1
|
Kleer JS, Skattum L, Dubler D, Fischer I, Zgraggen A, Mundwiler E, Kim MJ, Trendelenburg M. Complement C1s deficiency in a male Caucasian patient with systemic lupus erythematosus: a case report. Front Immunol 2024; 14:1257525. [PMID: 38469558 PMCID: PMC10925646 DOI: 10.3389/fimmu.2023.1257525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/17/2023] [Indexed: 03/13/2024] Open
Abstract
Deficiencies of the early complement components of the classical pathway (CP) are well-documented in association with systemic lupus erythematosus (SLE) or SLE-like syndromes and severe pyogenic infections. Among these, complete C1s deficiency has been reported in nine cases so far. Here, we describe a 34-year-old male patient who presented with severe, recurrent infections since childhood, including meningitides with pneumococci and meningococci, erysipelas, subcutaneous abscess, and recurrent infections of the upper airways. The patient also exhibited adult-onset SLE, meeting 7/11 of the ACR criteria and 34 of the 2019 EULAR/ACR classification criteria, along with class IV-G (A) proliferative lupus nephritis (LN). A screening of the complement cascade showed immeasurably low CH50, while the alternative pathway (AP) function was normal. Subsequent determination of complement components revealed undetectable C1s with low levels of C1r and C1q, normal C3, and slightly elevated C4 and C2 concentrations. The patient had no anti-C1q antibodies. Renal biopsy showed class IV-G (A) LN with complement C1q positivity along the glomerular basement membranes (GBMs) and weak deposition of IgG, IgM, and complement C3 and C4 in the mesangium and GBM. In an ELISA-based functional assay determining C4d deposition, the patient's absent complement activity was fully restored by adding C1s. The genome of the patient was analyzed by whole genome sequencing showing two truncating variants in the C1S gene. One mutation was located at nucleotide 514 in exon 5, caused by a nucleotide substitution from G to T, resulting in a nonsense mutation from Gly172 (p.Gly172*). The other mutation was located at nucleotide 750 in exon 7, where C was replaced by a G, resulting in a nonsense mutation from Tyr250 (p.Tyr250*). Both mutations create a premature stop codon and have not previously been reported in the literature. These genetic findings, combined with the absence of C1s in the circulation, strongly suggest a compound heterozygote C1s deficiency in our patient, without additional defect within the complement cascade. As in a previous C1s deficiency case, the patient responded well to rituximab. The present case highlights unanswered questions regarding the CP's role in SLE etiopathogenesis.
Collapse
Affiliation(s)
- Jessica S. Kleer
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital, Basel, Switzerland
| | - Lillemor Skattum
- Department of Laboratory Medicine, Section of Microbiology, Immunology and Glycobiology, Lund University, and Clinical Immunology and Transfusion Medicine, Region Skåne, Lund, Sweden
| | - Denise Dubler
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ingeborg Fischer
- Division of Pathology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Armin Zgraggen
- Division of Rheumatology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Esther Mundwiler
- Division of Laboratory Medicine, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Min Jeong Kim
- Division of Nephrology , Cantonal Hospital Aarau, Aarau, Switzerland
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital, Basel, Switzerland
| |
Collapse
|
2
|
Alshekaili J, Nasr I, Al-Rawahi M, Ansari Z, Al Rahbi N, Al Balushi H, Al Zadjali S, Al Kindi M, Al-Maawali A, Cook MC. A homozygous loss-of-function C1S mutation is associated with Kikuchi-Fujimoto disease. Clin Immunol 2023; 252:109646. [PMID: 37209807 DOI: 10.1016/j.clim.2023.109646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Kikuchi-Fujimoto disease (KFD) is a self-limited inflammatory disease of unknown pathogenesis. Familial cases have been described and defects in classical complement components C1q and C4 have been identified in some patients. MATERIAL AND METHODS We describe genetic and immune investigations of a 16 years old Omani male, a product of consanguineous marriage, who presented with typical clinical and histological features of KFD. RESULTS We identified a novel homozygous single base deletion in C1S (c.330del; p. Phe110LeufsTer23) resulting in a defect in the classical complement pathway. The patient was negative for all serological markers of SLE. In contrast, two female siblings (also homozygous for the C1S mutation), one has autoimmune thyroid disease (Hashimoto thyroiditis) and a positive ANA and the other sibling has serology consistent with SLE. CONCLUSION We report the first association between C1s deficiency and KFD.
Collapse
Affiliation(s)
- Jalila Alshekaili
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman.
| | - Iman Nasr
- Department of Adult Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Mohammed Al-Rawahi
- Department of Hematology, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman
| | - Zainab Ansari
- Department of Adult Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | | | - Hamed Al Balushi
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman
| | - Shoaib Al Zadjali
- Department of Hematology, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman
| | - Mahmood Al Kindi
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman
| | - Almundher Al-Maawali
- Genetics Department, Sultan QaboosUniversity Hospital, Sultan Qaboos University, Muscat, Oman
| | - Matthew C Cook
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, NSW, Australia; Department of Medicine, University of Cambridge, United Kingdom; Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, NSW, Australia.
| |
Collapse
|
3
|
Ye J, Yang P, Yang Y, Xia S. Complement C1s as a diagnostic marker and therapeutic target: Progress and propective. Front Immunol 2022; 13:1015128. [PMID: 36275687 PMCID: PMC9582509 DOI: 10.3389/fimmu.2022.1015128] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The molecules of the complement system connect the effectors of innate and adaptive immunity and play critical roles in maintaining homeostasis. Among them, the C1 complex, composed of C1q, C1r, and C1s (C1qr2s2), is the initiator of the classical complement activation pathway. While deficiency of C1s is associated with early-onset systemic lupus erythematosus and increased susceptibility to bacteria infections, the gain-of- function variants of C1r and C1s may lead to periodontal Ehlers Danlos syndrome. As C1s is activated under various pathological conditions and associated with inflammation, autoimmunity, and cancer development, it is becoming an informative biomarker for the diagnosis and treatment of a variety of diseases. Thus, more sensitive and convenient methods for assessing the level as well as activity of C1s in clinic samples are highly desirable. Meanwhile, a number of small molecules, peptides, and monoclonal antibodies targeting C1s have been developed. Some of them are being evaluated in clinical trials and one of the antibodies has been approved by US FDA for the treatment of cold agglutinin disease, an autoimmune hemolytic anemia. In this review, we will summarize the biological properties of C1s, its association with development and diagnosis of diseases, and recent progress in developing drugs targeting C1s. These progress illustrate that the C1s molecule is an effective biomarker and promising drug target.
