1
|
Rauch E, Amendt T, Lopez Krol A, Lang FB, Linse V, Hohmann M, Keim AC, Kreutzer S, Kawengian K, Buchholz M, Duschner P, Grauer S, Schnierle B, Ruhl A, Burtscher I, Dehnert S, Kuria C, Kupke A, Paul S, Liehr T, Lechner M, Schnare M, Kaufmann A, Huber M, Winkler TH, Bauer S, Yu P. T-bet + B cells are activated by and control endogenous retroviruses through TLR-dependent mechanisms. Nat Commun 2024; 15:1229. [PMID: 38336876 PMCID: PMC10858178 DOI: 10.1038/s41467-024-45201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Endogenous retroviruses (ERVs) are an integral part of the mammalian genome. The role of immune control of ERVs in general is poorly defined as is their function as anti-cancer immune targets or drivers of autoimmune disease. Here, we generate mouse-strains where Moloney-Murine Leukemia Virus tagged with GFP (ERV-GFP) infected the mouse germline. This enables us to analyze the role of genetic, epigenetic and cell intrinsic restriction factors in ERV activation and control. We identify an autoreactive B cell response against the neo-self/ERV antigen GFP as a key mechanism of ERV control. Hallmarks of this response are spontaneous ERV-GFP+ germinal center formation, elevated serum IFN-γ levels and a dependency on Age-associated B cells (ABCs) a subclass of T-bet+ memory B cells. Impairment of IgM B cell receptor-signal in nucleic-acid sensing TLR-deficient mice contributes to defective ERV control. Although ERVs are a part of the genome they break immune tolerance, induce immune surveillance against ERV-derived self-antigens and shape the host immune response.
Collapse
Affiliation(s)
- Eileen Rauch
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
- CSL Behring Innovation GmbH, Emil-von-Behring-Str. 76, 35041, Marburg, Germany
| | - Timm Amendt
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
- The Francis Crick Institute, NW1 1AT, London, UK
| | | | - Fabian B Lang
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Vincent Linse
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Michelle Hohmann
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
- Apollo Ventures Holding GmbH, 20457, Hamburg, Germany
| | - Ann-Christin Keim
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Susanne Kreutzer
- Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Kevin Kawengian
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology and Metabolism, and Core Facility Small Animal Multispectral and Ultrasound Imaging, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Philipp Duschner
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Saskia Grauer
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Barbara Schnierle
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Andreas Ruhl
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
- Department of Infection Biology, University Hospital Erlangen, 91054, Erlangen, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Sonja Dehnert
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Chege Kuria
- Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Alexandra Kupke
- Institute of Virology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Stephanie Paul
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, 07747, Jena, Germany
| | - Marcus Lechner
- Center for Synthetic Microbiology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Markus Schnare
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Andreas Kaufmann
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Magdalena Huber
- Institute of Sytems Immunology, Center for Tumor and Immunobiology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Thomas H Winkler
- Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Stefan Bauer
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Philipp Yu
- Institute of Immunology, Philipps-Universität Marburg, 35043, Marburg, Germany.
| |
Collapse
|
2
|
Hao J, Yang X, Zhang C, Zhang XT, Shi M, Wang SH, Mi L, Zhao YT, Cao H, Wang Y. KLF3 promotes the 8-cell-like transcriptional state in pluripotent stem cells. Cell Prolif 2020; 53:e12914. [PMID: 32990380 PMCID: PMC7653263 DOI: 10.1111/cpr.12914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Mouse embryonic stem cell (mESC) culture contains various heterogeneous populations, which serve as excellent models to study gene regulation in early embryo development. The heterogeneity is typically defined by transcriptional activities, for example, the expression of Nanog or Rex1 mRNA. Our objectives were to identify mESC heterogeneity that are caused by mechanisms other than transcriptional control. MATERIALS AND METHODS Klf3 mRNA and protein were analysed by RT-qPCR, Western blotting or immunofluorescence in mESCs, C2C12 cells, early mouse embryos and various mouse tissues. An ESC reporter line expressing KLF3-GFP fusion protein was made to study heterogeneity of KLF3 protein expression in ESCs. GFP-positive mESCs were sorted for further analysis including RT-qPCR and RNA-seq. RESULTS In the majority of mESCs, KLF3 protein is actively degraded due to its proline-rich sequence and highly disordered structure. Interestingly, KLF3 protein is stabilized in a small subset of mESCs. Transcriptome analysis indicates that KLF3-positive mESCs upregulate genes that are initially activated in 8-cell embryos. Consistently, KLF3 protein but not mRNA is dramatically increased in 8-cell embryos. Forced expression of KLF3 protein in mESCs promotes the expression of 8-cell-embryo activated genes. CONCLUSIONS Our study identifies previously unrecognized heterogeneity due to KLF3 protein expression in mESCs.
