilin and test whether it is a food allergen. Western blot experiment was performed with 18 individual sera from patients with double-blind, placebo-controlled clinical almond allergy. The results showed that 44% of the sera contained IgE antibodies that recognized the recombinant almond vicilin, indicating that it is an almond allergen. Identifying this and additional almond allergens will facilitate the understanding of the allergenicity of seed proteins in tree nuts and their cross-reactivity.
Collapse
Affiliation(s)
- Huilian Che
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , No. 17 Qinghua Donglu, Haidian District , Beijing 100038 , P. R. China
- Agricultural Research Service, Pacific West Area, Western Regional Research Center , U. S. Department of Agriculture , 800 Buchanan Street , Albany , California 94710 , United States
| | - Yuzhu Zhang
- Agricultural Research Service, Pacific West Area, Western Regional Research Center , U. S. Department of Agriculture , 800 Buchanan Street , Albany , California 94710 , United States
| | - Shu-Chen Lyu
- Division of Pediatric Immunology, Allergy, and Rheumatology, Department of Pediatrics , Stanford University School of Medicine , 269 Campus Drive , Stanford , California 94305 , United States
| | - Kari C Nadeau
- Division of Pediatric Immunology, Allergy, and Rheumatology, Department of Pediatrics , Stanford University School of Medicine , 269 Campus Drive , Stanford , California 94305 , United States
| | - Tara McHugh
- Agricultural Research Service, Pacific West Area, Western Regional Research Center , U. S. Department of Agriculture , 800 Buchanan Street , Albany , California 94710 , United States
| |
Collapse
|
6
|
Abstract
Peanut allergens have the potential to negatively impact on the health and quality of life of millions of consumers worldwide. The seeds of the peanut plant Arachis hypogaea contain an array of allergens that are able to induce the production of specific IgE antibodies in predisposed individuals. A lot of effort has been focused on obtaining the sequences and structures of these allergens due to the high health risk they represent. At present, 16 proteins present in peanuts are officially recognized as allergens. Research has also focused on their in-depth immunological characterization as well as on the design of modified hypoallergenic derivatives for potential use in clinical studies and the formulation of strategies for immunotherapy. Detailed research protocols are available for the purification of natural allergens as well as their recombinant production in bacterial, yeast, insect, and algal cells. Purified allergen molecules are now routinely used in diagnostic multiplex protein arrays for the detection of the presence of allergen-specific IgE. This review gives an overview on the wealth of knowledge that is available on individual peanut allergens.
Collapse
Affiliation(s)
- Chiara Palladino
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
|
8
|
Affiliation(s)
- Louise Manning
- Department of Food Science and Agri-Food Supply Chain Management, Harper Adams University, Newport, Shropshire, United Kingdom
| | - Jan Mei Soon
- International Institute of Nutritional Sciences and Applied Food Safety Studies, School of Sport and Wellbeing, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
9
|
L’Hocine L, Pitre M. Quantitative and qualitative optimization of allergen extraction from peanut and selected tree nuts. Part 2. Optimization of buffer and ionic strength using a full factorial experimental design. Food Chem 2016; 194:820-7. [DOI: 10.1016/j.foodchem.2015.08.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 07/03/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
|
10
|
Peng J, Song S, Liu L, Kuang H, Xu C. Development of Sandwich ELISA and Immunochromatographic Strip for the Detection of Peanut Allergen Ara h 2. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0163-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Ratnaparkhe MB, Lee TH, Tan X, Wang X, Li J, Kim C, Rainville LK, Lemke C, Compton RO, Robertson J, Gallo M, Bertioli DJ, Paterson AH. Comparative and evolutionary analysis of major peanut allergen gene families. Genome Biol Evol 2014; 6:2468-88. [PMID: 25193311 PMCID: PMC4202325 DOI: 10.1093/gbe/evu189] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Peanut (Arachis hypogaea L.) causes one of the most serious food allergies. Peanut seed proteins, Arah1, Arah2, and Arah3, are considered to be among the most important peanut allergens. To gain insights into genome organization and evolution of allergen-encoding genes, approximately 617 kb from the genome of cultivated peanut and 215 kb from a wild relative were sequenced including three Arah1, one Arah2, eight Arah3, and two Arah6 gene family members. To assign polarity to differences between homoeologous regions in peanut, we used as outgroups the single orthologous regions in Medicago, Lotus, common bean, chickpea, and pigeonpea, which diverged from peanut about 50 Ma and have not undergone subsequent polyploidy. These regions were also compared with orthologs in many additional dicot plant species to help clarify the timing of evolutionary events. The lack of conservation of allergenic epitopes between species, and the fact that many different proteins can be allergenic, makes the identification of allergens across species by comparative studies difficult. The peanut allergen genes are interspersed with low-copy genes and transposable elements. Phylogenetic analyses revealed lineage-specific expansion and loss of low-copy genes between species and homoeologs. Arah1 syntenic regions are conserved in soybean, pigeonpea, tomato, grape, Lotus, and Arabidopsis, whereas Arah3 syntenic regions show genome rearrangements. We infer that tandem and segmental duplications led to the establishment of the Arah3 gene family. Our analysis indicates differences in conserved motifs in allergen proteins and in the promoter regions of the allergen-encoding genes. Phylogenetic analysis and genomic organization studies provide new insights into the evolution of the major peanut allergen-encoding genes.