Collapse
Affiliation(s)
- Jun Ye
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
- Center for Translational Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Peng Yang
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yili Yang
- China Regional Research Centre, International Centre of Genetic Engineering and Biotechnology, Taizhou, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Sheng Xia,
| |
Collapse
|
4
|
Lee WF, Fan WL, Tseng MH, Yang HY, Huang JL, Wu CY. Characteristics and genetic analysis of patients suspected with early-onset systemic lupus erythematosus. Pediatr Rheumatol Online J 2022; 20:68. [PMID: 35964089 PMCID: PMC9375402 DOI: 10.1186/s12969-022-00722-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is rarely diagnosed before 5-years-old. Those with disease onset at a very young age are predicted by a higher genetic risk and a more severe phenotype. We performed whole-exome sequencing to survey the genetic etiologies and clinical manifestations in patients fulfilling 2012 SLICC SLE classification criteria before the age of 5. CASE PRESENTATION Among the 184 childhood-onset SLE patients regularly followed in a tertiary medical center in Taiwan, 7 cases (3.8%) of which onset ≦ 5 years of age were identified for characteristic review and genetic analysis. Compared to those onset at elder age, cases onset before the age of 5 are more likely to suffer from proliferative glomerulonephritis, renal thrombotic microangiopathy, neuropsychiatric disorder and failure to thrive. Causative genetic etiologies were identified in 3. In addition to the abundance of autoantibodies, patient with homozygous TREX1 (c.292_293 ins A) mutation presented with chilblain-like skin lesions, peripheral spasticity, endocrinopathy and experienced multiple invasive infections. Patient with SLC7A7 (c.625 + 1 G > A) mutation suffered from profound glomerulonephritis with full-house glomerular deposits as well as hyperammonemia, metabolic acidosis and episodic conscious disturbance. Two other cases harbored variants in lupus associating genes C1s, C2, DNASE1 and DNASE1L3 and another with CFHR4. Despite fulfilling the classification criteria for lupus, many of the patients required treatments beyond conventional therapy. CONCLUSIONS Genetic etiologies and lupus mimickers were found among a substantial proportion of patients suspected with early-onset SLE. Detail clinical evaluation and genetic testing are important for tailored care and personalized treatment.
Collapse
Affiliation(s)
- Wan-Fang Lee
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, No.5 Fu-Hsing St. Kuei Shan Hsiang, Taoyuan, Taoyuan Hsien, Taiwan
| | - Wen-Lang Fan
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Min-Hua Tseng
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Huang-Yu Yang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jing-Long Huang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, No.5 Fu-Hsing St. Kuei Shan Hsiang, Taoyuan, Taoyuan Hsien, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei city, Taiwan.
| | - Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, No.5 Fu-Hsing St. Kuei Shan Hsiang, Taoyuan, Taoyuan Hsien, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Azasi Y, Low LM, Just AN, Raghavan SSR, Wang CW, Valenzuela-Leon P, Rowe JA, Smith JD, Lavstsen T, Turner L, Calvo E, Miller LH. Complement C1s cleaves PfEMP1 at interdomain conserved sites inhibiting Plasmodium falciparum cytoadherence. Proc Natl Acad Sci U S A 2021; 118:e2104166118. [PMID: 34035177 PMCID: PMC8179237 DOI: 10.1073/pnas.2104166118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Cytoadhesion of Plasmodium falciparum-infected erythrocytes (IEs) to the endothelial lining of blood vessels protects parasites from splenic destruction, but also leads to detrimental inflammation and vessel occlusion. Surface display of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion ligands exposes them to host antibodies and serum proteins. PfEMP1 are important targets of acquired immunity to malaria, and through evolution, the protein family has expanded and diversified to bind a select set of host receptors through antigenically diversified receptor-binding domains. Here, we show that complement component 1s (C1s) in serum cleaves PfEMP1 at semiconserved arginine motifs located at interdomain regions between the receptor-binding domains, rendering the IE incapable of binding the two main PfEMP1 receptors, CD36 and endothelial protein C receptor (EPCR). Bioinformatic analyses of PfEMP1 protein sequences from 15 P. falciparum genomes found the C1s motif was present in most PfEMP1 variants. Prediction of C1s cleavage and loss of binding to endothelial receptors was further corroborated by testing of several different parasite lines. These observations suggest that the parasites have maintained susceptibility for cleavage by the serine protease, C1s, and provides evidence for a complex relationship between the complement system and the P. falciparum cytoadhesion virulence determinant.
Collapse
Affiliation(s)
- Yvonne Azasi
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852
| | - Leanne M Low
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852
| | - Ashley N Just
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Sai S R Raghavan
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Christian W Wang
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Paola Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852
| | - J Alexandra Rowe
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Joseph D Smith
- Center for Global Infectious Disease Resesarch, Seattle Children's Research Institute, Seattle, WA 98109
- Department of Pediatrics, University of Washington, Seattle, WA 98195
- Department of Global Health, University of Washington, Seattle, WA 98195
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Louise Turner
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852;
| | - Louis H Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852;
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Juvenile-onset systemic lupus erythematosus ((j)SLE) is an autoimmune/inflammatory disease that results in significant damage and disability. When compared to patients with disease onset in adulthood, jSLE patients exhibit increased disease activity, damage and require more aggressive treatments. This manuscript summarises age-specific pathogenic mechanisms and underscores the need for age group-specific research, classification and treatment. RECENT FINDINGS Genetic factors play a significant role in the pathophysiology of jSLE, as > 7% of patients develop disease as a result of single gene mutations. Remaining patients carry genetic variants that are necessary for disease development, but require additional factors. Increased 'genetic impact' likely contributes to earlier disease onset and more severe phenotypes. Epigenetic events have only recently started to be addressed in jSLE, and add to the list of pathogenic mechanisms that may serve as biomarkers and/or treatment targets. To allow meaningful and patient-oriented paediatric research, age-specific classification criteria and treatment targets require to be defined as currently available tools established for adult-onset SLE have limitations in the paediatric cohort. Significant progress has been made in understanding the pathophysiology of jSLE. Meaningful laboratory and clinical research can only be performed using age group-specific tools, classification criteria and treatment targets.
Collapse
Affiliation(s)
- A Charras
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - E Smith
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - C M Hedrich
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK.
