1
|
Yin R, Melton S, Huseby ES, Kardar M, Chakraborty AK. How persistent infection overcomes peripheral tolerance mechanisms to cause T cell-mediated autoimmune disease. Proc Natl Acad Sci U S A 2024; 121:e2318599121. [PMID: 38446856 PMCID: PMC10945823 DOI: 10.1073/pnas.2318599121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
T cells help orchestrate immune responses to pathogens, and their aberrant regulation can trigger autoimmunity. Recent studies highlight that a threshold number of T cells (a quorum) must be activated in a tissue to mount a functional immune response. These collective effects allow the T cell repertoire to respond to pathogens while suppressing autoimmunity due to circulating autoreactive T cells. Our computational studies show that increasing numbers of pathogenic peptides targeted by T cells during persistent or severe viral infections increase the probability of activating T cells that are weakly reactive to self-antigens (molecular mimicry). These T cells are easily re-activated by the self-antigens and contribute to exceeding the quorum threshold required to mount autoimmune responses. Rare peptides that activate many T cells are sampled more readily during severe/persistent infections than in acute infections, which amplifies these effects. Experiments in mice to test predictions from these mechanistic insights are suggested.
Collapse
Affiliation(s)
- Rose Yin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Samuel Melton
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Eric S. Huseby
- Basic Pathology, Department of Pathology, University of Massachusetts Medical School, Worcester, MA01655
| | - Mehran Kardar
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Arup K. Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
2
|
A class-mismatched TCR bypasses MHC restriction via an unorthodox but fully functional binding geometry. Nat Commun 2022; 13:7189. [PMID: 36424374 PMCID: PMC9691722 DOI: 10.1038/s41467-022-34896-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
MHC restriction, which describes the binding of TCRs from CD4+ T cells to class II MHC proteins and TCRs from CD8+ T cells to class I MHC proteins, is a hallmark of immunology. Seemingly rare TCRs that break this paradigm exist, but mechanistic insight into their behavior is lacking. TIL1383I is a prototypical class-mismatched TCR, cloned from a CD4+ T cell but recognizing the tyrosinase tumor antigen presented by the class I MHC HLA-A2 in a fully functional manner. Here we find that TIL1383I binds this class I target with a highly atypical geometry. Despite unorthodox binding, TCR signaling, antigen specificity, and the ability to use CD8 are maintained. Structurally, a key feature of TIL1383I is an exceptionally long CDR3β loop that mediates functions that are traditionally performed separately by hypervariable and germline loops in canonical TCR structures. Our findings thus expand the range of known TCR binding geometries compatible with normal function and specificity, provide insight into the determinants of MHC restriction, and may help guide TCR selection and engineering for immunotherapy.
Collapse
|
3
|
Chen X, Poncette L, Blankenstein T. Human TCR-MHC coevolution after divergence from mice includes increased nontemplate-encoded CDR3 diversity. J Exp Med 2017; 214:3417-3433. [PMID: 28835417 PMCID: PMC5679170 DOI: 10.1084/jem.20161784] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 06/19/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022] Open
Abstract
Chen et al. demonstrate that human MHC selects a larger human TCR repertoire than mouse MHC. They show how humans optimized TCR diversity and suggest that CDR3 length adjusts for different V segment–MHC affinity. For thymic selection and responses to pathogens, T cells interact through their αβ T cell receptor (TCR) with peptide–major histocompatibility complex (MHC) molecules on antigen-presenting cells. How the diverse TCRs interact with a multitude of MHC molecules is unresolved. It is also unclear how humans generate larger TCR repertoires than mice do. We compared the TCR repertoire of CD4 T cells selected from a single mouse or human MHC class II (MHC II) in mice containing the human TCR gene loci. Human MHC II yielded greater thymic output and a more diverse TCR repertoire. The complementarity determining region 3 (CDR3) length adjusted for different inherent V-segment affinities to MHC II. Humans evolved with greater nontemplate-encoded CDR3 diversity than did mice. Our data, which demonstrate human TCR–MHC coevolution after divergence from rodents, explain the greater T cell diversity in humans and suggest a mechanism for ensuring that any V–J gene combination can be selected by a single MHC II.
