1
|
Methamphetamine Impairs IgG1-Mediated Phagocytosis and Killing of Cryptococcus neoformans by J774.16 Macrophage- and NR-9640 Microglia-Like Cells. Infect Immun 2019; 87:IAI.00113-18. [PMID: 30510106 DOI: 10.1128/iai.00113-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 11/27/2018] [Indexed: 01/14/2023] Open
Abstract
The prevalence of methamphetamine (METH) use is estimated at ∼35 million people worldwide, with over 10 million users in the United States. Chronic METH abuse and dependence predispose the users to participate in risky behaviors that may result in the acquisition of HIV and AIDS-related infections. Cryptococcus neoformans is an encapsulated fungus that causes cryptococcosis, an opportunistic infection that has recently been associated with drug users. METH enhances C. neoformans pulmonary infection, facilitating its dissemination and penetration into the central nervous system in mice. C. neoformans is a facultative intracellular microorganism and an excellent model to study host-pathogen interactions. METH compromises phagocyte effector functions, which might have deleterious consequences on infection control. In this study, we investigated the role of METH in phagocytosis and antigen processing by J774.16 macrophage- and NR-9460 microglia-like cells in the presence of a specific IgG1 to C. neoformans capsular polysaccharide. METH inhibits antibody-mediated phagocytosis of cryptococci by macrophages and microglia, likely due to reduced expression of membrane-bound Fcγ receptors. METH interferes with phagocytic cells' phagosomal maturation, resulting in impaired fungal control. Phagocytic cell reduction in nitric oxide production during interactions with cryptococci was associated with decreased levels of tumor necrosis factor alpha (TNF-α) and lowered expression of Fcγ receptors. Importantly, pharmacological levels of METH in human blood and organs are cytotoxic to ∼20% of the phagocytes. Our findings suggest that METH abrogates immune cellular and molecular functions and may be deadly to phagocytic cells, which may result in increased susceptibility of users to acquire infectious diseases.
Collapse
|
2
|
De Meyer T, Laukens B, Nolf J, Van Lerberge E, De Rycke R, De Beuckelaer A, De Buck S, Callewaert N, Depicker A. Comparison of VHH-Fc antibody production in Arabidopsis thaliana, Nicotiana benthamiana and Pichia pastoris. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:938-47. [PMID: 25641071 DOI: 10.1111/pbi.12330] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 11/27/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
VHHs or nanobodies are widely acknowledged as interesting diagnostic and therapeutic tools. However, for some applications, multivalent antibody formats, such as the dimeric VHH-Fc format, are desired to increase the functional affinity. The scope of this study was to compare transient expression of diagnostic VHH-Fc antibodies in Nicotiana benthamiana leaves with their stable expression in Arabidopsis thaliana seeds and Pichia pastoris. To this end, VHH-Fc antibodies targeting green fluorescent protein or the A. thaliana seed storage proteins (albumin and globulin) were produced in the three platforms. Differences were mainly observed in the accumulation levels and glycosylation patterns. Interestingly, although in plants oligomannosidic N-glycans were expected for KDEL-tagged VHH-Fcs, several VHH-Fcs with an intact KDEL-tag carried complex-type N-glycans, suggesting a dysfunctional retention in the endoplasmic reticulum. All VHH-Fcs were equally functional across expression platforms and several outperformed their corresponding VHH in terms of sensitivity in ELISA.
Collapse
Affiliation(s)
- Thomas De Meyer
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Bram Laukens
- Department of Medical Protein Research, Unit for Medical Biotechnology, VIB, Gent, Belgium
- Department of Biochemistry and Microbiology, Laboratory for Protein Biochemistry and Biomolecular Engineering, Ghent University, Gent, Belgium
| | - Jonah Nolf
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Els Van Lerberge
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Riet De Rycke
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Ans De Beuckelaer
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Sylvie De Buck
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Nico Callewaert
- Department of Medical Protein Research, Unit for Medical Biotechnology, VIB, Gent, Belgium
- Department of Biochemistry and Microbiology, Laboratory for Protein Biochemistry and Biomolecular Engineering, Ghent University, Gent, Belgium
| | - Ann Depicker
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| |
Collapse
|
3
|
Eon-Duval A, Broly H, Gleixner R. Quality attributes of recombinant therapeutic proteins: An assessment of impact on safety and efficacy as part of a quality by design development approach. Biotechnol Prog 2012; 28:608-22. [DOI: 10.1002/btpr.1548] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/26/2012] [Indexed: 12/12/2022]
|
4
|
Lai H, Engle M, Fuchs A, Keller T, Johnson S, Gorlatov S, Diamond MS, Chen Q. Monoclonal antibody produced in plants efficiently treats West Nile virus infection in mice. Proc Natl Acad Sci U S A 2010; 107:2419-24. [PMID: 20133644 PMCID: PMC2823901 DOI: 10.1073/pnas.0914503107] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the past decade, West Nile virus (WNV) has spread to all 48 of the lower United States as well as to parts of Canada, Mexico, the Caribbean, and South America, with outbreaks of neuroinvasive disease occurring annually. At present, no therapeutic or vaccine is available for human use. Epidemics of WNV and other emerging infectious disease threats demand cost-efficient and scalable production technologies that can rapidly transfer effective therapeutics into the clinical setting. We have previously reported that Hu-E16, a humanized anti-WNV mAb, binds to a highly conserved epitope on the envelope protein, blocks viral fusion, and shows promising postexposure therapeutic activity. Herein, we generated a plant-derived Hu-E16 mAb that can be rapidly scaled up for commercial production. Plant Hu-E16 was expressed at high levels within 8 days of infiltration in Nicotiana benthamiana plants and retained high-affinity binding and potent neutralizing activity in vitro against WNV. A single dose of plant Hu-E16 protected mice against WNV-induced mortality even 4 days after infection at rates that were indistinguishable from mammalian-cell-produced Hu-E16. This study demonstrates the efficacy of a plant-produced mAb against a potentially lethal infection several days after exposure in an animal challenge model and provides a proof of principle for the development of plant-derived mAbs as therapy against emerging infectious diseases.