Collapse
Affiliation(s)
- Milind B Ratnaparkhe
- Plant Genome Mapping Laboratory, University of Georgia Directorate of Soybean Research, Indian Council of Agriculture Research (ICAR), Indore, (M.P.), India
| | - Tae-Ho Lee
- Plant Genome Mapping Laboratory, University of Georgia
| | - Xu Tan
- Plant Genome Mapping Laboratory, University of Georgia
| | - Xiyin Wang
- Plant Genome Mapping Laboratory, University of Georgia Center for Genomics and Computational Biology, School of Life Sciences, School of Sciences, Hebei United University, Tangshan, Hebei, China
| | - Jingping Li
- Plant Genome Mapping Laboratory, University of Georgia
| | - Changsoo Kim
- Plant Genome Mapping Laboratory, University of Georgia
| | | | | | | | - Jon Robertson
- Plant Genome Mapping Laboratory, University of Georgia
| | - Maria Gallo
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Mānoa
| | - David J Bertioli
- University of Brasília, Campus Universitário Darcy Ribeiro, DF, Brazil
| | | |
Collapse
|
12
|
Bar-El Dadon S, Pascual CY, Reifen R. Food allergy and cross-reactivity-chickpea as a test case. Food Chem 2014; 165:483-8. [PMID: 25038702 DOI: 10.1016/j.foodchem.2014.05.138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 05/03/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
Abstract
Chickpea has become one of the most abundant crops consumed in the Mediterranean and also in western world. Chickpea allergy is reported in specific geographic areas and is associated with lentil and/or pea allergy. We investigated cross-reactivity between chickpea and pea/lentil/soybean/hazelnut. The IgE-binding profiles of chickpea globulin and pea/lentil/soybean/hazelnut extracts were analyzed by immunoblotting and immunoblot-inhibition studies. Inhibition-assay with pea/lentil completely suppressed IgE-binding to chickpea globulin allergens, while not so in the reciprocal inhibition. Pre-absorption of sera with chickpea globulin caused the disappearance of IgE-binding to protein on an immunoblot of soybean/hazelnut protein extract. These results suggest that cross-reactivity exists between chickpea and pea/lentil/soybean/hazelnut. Chickpea allergy is associated with lentil and/or pea allergy, but evidently may not present independently. This, together with the described asymmetric cross-reactivity and phylogenetic aspects, suggest that chickpea allergy is merely an expression of cross-reactivity, caused by pea and/or lentil as the "primary" allergen.