Collapse
Affiliation(s)
- Xiaojing Chen
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Charité Campus Buch, Institute of Immunology, Berlin, Germany
| | - Lucia Poncette
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Thomas Blankenstein
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany .,Charité Campus Buch, Institute of Immunology, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
4
|
Hesnard L, Legoux F, Gautreau L, Moyon M, Baron O, Devilder MC, Bonneville M, Saulquin X. Role of the MHC restriction during maturation of antigen-specific human T cells in the thymus. Eur J Immunol 2015; 46:560-9. [DOI: 10.1002/eji.201545951] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/14/2015] [Accepted: 11/30/2015] [Indexed: 01/15/2023]
|
5
|
Cohn M. A stepwise model of polyreactivity of the T cell antigen-receptor (TCR): its impact on the self–nonself discrimination and on related observations (receptor editing, anergy, dual receptor cells). Cell Mol Life Sci 2013; 71:2033-45. [DOI: 10.1007/s00018-013-1540-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/06/2013] [Accepted: 12/02/2013] [Indexed: 12/01/2022]
|
6
|
Mendieta-Zerón H. Developing immunologic tolerance for transplantation at the fetal stage. Immunotherapy 2012; 3:1499-512. [PMID: 22091685 DOI: 10.2217/imt.11.142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Given the shortage of human organs for transplantation, the waiting lists are increasing annually and consequently so is the time and deaths during the wait. As most immune suppression therapy is not antigen specific and the risk of infection tends to increase, scientists are looking for new options for immunosuppression or immunotolerance. Tolerance induction would avoid the complications caused by immunosupressive drugs. As such, taking into account the experience with autoimmune diseases, one strategy could be immune modulation-induced changes in T-cell cytokine secretion or antigen therapy; however, most clinical trials have failed. Gene transfer of MHC genes across species may be used to induce tolerance to xenogenic solid organs. Other options are induction of central tolerance by the establishment of mixed chimerism through hematopoietic stem cell transplantation and the induction of 'operational tolerance' through immunodeviation involving dendritic or Tregs. I propose that, as the recognition and tolerance of proteins takes place in the thymus, this organ should be the main target for immunotolerance research protocols even as early as during the fetal development.
Collapse
|
7
|
Cohn M. Ten experiments that would make a difference in understanding immune mechanisms. Cell Mol Life Sci 2012; 69:405-12. [PMID: 22042272 PMCID: PMC11115027 DOI: 10.1007/s00018-011-0869-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/28/2011] [Accepted: 10/18/2011] [Indexed: 11/26/2022]
Abstract
Jacques Monod used to say, "Never trust an experiment that is not supported by a good theory." Theory or conceptualization permits us to put order or structure into a vast amount of data in a way that increases understanding. Validly competing theories are most useful when they make testably disprovable predictions. Illustrating the theory-experiment interaction is the goal of this exercise. Stated bleakly, the answers derived from the theory-based experiments described here would impact dramatically on how we understand immune behavior.
Collapse
Affiliation(s)
- Melvin Cohn
- Conceptual Immunology Group, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, San Diego, CA 92037, USA.
| |
Collapse
|
8
|
Uchanska-Ziegler B, Loll B, Fabian H, Hee CS, Saenger W, Ziegler A. HLA class I-associated diseases with a suspected autoimmune etiology: HLA-B27 subtypes as a model system. Eur J Cell Biol 2011; 91:274-86. [PMID: 21665321 DOI: 10.1016/j.ejcb.2011.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 01/05/2023] Open
Abstract
Although most autoimmune diseases are connected to major histocompatibility complex (MHC) class II alleles, a small number of these disorders exhibit a variable degree of association with selected MHC class I genes, like certain human HLA-A and HLA-B alleles. The basis for these associations, however, has so far remained elusive. An understanding might be obtained by comparing functional, biochemical, and biophysical properties of alleles that are minimally distinct from each other, but are nevertheless differentially associated to a given disease, like the HLA-B*27:05 and HLA-B*27:09 antigens, which differ only by a single amino acid residue (Asp116His) that is deeply buried within the binding groove. We have employed a number of approaches, including X-ray crystallography and isotope-edited infrared spectroscopy, to investigate biophysical characteristics of the two HLA-B27 subtypes complexed with up to ten different peptides. Our findings demonstrate that the binding of these peptides as well as the conformational flexibility of the subtypes is greatly influenced by interactions of the C-terminal peptide residue. In particular, a basic C-terminal peptide residue is favoured by the disease-associated subtype HLA-B*27:05, but not by HLA-B*27:09. This property appears also as the only common denominator of distinct HLA class I alleles, among them HLA-B*27:05, HLA-A*03:01 or HLA-A*11:01, that are associated with diseases suspected to have an autoimmune etiology. We postulate here that the products of these alleles, due to their unusual ability to bind with high affinity to a particular peptide set during positive T cell selection in the thymus, are involved in shaping an abnormal T cell repertoire which predisposes to the acquisition of autoimmune diseases.