- Institute in the Park, Alder Hey Children's NHS Foundation Trust Hospital, East Prescot Road, Liverpool, L14 5AB, UK.
| |
Collapse
|
7
|
Zhu X, Jiang L, Yang H, Chen T, Wu X, Lv K. Analyzing the lncRNA, miRNA, and mRNA-associated ceRNA networks to reveal potential prognostic biomarkers for glioblastoma multiforme. Cancer Cell Int 2020; 20:393. [PMID: 32821246 PMCID: PMC7429694 DOI: 10.1186/s12935-020-01488-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most seriously brain tumor with extremely poor prognosis. Recent research has demonstrated that competitive endogenous RNA (ceRNA) network which long noncoding RNAs (lncRNAs) act as microRNA (miRNA) sponges to regulate mRNA expression were closely related to tumor development. However, the regulatory mechanisms and functional roles of ceRNA network in the pathogenesis of GBM are remaining poorly understood. Methods In this study, we systematically analyzed the expression profiles of lncRNA and mRNA (GSE51146 dataset) and miRNA (GSE65626 dataset) from GEO database. Then, we constructed a ceRNA network with the dysregulated genes by bioinformatics methods. The TCGA and GSE4290 dataset were used to confirm the expression and prognostic value of candidate mRNAs. Results In total, 3413 differentially expressed lncRNAs and mRNAs, 305 differentially expressed miRNAs were indentified in GBM samples. Then a ceRNA network containing 3 lncRNAs, 5 miRNAs, and 60 mRNAs was constructed. The overall survival analysis of TCGA databases indicated that two mRNAs (C1s and HSD3B7) were remarkly related with the prognosis of GBM. Conclusion The ceRNA network may increase our understanding to the pathogenesis of GBM. In general, the candidate mRNAs from the ceRNA network can be predicted as new therapeutic targets and prognostic biomarkers for GBM.
Collapse
Affiliation(s)
- Xiaolong Zhu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241001 People's Republic of China.,Non-coding RNA Research Center of Wannan Medical College, Wuhu, 241001 China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, 241001 People's Republic of China
| | - Lan Jiang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241001 People's Republic of China.,Non-coding RNA Research Center of Wannan Medical College, Wuhu, 241001 China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, 241001 People's Republic of China
| | - Hui Yang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241001 People's Republic of China.,Non-coding RNA Research Center of Wannan Medical College, Wuhu, 241001 China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, 241001 People's Republic of China
| | - Tianbing Chen
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241001 People's Republic of China.,Non-coding RNA Research Center of Wannan Medical College, Wuhu, 241001 China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, 241001 People's Republic of China
| | - Xingwei Wu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241001 People's Republic of China.,Non-coding RNA Research Center of Wannan Medical College, Wuhu, 241001 China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, 241001 People's Republic of China
| | - Kun Lv
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241001 People's Republic of China.,Non-coding RNA Research Center of Wannan Medical College, Wuhu, 241001 China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, 241001 People's Republic of China
| |
Collapse
|
8
|
Gröbner R, Kapferer-Seebacher I, Amberger A, Redolfi R, Dalonneau F, Björck E, Milnes D, Bally I, Rossi V, Thielens N, Stoiber H, Gaboriaud C, Zschocke J. C1R Mutations Trigger Constitutive Complement 1 Activation in Periodontal Ehlers-Danlos Syndrome. Front Immunol 2019; 10:2537. [PMID: 31749804 PMCID: PMC6848165 DOI: 10.3389/fimmu.2019.02537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/14/2019] [Indexed: 11/20/2022] Open
Abstract
Heterozygous missense or in-frame insertion/deletion mutations in complement 1 subunits C1r and C1s cause periodontal Ehlers-Danlos Syndrome (pEDS), a specific EDS subtype characterized by early severe periodontal destruction and connective tissue abnormalities like easy bruising, pretibial haemosiderotic plaques, and joint hypermobility. We report extensive functional studies of 16 C1R variants associated with pEDS by in-vitro overexpression studies in HEK293T cells followed by western blot, size exclusion chromatography and surface plasmon resonance analyses. Patient-derived skin fibroblasts were analyzed by western blot and Enzyme-linked Immunosorbent Assay (ELISA). Overexpression of C1R variants in HEK293T cells revealed that none of the pEDS variants was integrated into the C1 complex but cause extracellular presence of catalytic C1r/C1s activities. Variants showed domain-specific abnormalities of intracellular processing and secretion with preservation of serine protease function in the supernatant. In contrast to C1r wild type, and with the exception of a C1R missense variant disabling a C1q binding site, pEDS variants had different impact on the cell: retention of C1r fragments inside the cell, secretion of aggregates, or a new C1r cleavage site. Overexpression of C1R variants in HEK293T as well as western blot analyses of patient fibroblasts showed decreased levels of secreted C1r. Importantly, all available patient fibroblasts exhibited activated C1s and activation of externally added C4 in the supernatant while control cell lines secreted proenzyme C1s and showed no increase in C4 activation. The central elements in the pathogenesis of pEDS seem to be the intracellular activation of C1r and/or C1s, and extracellular presence of activated C1s that independently of microbial triggers can activate the classical complement cascade.
Collapse
Affiliation(s)
- Rebekka Gröbner
- Institute for Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Ines Kapferer-Seebacher
- Department for Operative and Restorative Dentistry, Medical University Innsbruck, Innsbruck, Austria
| | - Albert Amberger
- Institute for Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Rita Redolfi
- Institute for Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | | | - Erik Björck
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Di Milnes
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Isabelle Bally
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Veronique Rossi
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Nicole Thielens
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Heribert Stoiber
- Institute of Virology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Johannes Zschocke
- Institute for Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Smith EMD, Lythgoe H, Midgley A, Beresford MW, Hedrich CM. Juvenile-onset systemic lupus erythematosus: Update on clinical presentation, pathophysiology and treatment options. Clin Immunol 2019; 209:108274. [PMID: 31678365 DOI: 10.1016/j.clim.2019.108274] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 12/25/2022]
Abstract
Juvenile-onset systemic lupus erythematosus (jSLE) accounts for up to 20% of all SLE patients. Key differences between juvenile- and adult-onset (aSLE) disease include higher disease activity, earlier development of damage, and increased use of immunosuppressive treatment in jSLE suggesting (at least partial) infectivity secondary to variable pathomechanisms. While the exact pathophysiology of jSLE remains unclear, genetic factors, immune complex deposition, complement activation, hormonal factors and immune cell dysregulation are involved to variable extents, promising future patient stratification based on immune phenotypes. Though less effective and potentially toxic, jSLE patients are treated based upon evidence from studies in aSLE cohorts. Here, age-specific clinical features of jSLE, underlying pathomechanisms, treatment options and disease outcomes will be addressed. Future directions to improve the care of jSLE patients, including implementation of the Single Hub and Access point for pediatric Rheumatology in Europe (SHARE) recommendations, biomarkers, treat to target and personalized medicine approaches are discussed.