Collapse
Affiliation(s)
- Shimrit Bar-El Dadon
- The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Cristina Y Pascual
- Servicio de alergologia, Hospital Universitario Infanta Sofia, Paseo de Europa 34, San Sebastian de los Reyes, 28702 Madrid, Spain
| | - Ram Reifen
- The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, 76100 Rehovot, Israel.
| |
Collapse
|
13
|
Khan IJ, Di R, Patel P, Nanda V. Evaluating pH-induced gastrointestinal aggregation of Arachis hypogaea 1 fragments as potential components of peanut allergy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8430-8435. [PMID: 23926999 PMCID: PMC4074858 DOI: 10.1021/jf401701t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The seed storage glycoprotein Arachis hypogaea (Ara h) 1 is a major allergen found in peanuts. The biochemical resistance of food proteins to protease digestion contributes to their allergenicity. The rapid proteolysis of Ara h 1 under gastric conditions challenges this model. Biophysical and in vitro digestion experiments were carried out to identify how Ara h 1 epitopes might survive digestion, despite their facile degradation. The bicupin core of Ara h 1 can be unfolded at low pH and reversibly folded at higher pH. Additionally, peptide fragments from simulated gastric digestion predominantly form noncovalent aggregates when transferred to base. Disulfide cross-links within these aggregates occur as intermediates in relatively low amounts only at early times and play no role in shielding peptides from degradation. It is proposed that peptide fragments which survive gastric conditions form large aggregates in basic environments such as the small intestine, making epitopes available for triggering an allergic response.
Collapse
Affiliation(s)
- I. John Khan
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | - Rong Di
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Priyesh Patel
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 679 Hoes Lane, Piscataway, NJ 08854, USA
| |
Collapse
|
14
|
Osuji GO, Brown TK, South SM, Johnson D, Hyllam S. Molecular modeling of metabolism for allergen-free low linoleic acid peanuts. Appl Biochem Biotechnol 2012; 168:805-23. [PMID: 22918723 PMCID: PMC3470683 DOI: 10.1007/s12010-012-9821-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 08/01/2012] [Indexed: 11/28/2022]
Abstract
It is necessary to eliminate linoleic acid and allergenic arachins from peanuts for good health reasons. Virginia-type peanuts, harvested from plots treated with mineral salts combinations that mimic the subunit compositions of glutamate dehydrogenase (GDH) were analyzed for fatty acid and arachin compositions by HPLC and polyacrylamide gel electrophoresis, respectively. Fatty acid desaturase and arachin encoding mRNAs were analyzed by Northern hybridization using the homologous RNAs synthesized by peanut GDH as probes. There were 70–80 % sequence similarities between the GDH-synthesized RNAs and the mRNAs encoding arachins, fatty acid desaturases, glutamate synthase, and nitrate reductase, which similarities induced permutation of the metabolic pathways at the mRNA level. Modeling of mRNAs showed there were 210, 3,150, 1,260, 2,520, and 4,200 metabolic permutations in the control, NPKS-, NS-, Pi-, NH4Cl-, and PK-treated peanuts, respectively. The mRNA cross-talks decreased the arachin to almost zero percent in the NPKS- and PK-treated peanuts, and linoleate to ∼18 % in the PK-treated peanut. The mRNA cross-talks may account for the vastly reported environmentally induced variability in the linoleate contents of peanut genotypes. These results have quantitatively unified molecular biology and metabolic pathways into one simple biotechnology for optimizing peanut quality and may encourage small-scale industry to produce arachin-free low linoleate peanuts.
Collapse
Affiliation(s)
- Godson O Osuji
- CARC, Prairie View A&M University, P.O. Box 519-2008, Prairie View, TX 77446, USA.
| | | | | | | | | |
Collapse
|
15
|
Verma AK, Kumar S, Das M, Dwivedi PD. A Comprehensive Review of Legume Allergy. Clin Rev Allergy Immunol 2012; 45:30-46. [DOI: 10.1007/s12016-012-8310-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Bhattacharya A, Ramos ML, Faustinelli P, Ozias-Akins P. Reporter Gene Expression Patterns Regulated by an Ara h 2 Promoter Differ in Homologous Versus Heterologous Systems1. ACTA ACUST UNITED AC 2012. [DOI: 10.3146/ps11-16.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
Peanut (Arachis hypogaea L.) is a globally important crop whose seeds are widely used in food products. Peanut seeds contain proteins that serve a nutrient reservoir function and that also are major allergens. As part of an investigation to determine the effect of reducing/eliminating the peanut allergen Ara h 2 from seeds, gene sequence including upstream regulatory regions was characterized. The ability of regions upstream of the translation initiation site to regulate seed-specific expression of reporter genes was tested in peanut and Arabidopsis. Two independent transgenic peanut lines biolistically transformed with 1kb of DNA upstream of the Ara h 2.02 (B-genome) coding sequence controlling a Green Fluorescent Protein – β-glucuronidase (Gfp-Gus) fusion were obtained. All T1, T2 and T3 generations of transgenic plants showed the expression of GFP and GUS restricted to seeds and near background levels in vegetative tissues. However, constitutive GUS expression was observed in Arabidopsis transgenic lines, a heterologous system. It is possible that trans-acting factors regulating seed specificity in peanut are too divergent in Arabidopsis to enable the seed specific response. Thus, the promoter described in this paper may have potential use for expression of transgenes in peanut where seed-specificity is desired, but expression patterns should be tested in heterologous systems prior to off-the-shelf adoption.