Collapse
Affiliation(s)
- Jing Hao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xi Yang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Chao Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xue-Tao Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ming Shi
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Shao-Hua Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Li Mi
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yu-Ting Zhao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Huiqing Cao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yangming Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
3
|
Alles M, Turchinovich G, Zhang P, Schuh W, Agenès F, Kirberg J. Leukocyte β7 integrin targeted by Krüppel-like factors. THE JOURNAL OF IMMUNOLOGY 2014; 193:1737-46. [PMID: 25015818 DOI: 10.4049/jimmunol.1302613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Constitutive expression of Krüppel-like factor 3 (KLF3, BKLF) increases marginal zone (MZ) B cell numbers, a phenotype shared with mice lacking KLF2. Ablation of KLF3, known to interact with serum response factor (SRF), or SRF itself, results in fewer MZ B cells. It is unknown how these functional equivalences result. In this study, it is shown that KLF3 acts as transcriptional repressor for the leukocyte-specific integrin β7 (Itgb7, Ly69) by binding to the β7 promoter, as revealed by chromatin immunoprecipitation. KLF2 overexpression antagonizes this repression and also binds the β7 promoter, indicating that these factors may compete for target sequence(s). Whereas β7 is identified as direct KLF target, its repression by KLF3 is not connected to the MZ B cell increase because β7-deficient mice have a normal complement of these and the KLF3-driven increase still occurs when β7 is deleted. Despite this, KLF3 overexpression abolishes lymphocyte homing to Peyer's patches, much like β7 deficiency does. Furthermore, KLF3 expression alone overcomes the MZ B cell deficiency when SRF is absent. SRF is also dispensable for the KLF3-mediated repression of β7. Thus, despite the shared phenotype of KLF3 and SRF-deficient mice, cooperation of these factors appears neither relevant for the formation of MZ B cells nor for the regulation of β7. Finally, a potent negative regulatory feedback loop limiting KLF3 expression is shown in this study, mediated by KLF3 directly repressing its own gene promoter. In summary, KLFs use regulatory circuits to steer lymphocyte maturation and homing and directly control leukocyte integrin expression.
Collapse
Affiliation(s)
- Melanie Alles
- Division of Immunology (3/3), Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Gleb Turchinovich
- Department of Biomedicine, Laboratory of Developmental Immunology, 4058 Basel, Switzerland; Basel University Children's Hospital, 4031 Basel, Switzerland
| | - Pumin Zhang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030
| | - Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Fabien Agenès
- INSERM U743, Montreal, Quebec H2X 1P1, Canada; and INSERM ADR Paris V Saint Anne, 75014 Paris, France
| | - Jörg Kirberg
- Division of Immunology (3/3), Paul-Ehrlich-Institut, 63225 Langen, Germany;
| |
Collapse
|
4
|
Jain MK, Sangwung P, Hamik A. Regulation of an inflammatory disease: Krüppel-like factors and atherosclerosis. Arterioscler Thromb Vasc Biol 2014; 34:499-508. [PMID: 24526695 PMCID: PMC5539879 DOI: 10.1161/atvbaha.113.301925] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/07/2014] [Indexed: 12/13/2022]
Abstract
This invited review summarizes work presented in the Russell Ross lecture delivered at the 2012 proceedings of the American Heart Association. We begin with a brief overview of the structural, cellular, and molecular biology of Krüppel-like factors. We then focus on discoveries during the past decade, implicating Krüppel-like factors as key determinants of vascular cell function in atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Mukesh K. Jain
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Panjamaporn Sangwung
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Anne Hamik
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Cleveland, Ohio, USA
- Division of Cardiovascular Medicine, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio
| |
Collapse
|
5
|
Alaiti MA, Orasanu G, Tugal D, Lu Y, Jain MK. Kruppel-like factors and vascular inflammation: implications for atherosclerosis. Curr Atheroscler Rep 2012; 14:438-49. [PMID: 22850980 PMCID: PMC4410857 DOI: 10.1007/s11883-012-0268-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mohamad Amer Alaiti
- Harrington Heart and Vascular Institute and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, 2103 Cornell Road, Room 4-522, Cleveland, OH 44106, USA
| | - Gabriela Orasanu
- Harrington Heart and Vascular Institute and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, 2103 Cornell Road, Room 4-522, Cleveland, OH 44106, USA
| | - Derin Tugal