Collapse
Affiliation(s)
- Eve Mary Dorothy Smith
- Department of Women's & Children's Health, Institution of Translational Medicine, University of Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Eaton Rd, Liverpool L12 2AP, UK.
| | - Hanna Lythgoe
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Eaton Rd, Liverpool L12 2AP, UK
| | - Angela Midgley
- Department of Women's & Children's Health, Institution of Translational Medicine, University of Liverpool, UK
| | - Michael William Beresford
- Department of Women's & Children's Health, Institution of Translational Medicine, University of Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Eaton Rd, Liverpool L12 2AP, UK
| | - Christian Michael Hedrich
- Department of Women's & Children's Health, Institution of Translational Medicine, University of Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Eaton Rd, Liverpool L12 2AP, UK.
| |
Collapse
|
10
|
Wu J, Yang J, Zhao J, Wu J, Zhang X, Leung WK, Sun W. A Chinese family with periodontal Ehlers-Danlos syndrome associated with missense mutation in the C1R gene. J Clin Periodontol 2019; 45:1311-1318. [PMID: 30025171 DOI: 10.1111/jcpe.12988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/07/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022]
Abstract
AIM We report a rare case of the periodontal Ehlers-Danlos syndrome (pEDS) associated with severe periodontitis and tooth loss in a Chinese family. MATERIAL AND METHODS The proband complained of gingival bleeding and mobility, which were also reported in his mother, and maternal uncle and his maternal grandmother and great-grandfather in the past. All family members underwent oral, physical, dermatological, and genetic examinations. RESULTS Oral manifestation of family members affected with pEDS presented severe periodontitis with multiple or total tooth loss. The proband displayed unique clinical manifestations including a characteristic facial appearance and thin, translucent skin with easily visible venous patterns on feet. Whole-exome sequencing identified missense mutation c.265T>C in C1R in all affected family members tested and frameshift mutation c.1322delG in COL3A1 in the proband alone. None of the unaffected members showed any marked oral, physical, dermatological, or genetic findings. CONCLUSION We reported an extremely rare case of pEDS with a missense mutation in C1R in a Chinese family, with coexistence C1R and COL3A1 mutations in the proband who was suspected to suffer from vascular EDS as well. To our knowledge, this is the first case of coexistence of two forms of EDS in a single individual.
Collapse
Affiliation(s)
- Juan Wu
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jie Yang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jie Zhao
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingrong Wu
- Department of Pathology, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xuan Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wai Keung Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Weibin Sun
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Tirosh I, Spielman S, Barel O, Ram R, Stauber T, Paret G, Rubinsthein M, Pessach IM, Gerstein M, Anikster Y, Shukrun R, Dagan A, Adler K, Pode-Shakked B, Volkov A, Perelman M, Greenberger S, Somech R, Lahav E, Majmundar AJ, Padeh S, Hildebrandt F, Vivante A. Whole exome sequencing in childhood-onset lupus frequently detects single gene etiologies. Pediatr Rheumatol Online J 2019; 17:52. [PMID: 31362757 PMCID: PMC6668194 DOI: 10.1186/s12969-019-0349-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) comprise a diverse range of clinical manifestations. To date, more than 30 single gene causes of lupus/lupus like syndromes in humans have been identified. In the clinical setting, identifying the underlying molecular diagnosis is challenging due to phenotypic and genetic heterogeneity. METHODS We employed whole exome sequencing (WES) in patients presenting with childhood-onset lupus with severe and/or atypical presentations to identify cases that are explained by a single-gene (monogenic) cause. RESULTS From January 2015 to June 2018 15 new cases of childhood-onset SLE were diagnosed in Edmond and Lily Safra Children's Hospital. By WES we identified causative mutations in four subjects in five different genes: C1QC, SLC7A7, MAN2B1, PTEN and STAT1. No molecular diagnoses were established on clinical grounds prior to genetic testing. CONCLUSIONS We identified a significant fraction of monogenic SLE etiologies using WES and confirm the genetic locus heterogeneity in childhood-onset lupus. These results highlight the importance of establishing a genetic diagnosis for children with severe or atypical lupus by providing accurate and early etiology-based diagnoses and improving subsequent clinical management.
Collapse
Affiliation(s)
- Irit Tirosh
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics B, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601 Ramat Gan, Israel ,0000 0001 2107 2845grid.413795.dRheumatology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shiri Spielman
- 0000 0001 2107 2845grid.413795.dRheumatology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ortal Barel
- 0000 0001 2107 2845grid.413795.dThe Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Reut Ram
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics B, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601 Ramat Gan, Israel
| | - Tali Stauber
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics A Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gideon Paret
- 0000 0001 2107 2845grid.413795.dIntensive care unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Marina Rubinsthein
- 0000 0001 2107 2845grid.413795.dIntensive care unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Itai M. Pessach
- 0000 0001 2107 2845grid.413795.dIntensive care unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Maya Gerstein
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics B, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601 Ramat Gan, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yair Anikster
- 0000 0001 2107 2845grid.413795.dMetabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rachel Shukrun
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics B, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601 Ramat Gan, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Adi Dagan
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics B, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601 Ramat Gan, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Katerina Adler
- 0000 0001 2107 2845grid.413795.dThe Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Ben Pode-Shakked
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics B, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601 Ramat Gan, Israel ,0000 0001 2107 2845grid.413795.dMetabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Alexander Volkov
- 0000 0001 2107 2845grid.413795.dPathology Department, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Marina Perelman
- 0000 0001 2107 2845grid.413795.dPathology Department, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shoshana Greenberger
- 0000 0001 2107 2845grid.413795.dDepartment of Dermatology, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Raz Somech
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics A Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Einat Lahav
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics A Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel ,0000 0001 2107 2845grid.413795.dNephrology Unit, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel Hashomer, 5265601 Ramat Gan, Israel
| | - Amar J. Majmundar
- 000000041936754Xgrid.38142.3cDivision of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Shai Padeh
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics B, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601 Ramat Gan, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Friedhelm Hildebrandt
- 000000041936754Xgrid.38142.3cDivision of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Asaf Vivante
- Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601, Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel. .,Nephrology Unit, Edmond and Lily Safra Children's Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel Hashomer, 5265601, Ramat Gan, Israel.
| |
Collapse
|
12
|
Nikitin PA, Rose EL, Byun TS, Parry GC, Panicker S. C1s Inhibition by BIVV009 (Sutimlimab) Prevents Complement-Enhanced Activation of Autoimmune Human B Cells In Vitro. THE JOURNAL OF IMMUNOLOGY 2019; 202:1200-1209. [PMID: 30635392 DOI: 10.4049/jimmunol.1800998] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022]
Abstract
The classical pathway of complement (CP) can mediate C3 opsonization of Ags responsible for the costimulation and activation of cognate B lymphocytes. In this manner, the complement system acts as a bridge between the innate and adaptive immune systems critical for establishing a humoral response. However, aberrant complement activation is often observed in autoimmune diseases in which C3 deposition on self-antigens may serve to activate self-reactive B cell clones. In this study, we use BIVV009 (Sutimlimab), a clinical stage, humanized mAb that specifically inhibits the CP-specific serine protease C1s to evaluate the impact of upstream CP antagonism on activation and proliferation of normal and autoimmune human B cells. We report that BIVV009 significantly inhibited complement-mediated activation and proliferation of primary human B cells. Strikingly, CP antagonism suppressed human Ig-induced activation of B cells derived from patients with rheumatoid arthritis. These results suggest that clinical use of CP inhibitors in autoimmune patients may not only block complement-mediated tissue damage, but may also prevent the long-term activation of autoimmune B cells and the production of autoantibodies that contribute to the underlying pathologic condition of these diseases.