Collapse
Affiliation(s)
- A Bhattacharya
- Present address: Bench Biotechnology, Vapi, Gujarat, India
| | - M. L. Ramos
- Present address: NIDERA S.A., Departamento de Biotecnologia, Venado Tuerto, Santa Fe CP2600, Argentina
| | - P. Faustinelli
- Present address: Faculty of Agricultural Sciences, Catholic University of Cordoba, Camino a Alta Gracia km 7 1/2 (5017), Cordoba, Argentina
| | - P. Ozias-Akins
- Research location and current address of P. Ozias-Akins: Department of Horticulture and NESPAL, The University of Georgia Tifton Campus, Tifton, GA 31793-5766
| |
Collapse
|
17
|
Xie Z, Neigel J, Chlan C. Vicilin genes of Vigna luteola: structure, organization, expression, and variation. Biochem Genet 2011; 50:372-88. [PMID: 22160248 DOI: 10.1007/s10528-011-9481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 11/06/2011] [Indexed: 10/14/2022]
Abstract
Two different but related sequences that encode Vigna luteola 7S vicilins were isolated and characterized. The sequences differ by two nucleotide substitutions, each of which results in an amino acid replacement. This low level of divergence suggests that a recent gene duplication has occurred. Both variants are expressed in cDNA populations; therefore, neither gene is a pseudogene. Both copies were present in all individuals (72) analyzed using real-time PCR and TaqMan probes. Segregation was not observed. The two sequences are not independent alleles. Vicilin genomic sequences of 11 specimens from six geographic locations were determined. No polymorphic sites were identified in either of the two gene copies. This lack of polymorphism suggests that either a population bottleneck or selection has occurred. The genetic structure, expression patterns, and protein composition of the V. luteola vicilins were compared to those of other legume vicilins.
Collapse
Affiliation(s)
- Zhongyu Xie
- Biology Department, University of Louisiana at Lafayette, P.O. Box 42451, Lafayette, LA 70504, USA
| | | | | |
Collapse
|
18
|
|
19
|
Knoll JE, Ramos ML, Zeng Y, Holbrook CC, Chow M, Chen S, Maleki S, Bhattacharya A, Ozias-Akins P. TILLING for allergen reduction and improvement of quality traits in peanut (Arachis hypogaea L.). BMC PLANT BIOLOGY 2011; 11:81. [PMID: 21569438 PMCID: PMC3113929 DOI: 10.1186/1471-2229-11-81] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 05/12/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Allergic reactions to peanuts (Arachis hypogaea L.) can cause severe symptoms and in some cases can be fatal, but avoidance is difficult due to the prevalence of peanut-derived products in processed foods. One strategy of reducing the allergenicity of peanuts is to alter or eliminate the allergenic proteins through mutagenesis. Other seed quality traits could be improved by altering biosynthetic enzyme activities. Targeting Induced Local Lesions in Genomes (TILLING), a reverse-genetics approach, was used to identify mutations affecting seed traits in peanut. RESULTS Two similar copies of a major allergen gene, Ara h 1, have been identified in tetraploid peanut, one in each subgenome. The same situation has been shown for major allergen Ara h 2. Due to the challenge of discriminating between homeologous genes in allotetraploid peanut, nested PCR was employed, in which both gene copies were amplified using unlabeled primers. This was followed by a second PCR using gene-specific labeled primers, heteroduplex formation, CEL1 nuclease digestion, and electrophoretic detection of labeled fragments. Using ethyl methanesulfonate (EMS) as a mutagen, a mutation frequency of 1 SNP/967 kb (3,420 M2 individuals screened) was observed. The most significant mutations identified were a disrupted start codon in Ara h 2.02 and a premature stop codon in Ara h 1.02. Homozygous individuals were recovered in succeeding generations for each of these mutations, and elimination of Ara h 2.02 protein was confirmed. Several Ara h 1 protein isoforms were eliminated or reduced according to 2D gel analyses. TILLING also was used to identify mutations in fatty acid desaturase AhFAD2 (also present in two copies), a gene which controls the ratio of oleic to linoleic acid in the seed. A frameshift mutation was identified, resulting in truncation and inactivation of AhFAD2B protein. A mutation in AhFAD2A was predicted to restore function to the normally inactive enzyme. CONCLUSIONS This work represents the first steps toward the goal of creating a peanut cultivar with reduced allergenicity. TILLING in peanut can be extended to virtually any gene, and could be used to modify other traits such as nutritional properties of the seed, as shown in this study.