- Harrington Heart and Vascular Institute and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, 2103 Cornell Road, Room 4-522, Cleveland, OH 44106, USA
| | - Yuan Lu
- Harrington Heart and Vascular Institute and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, 2103 Cornell Road, Room 4-522, Cleveland, OH 44106, USA
| | - Mukesh K. Jain
- Harrington Heart and Vascular Institute and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, 2103 Cornell Road, Room 4-522, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Vu TT, Gatto D, Turner V, Funnell APW, Mak KS, Norton LJ, Kaplan W, Cowley MJ, Agenès F, Kirberg J, Brink R, Pearson RCM, Crossley M. Impaired B cell development in the absence of Krüppel-like factor 3. THE JOURNAL OF IMMUNOLOGY 2011; 187:5032-42. [PMID: 22003205 DOI: 10.4049/jimmunol.1101450] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Krüppel-like factor 3 (Klf3) is a member of the Klf family of transcription factors. Klfs are widely expressed and have diverse roles in development and differentiation. In this study, we examine the function of Klf3 in B cell development by studying B lymphopoiesis in a Klf3 knockout mouse model. We show that B cell differentiation is significantly impaired in the bone marrow, spleen, and peritoneal cavity of Klf3 null mice and confirm that the defects are cell autonomous. In the bone marrow, there is a reduction in immature B cells, whereas recirculating mature cells are noticeably increased. Immunohistology of the spleen reveals a poorly structured marginal zone (MZ) that may in part be caused by deregulation of adhesion molecules on MZ B cells. In the peritoneal cavity, there are significant defects in B1 B cell development. We also report that the loss of Klf3 in MZ B cells is associated with reduced BCR signaling strength and an impaired ability to respond to LPS stimulation. Finally, we show increased expression of a number of Klf genes in Klf3 null B cells, suggesting that a Klf regulatory network may exist in B cells.
Collapse
Affiliation(s)
- Thi Thanh Vu
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pearson RCM, Funnell APW, Crossley M. The mammalian zinc finger transcription factor Krüppel-like factor 3 (KLF3/BKLF). IUBMB Life 2011; 63:86-93. [PMID: 21360637 DOI: 10.1002/iub.422] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/25/2010] [Indexed: 01/21/2023]
Abstract
KLF3 is a member of the Krüppel-like factor (KLF) family of transcription factors. These proteins are classified by the presence of three C-terminal C2H2 zinc fingers that allow sequence-specific binding to CACCC boxes and GC-rich motifs found in the promoters, enhancers, and other control regions of target genes. KLFs have diverse biological roles, regulating proliferation, differentiation, and apoptosis in many tissues throughout development. KLF3 is a transcriptional repressor that binds the cofactor C-terminal binding protein, which in turn recruits a large repressor complex to mediate transcriptional silencing. In addition to an understanding of the molecular mechanisms that allow KLF3 to regulate the expression of its target genes, the biological roles of this transcription factor are now being defined. In agreement with the widespread expression pattern of this transcription factor, it is becoming clear that KLF3 is an important regulator of several biological processes, including adipogenesis, erythropoiesis, and B cell development.
Collapse
Affiliation(s)
- Richard C M Pearson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | |
Collapse
|
8
|
Abstract
Splenic marginal zone (MZ) B cells are a lineage distinct from follicular and peritoneal B1 B cells. They are located next to the marginal sinus where blood is released. Here they pick up antigens and shuttle the load onto follicular dendritic cells inside the follicle. On activation, MZ B cells rapidly differentiate into plasmablasts secreting antibodies, thereby mediating humoral immune responses against blood-borne type 2 T-independent antigens. As Krüppel-like factors are implicated in cell differentiation/function in various tissues, we studied the function of basic Krüppel-like factor (BKLF/KLF3) in B cells. Whereas B-cell development in the bone marrow of KLF3-transgenic mice was unaffected, MZ B-cell numbers in spleen were increased considerably. As revealed in chimeric mice, this occurred cell autonomously, increasing both MZ and peritoneal B1 B-cell subsets. Comparing KLF3-transgenic and nontransgenic follicular B cells by RNA-microarray revealed that KLF3 regulates a subset of genes that was similarly up-regulated/down-regulated on normal MZ B-cell differentiation. Indeed, KLF3 expression overcame the lack of MZ B cells caused by different genetic alterations, such as CD19-deficiency or blockade of B-cell activating factor-receptor signaling, indicating that KLF3 may complement alternative nuclear factor-κB signaling. Thus, KLF3 is a driving force toward MZ B-cell maturation.
Collapse
|