Collapse
Affiliation(s)
| | - Eileen L Rose
- Bioverativ, a Sanofi company, South San Francisco, CA 94080
| | - Tony S Byun
- Bioverativ, a Sanofi company, South San Francisco, CA 94080
| | - Graham C Parry
- Bioverativ, a Sanofi company, South San Francisco, CA 94080
| | | |
Collapse
|
13
|
Batu ED, Koşukcu C, Taşkıran E, Sahin S, Akman S, Sözeri B, Ünsal E, Bilginer Y, Kasapcopur O, Alikaşifoğlu M, Ozen S. Whole Exome Sequencing in Early-onset Systemic Lupus Erythematosus. J Rheumatol 2018; 45:1671-1679. [PMID: 30008451 DOI: 10.3899/jrheum.171358] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 12/16/2022]
Abstract
Objective.Systemic lupus erythematosus (SLE) is a multisystem autoimmune disorder. Early-onset, familial, and/or syndromic SLE may reveal monogenic pathologies. The aim of this study was to examine genetic associations in patients with early-onset or familial SLE.Methods.We enrolled 7 SLE cases (from different families) with disease onset ≤ 5 years of age and family history consistent with an autosomal recessive inheritance. Whole exome sequencing (WES) was performed in 6 index cases. Suspected variants were confirmed by Sanger sequencing. We did not perform WES in 1 patient who had features similar to the first 3 cases; only the exons of C1QA, C1QB, and C1QC were screened with Sanger sequencing.Results.We demonstrated 2 novel and 3 previously reported variants in genes associated with SLE: a homozygous non-sense alteration (c.622C>T/p.Gln208Ter) in C1QA in 2 patients; homozygous non-sense alteration (c.79C>T/p.Gln27Ter) in C1QC in 1 (novel variant); homozygous missense alteration (c.100G>A/p.Gly34Arg) in C1QC in 1; homozygous missense alteration (c.1945G>C/p.Ala649Pro) in C1S in 1 (novel variant); and homozygous frameshift alteration (c.289_290delAC/p.Thr97Ilefs*2) in DNASE1L3 in 1 patient. Further, in 1 patient, we determined a strong candidate variant in HDAC7 (histone decetylase 7).Conclusion.Five patients had homozygous alterations in genes coding early complement proteins. This may lead to decreased clearance of apoptotic bodies. One patient had DNASE1L3 variant, which functions in the clearance of self-antigens. In 1 patient, we determined a novel gene that may be important in SLE pathogenesis. We suggest that monogenic causes/associations should be sought in early-onset and/or familial SLE.
Collapse
|
14
|
Monogenic systemic lupus erythematosus: insights in pathophysiology. Rheumatol Int 2018; 38:1763-1775. [DOI: 10.1007/s00296-018-4048-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023]
|
15
|
C1r/C1s deficiency is insufficient to induce murine systemic lupus erythematosus. Genes Immun 2018; 20:121-130. [PMID: 29550838 DOI: 10.1038/s41435-018-0020-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/14/2018] [Accepted: 01/18/2018] [Indexed: 11/08/2022]
Abstract
C1s deficiency is strongly associated with the development of human systemic lupus erythematosus (SLE); however, the mechanisms by which C1s deficiency contributes to the development of SLE have not yet been elucidated in detail. Using ICR-derived-glomerulonephritis (ICGN) mouse strain that develops SLE and very weakly expresses C1s in the liver, we investigated the protective roles of C1s against SLE. A genetic sequence analysis revealed complete deletion of the C1s1 gene, a mouse homolog of the human C1s gene, with partial deletion of the C1ra and C1rb genes in the ICGN strain. This deletion led to the absence of C1r/C1s and a low level of C1q in the circulation. In order to investigate whether the C1r/C1s deficiency induces SLE, we produced a congenic mouse strain by introducing the deletion region of ICGN into the C57BL/6 strain. Congenic mice exhibited no C1r/C1s and a low level of C1q in the circulation, but did not have any autoimmune defects. These results suggest that C1r/C1s deficiency is not sufficient to drive murine SLE and also that other predisposing genes exist in ICGN mice.
Collapse
|
16
|
Hedrich CM, Smith EMD, Beresford MW. Juvenile-onset systemic lupus erythematosus (jSLE) - Pathophysiological concepts and treatment options. Best Pract Res Clin Rheumatol 2018; 31:488-504. [PMID: 29773269 DOI: 10.1016/j.berh.2018.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The systemic autoimmune/inflammatory condition systemic lupus erythematosus (SLE) manifests before the age of 16 years in 10-20% of all cases. Clinical courses are more severe, and organ complications are more common in patients with juvenile SLE. Varying gender distribution in different age groups and increasing severity with younger age and the presence of monogenic disease in early childhood indicate distinct differences in the pathophysiology of juvenile versus adult-onset SLE. Regardless of these differences, classification criteria and treatment options are identical. In this article, we discuss age-specific pathomechanisms of juvenile-onset SLE, which are currently available and as future treatment options, and propose reclassification of different forms of SLE along the inflammatory spectrum from autoinflammation to autoimmunity.
Collapse
Affiliation(s)
- Christian M Hedrich
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK.
| | - Eve M D Smith
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - Michael W Beresford
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease known for its clinical heterogeneity. Over time, new insights into the complex genetic origin of SLE have started to explain some of this clinical variability. These findings, reviewed here, have also yielded important understanding in the immune mechanisms behind SLE pathogenesis. RECENT FINDINGS Several new monogenic disorders with lupus-like phenotype have been described. These can be organized into physiologic pathways that parallel mechanisms of disease in SLE. Examples include genes important for DNA damage repair (e.g., TREX1), nucleic acid sensing and type I interferon overproduction (e.g., STING, TREX1), apoptosis (FASLG), tolerance (PRKCD), and clearance of self-antigen (DNASE1L3). Further study of monogenic lupus may lead to better genotype/phenotype correlations in SLE. Eventually, the ability to understand individual patients according to their genetic profile may allow the development of more targeted and personalized approaches to therapy.
Collapse
Affiliation(s)
- Mindy S Lo
- Division of Immunology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Brady AF, Demirdas S, Fournel-Gigleux S, Ghali N, Giunta C, Kapferer-Seebacher I, Kosho T, Mendoza-Londono R, Pope MF, Rohrbach M, Van Damme T, Vandersteen A, van Mourik C, Voermans N, Zschocke J, Malfait F. The Ehlers-Danlos syndromes, rare types. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2017; 175:70-115. [PMID: 28306225 DOI: 10.1002/ajmg.c.31550] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Ehlers-Danlos syndromes comprise a clinically and genetically heterogeneous group of heritable connective tissue disorders, which are characterized by joint hypermobility, skin hyperextensibility, and tissue friability. In the Villefranche Nosology, six subtypes were recognized: The classical, hypermobile, vascular, kyphoscoliotic, arthrochalasis, and dermatosparaxis subtypes of EDS. Except for the hypermobile subtype, defects had been identified in fibrillar collagens or in collagen-modifying enzymes. Since 1997, a whole spectrum of novel, clinically overlapping, rare EDS-variants have been delineated and genetic defects have been identified in an array of other extracellular matrix genes. Advances in molecular testing have made it possible to now identify the causative mutation for many patients presenting these phenotypes. The aim of this literature review is to summarize the current knowledge on the rare EDS subtypes and highlight areas for future research. © 2017 Wiley Periodicals, Inc.