Collapse
Affiliation(s)
- Joseph E Knoll
- Department of Horticulture/NESPAL, University of Georgia-Tifton Campus, Tifton, GA 31793, USA
- USDA-ARS Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA
| | - M Laura Ramos
- Department of Horticulture/NESPAL, University of Georgia-Tifton Campus, Tifton, GA 31793, USA
| | - Yajuan Zeng
- Department of Horticulture/NESPAL, University of Georgia-Tifton Campus, Tifton, GA 31793, USA
| | - C Corley Holbrook
- USDA-ARS Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA
| | - Marjorie Chow
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Sixue Chen
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Soheila Maleki
- USDA-ARS Southern Regional Research Center, New Orleans, LA 70124, USA
| | - Anjanabha Bhattacharya
- Department of Horticulture/NESPAL, University of Georgia-Tifton Campus, Tifton, GA 31793, USA
| | - Peggy Ozias-Akins
- Department of Horticulture/NESPAL, University of Georgia-Tifton Campus, Tifton, GA 31793, USA
| |
Collapse
|
20
|
Lee JM, Kim EJ, Kwon DG, Lee SY. Clinical Characteristics of Walnut Allergy and Evaluation of Cross-Reactivity between Walnut and Peanut in Children Under 4 Years of Age. ACTA ACUST UNITED AC 2011. [DOI: 10.7581/pard.2011.21.4.261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Jeong-Min Lee
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| | - Eun-Jin Kim
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| | - Duck-Guen Kwon
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| | - Soo-Young Lee
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
21
|
Misra A, Prasad R, Das M, Dwivedi PD. Probing novel allergenic proteins of commonly consumed legumes. Immunopharmacol Immunotoxicol 2009; 31:186-94. [DOI: 10.1080/08923970802578782] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Riecken S, Lindner B, Petersen A, Jappe U, Becker WM. Purification and characterization of natural Ara h 8, the Bet v 1 homologous allergen from peanut, provides a novel isoform. Biol Chem 2008; 389:415-23. [PMID: 18208358 DOI: 10.1515/bc.2008.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The peanut allergen Ara h 8 is an important allergen for birch pollen allergic patients because of the cross-reactivity to the homologous Bet v 1. As the existence of Ara h 8 has been shown at the cDNA level so far (AY328088) and the allergen has indirectly been detected as natural protein, it was the aim of our study to identify natural Ara h 8 in peanut extract and to develop a purification strategy. This was achieved using a unique combination of purification steps, including optimized extraction conditions, size exclusion and ion exchange chromatography and treatment of the interfering contaminants with iodoacetic acid. A characterization of the protein by microsequencing showed discrepancies to the deduced amino acid sequence of AY328088. For this reason, we cloned and expressed a new Ara h 8 isoform from cDNA (EU046325). This IgE-reactive protein corresponds to the results of microsequencing, ESI-FTICR-MS and trypsin fingerprinting analysis of the authentic and purified nAra h 8. Apart from the ultimate use of recombinant allergens for diagnostic procedures, there is also a scientific need for the natural counterpart, as it represents an excellent reference point by which to compare protein characteristics and to standardize diagnostic and therapeutic allergens.