Collapse
Affiliation(s)
- Huafang Lai
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | | | | | - Thomas Keller
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | | | | | - Michael S. Diamond
- Departments of Medicine
- Molecular Microbiology, and
- Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Qiang Chen
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
5
|
Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res 2010; 27:544-75. [PMID: 20143256 DOI: 10.1007/s11095-009-0045-6] [Citation(s) in RCA: 753] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 12/27/2009] [Indexed: 12/16/2022]
Abstract
In 1989, Manning, Patel, and Borchardt wrote a review of protein stability (Manning et al., Pharm. Res. 6:903-918, 1989), which has been widely referenced ever since. At the time, recombinant protein therapy was still in its infancy. This review summarizes the advances that have been made since then regarding protein stabilization and formulation. In addition to a discussion of the current understanding of chemical and physical instability, sections are included on stabilization in aqueous solution and the dried state, the use of chemical modification and mutagenesis to improve stability, and the interrelationship between chemical and physical instability.
Collapse
|
6
|
Gaza-Bulseco G, Li B, Bulseco A, Liu HC. Method to differentiate asn deamidation that occurred prior to and during sample preparation of a monoclonal antibody. Anal Chem 2009; 80:9491-8. [PMID: 19072263 DOI: 10.1021/ac801617u] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Asparagine (Asn) deamidation is a major source of antibody instability and micro heterogeneity. For this reason, it is critical to accurately characterize both the levels and the sites of Asn deamidation in therapeutic antibodies. Asn deamidation is normally quantified by analyzing antibodies at the peptide level by liquid chromatography-mass spectrometry. This requires denaturation, reduction, alkylation, and enzyme digestion of the antibody prior to analysis. These steps in sample preparation may directly contribute to the total levels of Asn deamidation detected. Therefore, to obtain accurate levels and sites of Asn deamidation, it is important to determine if any deamidation occurred during the sample preparation steps. However, this could be challenging because deamidation that occurred prior to and during sample preparation resulted in peptides with the same retention times and the same molecular weight increase of 1 Da. Sample preparation was carried out in (18)O-water in the current study to differentiate between the two events of Asn deamidation. Using this method, deamidation that occurred during sample preparation resulted in a molecular weight increase of 3 Da instead of 1 Da. This molecular weight difference was readily detected by inspection of the isotopic peak cluster of the peptides containing the deamidation products, isoAsp and Asp residues. It enabled discrimination of deamidation that was due to analytical artifacts and thus determination of the level of deamidation that was present in the samples.
Collapse
Affiliation(s)
- Georgeen Gaza-Bulseco
- Process Sciences Department, Abbott Bioresearch Center, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
7
|
Vlasak J, Bussat MC, Wang S, Wagner-Rousset E, Schaefer M, Klinguer-Hamour C, Kirchmeier M, Corvaïa N, Ionescu R, Beck A. Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody. Anal Biochem 2009; 392:145-54. [DOI: 10.1016/j.ab.2009.05.043] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/28/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
|
8
|
Gaza-Bulseco G, Hickman K, Sinicropi-Yao S, Hurkmans K, Chumsae C, Liu H. Effect of the conserved oligosaccharides of recombinant monoclonal antibodies on the separation by protein A and protein G chromatography. J Chromatogr A 2009; 1216:2382-7. [PMID: 19181325 DOI: 10.1016/j.chroma.2009.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 12/30/2008] [Accepted: 01/06/2009] [Indexed: 11/29/2022]
Abstract
Glycosylation of the conserved asparagine residue in CH2 domains of IgG molecules is an important post-translational modification. The presence of oligosaccharides is critical for structure, stability and biological function of IgG antibodies. Effect of the glycosylation states of recombinant monoclonal antibodies on protein A and protein G chromatography was evaluated. Antibodies lacking oligosaccharides eluted later from protein A and earlier from protein G columns than antibodies with oligosaccharides using a gradient of decreasing pH. Interestingly, different types of oligosaccharides also affected the elution of the antibodies. Antibodies with high mannose type oligosaccharides were enriched in later eluting fractions from protein A and earlier eluting fractions from protein G. While antibodies with more mature oligosaccharides, such as core fucosylated biantennary complex oligosaccharides with zero (Gal 0), one (Gal 1) or two (Gal 2) terminal galactoses, were enriched in earlier eluting fractions from protein A and in the later eluting fractions from protein G. However, analysis by enzyme-linked immunosorbent assay (ELISA) revealed that antibody binding affinity to protein A and protein G was not affected by the absence or presence of oligosaccharides. It was thus concluded that the elution difference of antibodies with or without oligosaccharides and antibodies with different types of oligosaccharides were due to differential structural changes around the CH2-CH3 domain interface under the low pH conditions used for protein A and protein G chromatography.