Collapse
|
19
|
Vignesh P, Rawat A, Sharma M, Singh S. Complement in autoimmune diseases. Clin Chim Acta 2017; 465:123-130. [PMID: 28040558 DOI: 10.1016/j.cca.2016.12.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 12/18/2022]
|
20
|
Nanthapisal S, Omoyinmi E, Murphy C, Standing A, Eisenhut M, Eleftheriou D, Brogan PA. Early-Onset Juvenile SLE Associated With a Novel Mutation in Protein Kinase C δ. Pediatrics 2017; 139:peds.2016-0781. [PMID: 28003329 DOI: 10.1542/peds.2016-0781] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2016] [Indexed: 11/24/2022] Open
Abstract
Juvenile systemic lupus erythematosus (jSLE) is rare before 5 years of age. Monogenic causes are suspected in cases of very early onset jSLE particularly in the context of a family history and/or consanguinity. We performed whole-exome sequencing and homozygosity mapping in the siblings presented with early-onset jSLE. A novel homozygous missense mutation in protein kinase C delta (c.1294G>T; p.Gly432Trp) was identified in both patients. One patient showed a marked clinical response and resolution inflammation with rituximab therapy. This report demonstrates the clinical importance of identifying monogenic causes of rare disease to provide a definitive diagnosis, help rationalize treatment, and facilitate genetic counseling.
Collapse
Affiliation(s)
- Sira Nanthapisal
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, United Kingdom;
| | - Ebun Omoyinmi
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, United Kingdom
| | - Claire Murphy
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, United Kingdom
| | - Ariane Standing
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, United Kingdom
| | - Michael Eisenhut
- Luton & Dunstable University Hospital NHS Foundation Trust, Luton, United Kingdom
| | - Despina Eleftheriou
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, United Kingdom
| | - Paul A Brogan
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, United Kingdom
| |
Collapse
|
21
|
Periodontal Ehlers-Danlos Syndrome Is Caused by Mutations in C1R and C1S, which Encode Subcomponents C1r and C1s of Complement. Am J Hum Genet 2016; 99:1005-1014. [PMID: 27745832 PMCID: PMC5097948 DOI: 10.1016/j.ajhg.2016.08.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/26/2016] [Indexed: 12/31/2022] Open
Abstract
Periodontal Ehlers-Danlos syndrome (pEDS) is an autosomal-dominant disorder characterized by early-onset periodontitis leading to premature loss of teeth, joint hypermobility, and mild skin findings. A locus was mapped to an approximately 5.8 Mb region at 12p13.1 but no candidate gene was identified. In an international consortium we recruited 19 independent families comprising 107 individuals with pEDS to identify the locus, characterize the clinical details in those with defined genetic causes, and try to understand the physiological basis of the condition. In 17 of these families, we identified heterozygous missense or in-frame insertion/deletion mutations in C1R (15 families) or C1S (2 families), contiguous genes in the mapped locus that encode subunits C1r and C1s of the first component of the classical complement pathway. These two proteins form a heterotetramer that then combines with six C1q subunits. Pathogenic variants involve the subunit interfaces or inter-domain hinges of C1r and C1s and are associated with intracellular retention and mild endoplasmic reticulum enlargement. Clinical features of affected individuals in these families include rapidly progressing periodontitis with onset in the teens or childhood, a previously unrecognized lack of attached gingiva, pretibial hyperpigmentation, skin and vascular fragility, easy bruising, and variable musculoskeletal symptoms. Our findings open a connection between the inflammatory classical complement pathway and connective tissue homeostasis.
Collapse
|
22
|
Proteolytic inactivation of nuclear alarmin high-mobility group box 1 by complement protease C1s during apoptosis. Cell Death Discov 2016; 2:16069. [PMID: 27648302 PMCID: PMC5018544 DOI: 10.1038/cddiscovery.2016.69] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 08/02/2016] [Indexed: 02/08/2023] Open
Abstract
Effective clearance of apoptotic cells by phagocytes prevents the release of intracellular alarmins and manifestation of autoimmunity. This prompt efferocytosis is complemented by intracellular proteolytic degradation that occurs within the apoptotic cells and in the efferosome of the phagocytes. Although the role of extracellular proteases in apoptotic cells clearance is unknown, the strong association of congenital C1s deficiency with Systemic Lupus Erythematosus highlights the protective nature that this extracellular protease has against autoimmunity. The archetypical role of serine protease C1s as the catalytic arm of C1 complex (C1qC1r2C1s2) involve in the propagation of the classical complement pathway could not provide the biological basis for this association. However, a recent observation of the ability of C1 complex to cleave a spectrum of intracellular cryptic targets exposed during apoptosis provides a valuable insight to the underlying protective mechanism. High-mobility group box 1 (HMGB1), an intracellular alarmin that is capable of inducing the formation of antinuclear autoantibodies and causes lupus-like conditions in mice, is identified as a novel potential target by bioinformatics analysis. This is verified experimentally with C1s, both in its purified and physiological form as C1 complex, cleaving HMGB1 into defined fragments of 19 and 12 kDa. This cleavage diminishes HMGB1 ability to enhance lipopolysaccharide mediated pro-inflammatory cytokines production from monocytes, macrophages and dendritic cells. Further mass spectrometric analysis of the C1 complex treated apoptotic cellular proteins demonstrated additional C1s substrates and revealed the complementary role of C1s in apoptotic cells clearance through the proteolytic cleavage of intracellular alarmins and autoantigens. C1 complex may have evolved as, besides the bacteriolytic arm of antibodies in which it activates the complement cascade, a tissue renewal mechanism that reduces the immunogenicity of apoptotic tissue debris and decreases the likelihood of autoimmunity.