Collapse
Affiliation(s)
- Susanne Riecken
- Molecular and Clinical Allergology, Research Center Borstel, Parkallee 22, D-22457 Borstel, Germany
| | | | | | | | | |
Collapse
|
23
|
Jin T, Albillos SM, Chen YW, Kothary MH, Fu TJ, Zhang YZ. Purification and characterization of the 7S vicilin from Korean pine (Pinus koraiensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:8159-8165. [PMID: 18690685 DOI: 10.1021/jf801138q] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pine nuts are economically important as a source of human food. They are also of medical importance because numerous pine nut allergy cases have been recently reported. However, little is known about the proteins in pine nuts. The purpose of this study was to purify and characterize pine nut storage proteins. Reported here is the first detailed purification protocol of the 7S vicilin-type globulin from Korean pine (Pinus koraiensis) by gel filtration, anion exchange, and hydrophobic interaction chromatography. Reducing SDS-PAGE analysis indicated that purified vicilin consists of four major bands, reminiscent of post-translational protease cleavage of storage proteins during protein body packing in other species. The N-terminal ends of vicilin peptides were sequenced by Edman degradation. Circular dichroism (CD) and differential scanning calorimetry (DSC) analyses revealed that pine nut vicilin is stable up to 80 degrees C and its folding-unfolding equilibrium monitored by intrinsic fluorescence can be interpreted in terms of a two-state model.
Collapse
Affiliation(s)
- Tengchuan Jin
- Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | | | | | | | | | | |
Collapse
|
24
|
Barre A, Sordet C, Culerrier R, Rancé F, Didier A, Rougé P. Vicilin allergens of peanut and tree nuts (walnut, hazelnut and cashew nut) share structurally related IgE-binding epitopes. Mol Immunol 2007; 45:1231-40. [PMID: 18029017 DOI: 10.1016/j.molimm.2007.09.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 09/18/2007] [Accepted: 09/19/2007] [Indexed: 10/22/2022]
Abstract
Surface-exposed IgE-binding epitopes of close overall conformation were characterized on the molecular surface of three-dimensional models built for the vicilin allergens of peanut (Ara h 1), walnut (Jug r 2), hazelnut (Cor a 11) and cashew nut (Ana o 1). They correspond to linear stretches of conserved amino acid sequences mainly located along the C-terminus of the polypeptide chains. A glyco-epitope corresponding to an exposed N-glycosylation site could also interfere with the IgE-binding epitopes. All these epitopic regions should participate in the IgE-binding cross-reactivity commonly reported between tree nuts or between peanut and some tree nuts in sensitized individuals. Owing to this epitopic community which constitutes a risk of cross-sensitization, the avoidance or a restricted consumption of other tree nuts should be recommended to peanut-sensitized individuals.
Collapse
Affiliation(s)
- Annick Barre
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR-CNRS 5546, Pôle de Biotechnologie végétale, 24 Chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | | | | | | | | | | |
Collapse
|
25
|
Chassaigne H, Nørgaard JV, Hengel AJV. Proteomics-based approach to detect and identify major allergens in processed peanuts by capillary LC-Q-TOF (MS/MS). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:4461-73. [PMID: 17474754 DOI: 10.1021/jf063630e] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
An MS-based method, combining reversed-phase capillary liquid chromatography (capillary LC) with quadrupole time-of-flight tandem mass spectrometry (nano-ESI Q-TOF MS/MS), was developed with the aim of identifying a set of peptides that can function as markers for peanut allergens. Emphasis was given to the identification of the three major peanut allergens Ara h 1, Ara h 2, and Ara h 3, because these proteins are considered to represent >30% of the total protein content of peanut and are directly relevant for the allergenic potential of this food. The analytical data obtained were used to perform databank searching in combination with de novo sequencing and led to the identification of a multitude of sequence tags for all three peanut allergens. Food processing such as roasting of peanuts is known to affect the stability of proteins and was shown to influence the detection of allergen sequence tags. The analysis of raw and roasted peanuts allowed the identification of five peanut-specific sequence tags that can function as markers of the specific allergenic proteins. For Ara h 1, two peptide markers were proposed, namely, VLEENAGGEQEER (m/z 786.88, charge 2+) and DLAFPGSGEQVEK (m/z 688.85, charge 2+), whereas for Ara h 2 only one peptide, RQQWELQGDR (m/z 439.23, charge 3+), was found to satisfy the required conditions. For Ara h 3, the two specific peptides, SPDIYNPQAGSLK (m/z 695.35, charge 2+) and SQSENFEYVAFK (m/z 724.84, charge 2+), were selected. Other peptides have been proposed as indicative for food processing.