Collapse
Affiliation(s)
- Barbara Uchanska-Ziegler
- Institut für Immungenetik, Charité - Universitätmedizin Berlin, Campus Benjamin Franklin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
This essay provides an analysis of the inadequacy of the current view of restrictive recognition of peptide by the T-cell antigen receptor. A competing model is developed, and the experimental evidence for the prevailing model is reinterpreted in the new framework. The goal is to contrast the two models with respect to their consistency, coverage of the data, explanatory power, and predictability.
Collapse
Affiliation(s)
- Melvin Cohn
- Conceptual Immunology Group, The Salk Institute For Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Takahama Y, Nitta T, Mat Ripen A, Nitta S, Murata S, Tanaka K. Role of thymic cortex-specific self-peptides in positive selection of T cells. Semin Immunol 2010; 22:287-93. [DOI: 10.1016/j.smim.2010.04.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/23/2010] [Indexed: 01/22/2023]
|
11
|
Gran B, Yu S, Zhang GX, Rostami A. Accelerated thymocyte maturation in IL-12Rβ2-deficient mice contributes to increased susceptibility to autoimmune inflammatory demyelination. Exp Mol Pathol 2010; 89:126-34. [PMID: 20599940 DOI: 10.1016/j.yexmp.2010.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 06/14/2010] [Indexed: 11/25/2022]
Abstract
IL-12Rβ2(-/-) mice, which are unresponsive to IL-12, develop severe experimental autoimmune encephalomyelitis (EAE). The mechanisms for enhanced autoimmunity are incompletely understood. We report that in IL-12Rβ2(-/-) mice, thymocytes undergo markedly accelerated maturation. This occurs at the transition from a double positive (DP) to a single positive (SP) phenotype, resulting in higher numbers of CD4 and CD8 SP cells, and to a lesser extent at the transition from double negative (DN) to DP cells. Accelerated maturation is observed in mice injected with anti-CD3 to mimic pre-T-cell receptor stimulation, and also in mice immunized with myelin oligodendrocyte glycoprotein (MOG) peptide to induce EAE.
Collapse
Affiliation(s)
- B Gran
- Department of Neurology, Thomas Jefferson University, 300 JHN Building, 900 Walnut Street, Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
12
|
Structural biology of the T-cell receptor: insights into receptor assembly, ligand recognition, and initiation of signaling. Cold Spring Harb Perspect Biol 2010; 2:a005140. [PMID: 20452950 DOI: 10.1101/cshperspect.a005140] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The T-cell receptor (TCR)-CD3 complex serves as a central paradigm for general principles of receptor assembly, ligand recognition, and signaling in the immune system. There is no other receptor system that matches the diversity of both receptor and ligand components. The recent expansion of the immunological structural database is beginning to identify key principles of MHC and peptide recognition. The multicomponent assembly of the TCR complex illustrates general principles used by many receptors in the immune system, which rely on basic and acidic transmembrane residues to guide assembly. The intrinsic binding of the cytoplasmic domains of the CD3epsilon and zeta chains to the inner leaflet of the plasma membrane represents a novel mechanism for control of receptor activation: Insertion of critical CD3epsilon tyrosines into the hydrophobic membrane core prevents their phosphorylation before receptor engagement.
Collapse
|
13
|
Nitta T, Murata S, Sasaki K, Fujii H, Ripen AM, Ishimaru N, Koyasu S, Tanaka K, Takahama Y. Thymoproteasome shapes immunocompetent repertoire of CD8+ T cells. Immunity 2009; 32:29-40. [PMID: 20045355 DOI: 10.1016/j.immuni.2009.10.009] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 10/03/2009] [Accepted: 10/14/2009] [Indexed: 12/21/2022]
Abstract
How self-peptides displayed in the thymus contribute to the development of immunocompetent and self-protective T cells is largely unknown. In contrast, the role of thymic self-peptides in eliminating self-reactive T cells and thereby preventing autoimmunity is well established. A type of proteasome, termed thymoproteasome, is specifically expressed by thymic cortical epithelial cells (cTECs) and is required for the generation of optimal cellularity of CD8+ T cells. Here, we show that cTECs displayed thymoproteasome-specific peptide-MHC class I complexes essential for the positive selection of major and diverse repertoire of MHC class I-restricted T cells. CD8+ T cells generated in the absence of thymoproteasomes displayed a markedly altered T cell receptor repertoire that was defective in both allogeneic and antiviral responses. These results demonstrate that thymoproteasome-dependent self-peptide production is required for the development of an immunocompetent repertoire of CD8+ T cells.