Collapse
|
23
|
Macedo ACL, Isaac L. Systemic Lupus Erythematosus and Deficiencies of Early Components of the Complement Classical Pathway. Front Immunol 2016; 7:55. [PMID: 26941740 PMCID: PMC4764694 DOI: 10.3389/fimmu.2016.00055] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/05/2016] [Indexed: 12/24/2022] Open
Abstract
The complement system plays an important role in the innate and acquired immune response against pathogens. It consists of more than 30 proteins found in soluble form or attached to cell membranes. Most complement proteins circulate in inactive forms and can be sequentially activated by the classical, alternative, or lectin pathways. Biological functions, such as opsonization, removal of apoptotic cells, adjuvant function, activation of B lymphocytes, degranulation of mast cells and basophils, and solubilization and clearance of immune complex and cell lysis, are dependent on complement activation. Although the activation of the complement system is important to avoid infections, it also can contribute to the inflammatory response triggered by immune complex deposition in tissues in autoimmune diseases. Paradoxically, the deficiency of early complement proteins from the classical pathway (CP) is strongly associated with development of systemic lupus erythematous (SLE) - mainly C1q deficiency (93%) and C4 deficiency (75%). The aim of this review is to focus on the deficiencies of early components of the CP (C1q, C1r, C1s, C4, and C2) proteins in SLE patients.
Collapse
Affiliation(s)
- Ana Catarina Lunz Macedo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Faculty of Medicine, Children's Hospital, Clinics Hospital, University of São Paulo, São Paulo, Brazil
| | - Lourdes Isaac
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| |
Collapse
|
24
|
Lintner KE, Wu YL, Yang Y, Spencer CH, Hauptmann G, Hebert LA, Atkinson JP, Yu CY. Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases. Front Immunol 2016; 7:36. [PMID: 26913032 PMCID: PMC4753731 DOI: 10.3389/fimmu.2016.00036] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/24/2016] [Indexed: 01/06/2023] Open
Abstract
The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy-number (GCN) variation and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low GCNs of total C4, and heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein deficiencies for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases and immune-mediated diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases.
Collapse
Affiliation(s)
- Katherine E Lintner
- Center for Molecular and Human Genetics, Division of Pediatric Rheumatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University , Columbus, OH , USA
| | - Yee Ling Wu
- Center for Molecular and Human Genetics, Division of Pediatric Rheumatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University , Columbus, OH , USA
| | - Yan Yang
- Center for Molecular and Human Genetics, Division of Pediatric Rheumatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University , Columbus, OH , USA
| | - Charles H Spencer
- Center for Molecular and Human Genetics, Division of Pediatric Rheumatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University , Columbus, OH , USA
| | - Georges Hauptmann
- Laboratoire d'Immuno-Rhumatologie Moleculaire, INSERM UMR_S 1109, LabEx Transplantex, Faculté de Médecine, Université de Strasbourg , Strasbourg , France
| | - Lee A Hebert
- Division of Nephrology, College of Medicine, The Ohio State University , Columbus, OH , USA
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine , St. Louis, MO , USA
| | - C Yung Yu
- Center for Molecular and Human Genetics, Division of Pediatric Rheumatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University , Columbus, OH , USA
| |
Collapse
|
25
|
da Silva KR, Fraga TR, Lucatelli JF, Grumach AS, Isaac L. Skipping of exon 27 in C3 gene compromises TED domain and results in complete human C3 deficiency. Immunobiology 2016; 221:641-9. [PMID: 26847111 DOI: 10.1016/j.imbio.2016.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/17/2015] [Accepted: 01/12/2016] [Indexed: 11/16/2022]
Abstract
Primary deficiency of complement C3 is rare and usually associated with increased susceptibility to bacterial infections. In this work, we investigated the molecular basis of complete C3 deficiency in a Brazilian 9-year old female patient with a family history of consanguinity. Hemolytic assays revealed complete lack of complement-mediated hemolytic activity in the patient's serum. While levels of the complement regulatory proteins Factor I, Factor H and Factor B were normal in the patient's and family members' sera, complement C3 levels were undetectable in the patient's serum and were reduced by at least 50% in the sera of the patient's parents and brother. Additionally, no C3 could be observed in the patient's plasma and cell culture supernatants by Western blot. We also observed that patient's skin fibroblasts stimulated with Escherichia coli LPS were unable to secrete C3, which might be accumulated within the cells before being intracellularly degraded. Sequencing analysis of the patient's C3 cDNA revealed a genetic mutation responsible for the complete skipping of exon 27, resulting in the loss of 99 nucleotides (3450-3549) located in the TED domain. Sequencing of the intronic region between the exons 26 and 27 of the C3 gene (nucleotides 6690313-6690961) showed a nucleotide exchange (T→C) at position 6690626 located in a splicing donor site, resulting in the complete skipping of exon 27 in the C3 mRNA.
Collapse
Affiliation(s)
- Karina Ribeiro da Silva
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tatiana Rodrigues Fraga
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Faggion Lucatelli
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Lourdes Isaac
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
26
|
On the three-finger protein domain fold and CD59-like proteins in Schistosoma mansoni. PLoS Negl Trop Dis 2013; 7:e2482. [PMID: 24205416 PMCID: PMC3812095 DOI: 10.1371/journal.pntd.0002482] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/02/2013] [Indexed: 11/28/2022] Open
Abstract
Background It is believed that schistosomes evade complement-mediated killing by expressing regulatory proteins on their surface. Recently, six homologues of human CD59, an important inhibitor of the complement system membrane attack complex, were identified in the schistosome genome. Therefore, it is important to investigate whether these molecules could act as CD59-like complement inhibitors in schistosomes as part of an immune evasion strategy. Methodology/Principal Findings Herein, we describe the molecular characterization of seven putative SmCD59-like genes and attempt to address the putative biological function of two isoforms. Superimposition analysis of the 3D structure of hCD59 and schistosome sequences revealed that they contain the three-fingered protein domain (TFPD). However, the conserved amino acid residues involved in complement recognition in mammals could not be identified. Real-time RT-PCR and Western blot analysis determined that most of these genes are up-regulated in the transition from free-living cercaria to adult worm stage. Immunolocalization experiments and tegument preparations confirm that at least some of the SmCD59-like proteins are surface-localized; however, significant expression was also detected in internal tissues of adult worms. Finally, the involvement of two SmCD59 proteins in complement inhibition was evaluated by three different approaches: (i) a hemolytic assay using recombinant soluble forms expressed in Pichia pastoris and E. coli; (ii) complement-resistance of CHO cells expressing the respective membrane-anchored proteins; and (iii) the complement killing of schistosomula after gene suppression by RNAi. Our data indicated that these proteins are not involved in the regulation of complement activation. Conclusions Our results suggest that this group of proteins belongs to the TFPD superfamily. Their expression is associated to intra-host stages, present in the tegument surface, and also in intra-parasite tissues. Three distinct approaches using SmCD59 proteins to inhibit complement strongly suggested that these proteins are not complement inhibitors and their function in schistosomes remains to be determined. Schistosomes are parasites that reside for many years in the blood stream, demanding efficient mechanisms of evading immune response effectors such as complement deposition. A group of genes similar to human CD59, an important complement inhibitor in mammals, were identified in the schistosome genome. Computer predictions of protein structure indicated substantial similarity of the schistosome proteins and the mammalian CD59 family of proteins, which due to their three-finger-shaped spatial conformation are members of the Three-Finger Protein Domain fold superfamily (TFPD). Members of this family of schistosome proteins were also shown to be expressed predominantly during the mammalian stages when worms are exposed to complement and found to be present at the host-interactive surface of schistosomes. Three different methods were employed to test the possible involvement of these proteins in complement inhibition. Our results strongly suggest that these proteins are not involved in the inhibition of complement and that further studies are needed to establish their functional role(s) in schistosomes.