Collapse
Affiliation(s)
- Hubert Chassaigne
- Food Safety and Quality Unit, Institute for Reference Materials and Measurements, European Commission - DG Joint Research Centre, Retieseweg 111, B-2440 Geel, Belgium.
| | | | | |
Collapse
|
26
|
|
27
|
Barre A, Borges JP, Rougé P. Molecular modelling of the major peanut allergen Ara h 1 and other homotrimeric allergens of the cupin superfamily: a structural basis for their IgE-binding cross-reactivity. Biochimie 2005; 87:499-506. [PMID: 15935274 DOI: 10.1016/j.biochi.2005.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 11/05/2004] [Accepted: 02/23/2005] [Indexed: 11/17/2022]
Abstract
Three-dimensional models of the major vicilin allergens from peanut (Ara h 1), lentil (Len c 1) and pea (Pis s 1), were built by homology-based modelling from the X-ray coordinates of the structurally closely related soybean beta-conglycinin. All the allergen monomers exhibit the typical cupin motif made of two modules related by a pseudo-dyad axis. Each module consists of a beta-barrel core domain associated to a loop domain which mainly contains alpha-helices. The three cupin motifs are assumed to be arranged in a homotrimeric structure similar to that observed in beta-conglycinin, phaseolin or canavalin. Most of the sequential B-cell epitopes characterized on the C-terminus of the Ara h 1 allergen are well conserved in both Len c 1 and Pis s 1 allergens. They occupy very comparable areas on the molecular surface of the allergens and exhibit a similar three-dimensional conformation. This antigenic community readily accounts for the IgE-binding cross-reactivity commonly observed between the vicilin allergens from edible legume seeds. The clinical implication of this cross-reactivity is addressed for a definite diagnosis of legume seed allergy.
Collapse
Affiliation(s)
- Annick Barre
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR-CNRS 5546, Pôle de Biotechnologie végétale, 24, chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | | | | |
Collapse
|
28
|
Dodo H, Konan K, Viquez O. A genetic engineering strategy to eliminate peanut allergy. Curr Allergy Asthma Rep 2005; 5:67-73. [PMID: 15659267 DOI: 10.1007/s11882-005-0058-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peanut allergy is an IgE-mediated hypersensitivity reaction with an increasing prevalence worldwide. Despite its seriousness, to date, there is no cure. Genetic engineering strategies can provide a solution. The post-transcriptional gene silencing (PTGS) model can be used effectively to knock out the production of allergenic proteins in peanut by specific degradation of the endogenous target messenger RNA (mRNA). Ara h 2, the most potent peanut allergenic protein, was selected as a model to demonstrate the feasibility of this concept. Transgenic peanut plants were produced via microprojectile-mediated transformation of peanut embryos using a plasmid construct, which contains a fragment of the coding region of Ara h 2 linked to an enhanced CaMV 35S constitutive promoter. Molecular analyses, including polymerase chain reaction and Southern blots, confirmed the presence of the stable integration of the Ara h 2 transgene into the peanut genome. Northern hybridization showed the expression of the Ara h 2 transgene in all vegetative tissues of the mature transgenic peanut plants, indicating the stable expression of the truncated Ara h 2 transgene throughout the development of the plants. It is, therefore, reasonable to expect that the truncated Ara h 2 transgene transcripts will be synthesized in the seeds and will trigger the specific degradation of endogenous Ara h 2 mRNA. The next step will be to grow the transgenic peanut plants to full maturity for seed production and to determine the level of allergen Ara h 2.