Collapse
Affiliation(s)
- Takeshi Nitta
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kumar P, Vahedi-Faridi A, Saenger W, Ziegler A, Uchanska-Ziegler B. Conformational changes within the HLA-A1:MAGE-A1 complex induced by binding of a recombinant antibody fragment with TCR-like specificity. Protein Sci 2009; 18:37-49. [PMID: 19177349 DOI: 10.1002/pro.4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although there is X-ray crystallographic evidence that the interaction between major histocompatibility complex (MHC, in humans HLA) class I molecules and T cell receptors (TCR) or killer cell Ig-like receptors (KIR) may be accompanied by considerable changes in the conformation of selected residues or even entire loops within TCR or KIR, conformational changes between receptor-bound and -unbound MHC class I molecules of comparable magnitude have not been observed so far. We have previously determined the structure of the MHC class I molecule HLA-A1 bound to a melanoma antigen-encoding gene (MAGE)-A1-derived peptide in complex with a recombinant antibody fragment with TCR-like specificity, Fab-Hyb3. Here, we compare the X-ray structure of HLA-A1:MAGE-A1 with that complexed with Fab-Hyb3 to gain insight into structural changes of the MHC molecule that might be induced by the interaction with the antibody fragment. Apart from the expulsion of several water molecules from the interface, Fab-Hyb3 binding results in major rearrangements (up to 5.5 A) of heavy chain residues Arg65, Gln72, Arg145, and Lys146. Residue 65 is frequently and residues 72 and 146 are occasionally involved in TCR binding-induced conformational changes, as revealed by a comparison with MHC class I structures in TCR-liganded and -unliganded forms. On the other hand, residue 145 is subject to a reorientation following engagement of HLA-Cw4 and KIR2DL1. Therefore, conformational changes within the HLA-A1:MAGE-A1:Fab-Hyb3 complex include MHC residues that are also involved in reorientations in complexes with natural ligands, pointing to their central importance for the peptide-dependent recognition of MHC molecules.
Collapse
Affiliation(s)
- Pravin Kumar
- Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität Berlin, Thielallee 73, Berlin 14195, Germany
| | | | | | | | | |
Collapse
|
15
|
Collins EJ, Riddle DS. TCR-MHC docking orientation: natural selection, or thymic selection? Immunol Res 2009; 41:267-94. [PMID: 18726714 DOI: 10.1007/s12026-008-8040-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T cell receptors (TCR) dock on their peptide-major histocompatibility complex (pMHC) targets in a conserved orientation. Since amino acid sidechains are the foundation of specific protein-protein interactions, a simple explanation for the conserved docking orientation is that key amino acids encoded by the TCR and MHC genes have been selected and maintained through evolution in order to preserve TCR/pMHC binding. Expectations that follow from the hypothesis that TCR and MHC evolved to interact are discussed in light of the data that both support and refute them. Finally, an alternative and equally simple explanation for the driving force behind the conserved docking orientation is described.
Collapse
Affiliation(s)
- Edward J Collins
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 804 Mary Ellen Jones Building, Chapel Hill, NC 27510, USA.
| | | |
Collapse
|
16
|
Abstract
The CD4(+) CD25(+) regulatory population of T cells (Treg cells), which expresses the forkhead family transcription factor (Foxp3), is the key component of the peripheral tolerance mechanism that protects us from a variety of autoimmune diseases. Experimental evidence shows that Treg cells recognize a wide range of antigenic specificities with increased reactivity to self antigens, although the affinity of these interactions remains to be further defined. The Treg repertoire is highly diverse with a distinct set of T-cell receptors (TCRs), and yet is overlapping to some extent with the repertoire of conventional T cells (Tconv cells). The majority of Treg cells are generated in the thymus. However, the role of the TCR specificity in directing thymic precursors to become Treg or Tconv cells remains unclear. On the one hand, the higher self reactivity of Treg cells and utilization of different TCRs in Treg and Tconv repertoires suggest that in TCR interactions an initial decision is made about the 'suitability' of a developing thymocyte to become a Treg cell. On the other hand, as Treg cells can recognize a wide range of foreign antigens, have a diverse TCR repertoire, and show some degree of overlap with Tconv cells, the signals through the TCR may be complementary to the TCR-independent process that generates precursors of Treg cells. In this review, we discuss how different features of the Treg repertoire influence our understanding of Treg specificities and the role of self reactivity in the generation of this population.
Collapse
Affiliation(s)
- Rafal Pacholczyk
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, 30912-2400, USA.
| | | |
Collapse
|
17
|
|