Collapse
|
9
|
Abstract
Heterogeneity of monoclonal antibodies is common due to the various modifications introduced over the lifespan of the molecules from the point of synthesis to the point of complete clearance from the subjects. The vast number of modifications presents great challenge to the thorough characterization of the molecules. This article reviews the current knowledge of enzymatic and nonenzymatic modifications of monoclonal antibodies including the common ones such as incomplete disulfide bond formation, glycosylation, N-terminal pyroglutamine cyclization, C-terminal lysine processing, deamidation, isomerization, and oxidation, and less common ones such as modification of the N-terminal amino acids by maleuric acid and amidation of the C-terminal amino acid. In addition, noncovalent associations with other molecules, conformational diversity and aggregation of monoclonal antibodies are also discussed. Through a complete understanding of the heterogeneity of monoclonal antibodies, strategies can be employed to better identify the potential modifications and thoroughly characterize the molecules.
Collapse
Affiliation(s)
- Hongcheng Liu
- Process Sciences Department, Abbott Bioresearch Center, 100 Research Drive, Worcester, Massachusetts 01605, USA.
| | | | | | | | | |
Collapse
|
10
|
Exchanging murine and human immunoglobulin constant chains affects the kinetics and thermodynamics of antigen binding and chimeric antibody autoreactivity. PLoS One 2007; 2:e1310. [PMID: 18074033 PMCID: PMC2110899 DOI: 10.1371/journal.pone.0001310] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 10/10/2007] [Indexed: 11/19/2022] Open
Abstract
Mouse-human chimeric antibodies composed of murine variable (V) and human (C) chains are useful therapeutic reagents. Consequently, we investigated whether heterologous C-regions from mice and humans affected specificity and affinity, and determined the contribution of C(H) glycosylation to antigen binding. The interaction of a 12-mer peptide mimetic with monoclonal antibody (mAb) 18B7 to Cryptococcus neoformans glucuronoxylomannan, and its chimeric (ch) and deglycosylated forms were studied by surface plasmon resonance. The equilibrium and rate association constants for the chAb were higher than for mAb 18B7. V region affinity was not affected by C(H) region glycosylation whereas heterologous C region of the same isotype altered the Ab binding affinity and the specificity for self-antigens. Structural models displayed local differences that implied changes on the connectivity of residues. These findings suggest that V region conformational changes can be dictated by the C(H) domains through an allosteric effect involving networks of highly connected amino acids.
Collapse
|
11
|
Macura N, Zhang T, Casadevall A. Dependence of macrophage phagocytic efficacy on antibody concentration. Infect Immun 2007; 75:1904-15. [PMID: 17283107 PMCID: PMC1865677 DOI: 10.1128/iai.01258-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Macrophages ingest the fungus Cryptococcus neoformans only in the presence of opsonins, and this provides a remarkably clean system for the detailed analysis of phagocytosis. This system is also unusual in that antibody-mediated phagocytosis involves ingestion through both Fc and complement receptors in the absence of complement. Mathematical modeling was used to analyze and explain the experimental data that the macrophage phagocytic index increased with increasing doses of antibody despite saturating concentrations and declined at high concentrations. A model was developed that explains the increase in phagocytic index with increasing antibody doses, differentiates among the contributions from Fc and complement receptors, and provides a tool for estimating antibody concentrations that optimize efficacy of phagocytosis. Experimental results and model calculations revealed that blocking of Fc receptors by excess antibody caused a reduction in phagocytic index but increased phagocytosis through complement receptors rapidly compensated for this effect. At high antibody concentrations, a further reduction in phagocytic index was caused by interference with complement receptor ingestion as a consequence of saturation of the fungal capsule. The ability of our model to predict the antibody dose dependence of the macrophage phagocytic efficacy for C. neoformans strongly suggest that the major variables that determine the efficacy of this process have been identified. The model predicts that the affinity constant of the opsonic antibody for the Fc receptor and the association-dissociation constant of antibody from the microbial antigen are critical parameters determining the efficacy of phagocytosis.
Collapse
Affiliation(s)
- Natasa Macura
- Department of Mathematics, Trinity University, One Trinity Place, San Antonio, TX 78212, USA
| | | | | |
Collapse
|