Collapse
Affiliation(s)
- Hortense Dodo
- Food Biotechnology Laboratory, Department of Food & Animal Sciences, PO Box 1628, Alabama A&M University, Normal, AL 35762, USA.
| | | | | |
Collapse
|
29
|
Boateng JA, Viquez OM, Konan KN, Dodo HW. Screening of a peanut (Arachis hypogaea L.) cDNA library to isolate a Bowman-Birk trypsin inhibitor clone. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:2028-2031. [PMID: 15769131 DOI: 10.1021/jf049017h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Peanut crop losses due to insect and pest infestation cost peanut farmers nearly 20% of their annual yields. The conventional use of chemicals to combat this problem is costly and toxic to humans and livestock and leads to the development of resistance by target insects. Transgenic plants expressing a trypsin inhibitor gene in tobacco and cowpea have proven to be efficient for resistance against insects. Therefore, a transgenic peanut overexpressing a trypsin inhibitor gene could be an alternative solution to the use of toxic chemicals. Five Bowman-Birk trypsin inhibitor (BBTI) proteins were previously isolated from peanut. However, to date, neither cDNA nor genomic DNA sequences are available. The objective of this research was to screen a peanut cDNA library to isolate and sequence at least one full-length peanut BBTI cDNA clone. Two heterologous oligonucleotides were constructed on the basis of a garden pea (Pisum sativa) trypsin inhibitor nucleotide sequence and used as probes to screen a peanut lambda gt-11 cDNA library. Two positive and identical cDNA clones were isolated, subcloned into a pBluescript vector, and sequenced. Sequence analysis revealed a full-length BBTI cDNA of about 243 bp, with a start codon ATG at position +1 and a stop codon TGA at position +243. In the 3' end, two poly adenylation signals (AATAAA) were identified at positions +261 and +269. The isolated cDNA clone encodes a protein of 80 amino acid residues including a leader sequence of 11 amino acids. The deduced amino acid sequence is 100% identical to published sequences of peanut BBTI AI, AII, BI, and BIII and 81% identical to BII.
Collapse
Affiliation(s)
- Judith A Boateng
- Department of Food and Animal Sciences, Food Biotechnology Laboratory, Alabama A&M University, Normal, Alabama 35762, USA
| | | | | | | |
Collapse
|
30
|
Viquez OM, Konan KN, Dodo HW. Genomic organization of peanut allergen gene, Ara h 3. Mol Immunol 2005; 41:1235-40. [PMID: 15482859 DOI: 10.1016/j.molimm.2004.06.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 06/09/2004] [Indexed: 11/19/2022]
Abstract
Type 1 hypersensitivity to peanut proteins is a well-recognized health problem. Several peanut seed storage proteins have been identified as allergens. Ara h 3, a glycinin protein, is one of the important peanut allergens. Although amino acid and cDNA sequences are available for Ara h 3, there is not information at the genomic level. The objectives of this study were to isolate, sequence, and characterize the genomic clone of peanut allergen, Ara h 3. A peanut genomic library was screened, using two [32P] end-labeled oligonucleotide probes designed based on cDNA sequences of Ara h 3 and Ara h 4. Four positives lambda FIX II clones were obtained after four rounds of screenings. Digestion with Sac I resulted in two fragments of 1.5 and 10 kb hybridizing to the probes. Both fragments were subcloned into p-Bluescript vector and sequenced. The Ara h 3 gene spans 3.5 kb and consists of four exons, three introns, 5' and 3' flanking regions. The open reading frame is 2008 bp long and can encode a polypeptide of 538 amino acids residues. Sequences analogous to a TATA-box (TATAAAT), CAAT-box (AGGA), G-box (TCCTACGTGTCC) and several cis-elements were found in the promoter region. In the 3' downstream region, three polyadenylation signals (AATAAA) were identified.
Collapse
Affiliation(s)
- Olga M Viquez
- Food Biotechnology Laboratory, Department of Food and Animal Sciences, P.O. Box 1628, Alabama A and M University, Normal AL 35762, USA
| | | | | |
Collapse
|