Collapse
|
27
|
Tamura K, Uchio-Yamada K, Manabe N, Noto T, Hirota R, Unami A, Matsumoto M, Miyamae Y. Gene expression analysis detected a low expression level of C1s gene in ICR-derived glomerulonephritis (ICGN) mice. Nephron Clin Pract 2013; 123:34-45. [PMID: 23989031 DOI: 10.1159/000354057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 06/26/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND ICR-derived glomerulonephritis (ICGN) strain is a novel inbred strain of mice with a hereditary nephrotic syndrome. Deletion mutation of tensin 2 (Tns2), a focal adhesion molecule, has been suggested to be responsible for nephrotic syndrome in ICGN mice; however, the existence of other associative factors has been suggested. METHODS AND RESULTS To identify additional associative factors and to better understand the onset mechanism of nephrotic syndrome in ICGN mice, we conducted a comprehensive gene expression analysis using DNA microarray. Immune-related pathways were markedly altered in ICGN mice kidney as compared with ICR mice. Furthermore, the gene expression level of complement component 1, s subcomponent (C1s), whose human homologue has been reported to associate with lupus nephritis, was markedly low in ICGN mouse kidney. Real-time quantitative reverse transcription-polymerase chain reaction confirmed a low expression level of C1s in ICGN mouse liver where the C1s protein is mainly synthesized. A high serum level of anti-dsDNA antibody and deposits of immune complexes were also detected in ICGN mice by enzyme-linked immunosorbent assay and immunohistochemical analyses, respectively. CONCLUSION Our results suggest that the immune system, especially the complement system, is associated with nephrotic syndrome in ICGN mice. We identified a low expression level of C1s gene as an additional associative factor for nephrotic syndrome in ICGN mice. Further studies are needed to elucidate the role of the complement system in the onset of nephrotic syndrome in ICGN mice.
Collapse
Affiliation(s)
- Kotaro Tamura
- Drug Safety Research Laboratories, Astellas Pharma Inc., Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ornstein BW, Atkinson JP, Densen P. The complement system in pediatric systemic lupus erythematosus, atypical hemolytic uremic syndrome, and complocentric membranoglomerulopathies. Curr Opin Rheumatol 2013; 24:522-9. [PMID: 22810363 DOI: 10.1097/bor.0b013e328356896b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the recent advances in complement biology and the evolving understanding of these contributions to the pathophysiology and treatment of predominantly pediatric disease syndromes. RECENT FINDINGS Identification of lupus patients with complete deficiencies of one of the plasma complement proteins enabled the field to move beyond the notion of complement as a laboratory curiosity. Clinical investigation of the manifestations observed in deficient patients has further defined the biology of the system in normal individuals. Definition of the assembly of the C3 convertases, particularly that of the alternative pathway and its regulation, has led to the appreciation that the complement system includes membrane inhibitors that are every bit as important as those in plasma. The exploration of disease states in which significant complement deposition occurs has moved the field away from consideration of this finding as a bystander effect. Dissection of these syndromes has led to the unanticipated finding of a central role for function-altering mutations in the complement proteins that form or regulate the alternative pathway C3 convertase and has opened the door to new therapeutic approaches. The disease states discussed in the review - pediatric systemic lupus erythematosus, atypical hemolytic uremic syndrome, and the complocentric membranoglomerulopathies - illustrate this evolutionary history of complement biology. SUMMARY This review emphasizes that both the lack of classical pathway complement activation and excessive activation of the alternative pathway contribute to distinct disease pathogenesis, and emphasizes the critical importance of homeostatic regulation, in both plasma and in tissues, of the system as a whole.
Collapse
Affiliation(s)
- Bradley W Ornstein
- Division of Infectious Diseases and Rheumatology, Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | |
Collapse
|
29
|
Hosszu KK, Valentino A, Ji Y, Matkovic M, Pednekar L, Rehage N, Tumma N, Peerschke EIB, Ghebrehiwet B. Cell surface expression and function of the macromolecular c1 complex on the surface of human monocytes. Front Immunol 2012; 3:38. [PMID: 22566921 PMCID: PMC3342062 DOI: 10.3389/fimmu.2012.00038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/16/2012] [Indexed: 11/13/2022] Open
Abstract
The synthesis of the subunits of the C1 complex (C1q, C1s, C1r), and its regulator C1 inhibitor (C1-Inh) by human monocytes has been previously established. However, surface expression of these molecules by monocytes has not been shown. Using flow cytometry and antigen-capture enzyme-linked immunosorbent assay, we show here for the first time that, in addition to C1q, peripheral blood monocytes, and the monocyte-derived U937 cells express C1s and C1r, as well as Factor B and C1-Inh on their surface. C1s and C1r immunoprecipitated with C1q, suggesting that at least some of the C1q on these cells is part of the C1 complex. Furthermore, the C1 complex on U937 cells was able to trigger complement activation via the classical pathway. The presence of C1-Inh may ensure that an unwarranted autoactivation of the C1 complex does not take place. Since C1-Inh closely monitors the activation of the C1 complex in a sterile or infectious inflammatory environment, further elucidation of the role of C1 complex is crucial to dissect its function in monocyte, dendritic cell, and T cell activities, and its implications in host defense and tolerance.
Collapse
Affiliation(s)
- Kinga K Hosszu
- The Department of Medicine, Stony Brook University Stony Brook, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wu YL, Brookshire BP, Verani RR, Arnett FC, Yu CY. Clinical presentations and molecular basis of complement C1r deficiency in a male African-American patient with systemic lupus erythematosus. Lupus 2011; 20:1126-34. [PMID: 21784777 DOI: 10.1177/0961203311404914] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Homozygous deficiencies of early components for complement activation are among the strongest genetic risk factors for human systemic lupus erythematosus (SLE). Eleven cases of C1r deficiency are documented but this is the first report on the molecular basis of C1r deficiency. The proband is an African-American male who developed SLE at 3 months of age. He had a discoid lupus rash and diffuse proliferative glomerulonephritis. Serum complement analysis of the patient showed zero CH50 activity, undetectable C1r, and reduced levels of C1s, but highly elevated levels of complement C4, C2, and C1-inhibitor. The coding regions of the mutant C1R gene with 11 exons located at chromosome 12p13 were polymerase chain reaction (PCR)-amplified and sequenced to completion. DNA sequencing revealed a homozygous C→T mutation at nucleotide-6392 in exon 10 of the C1R gene, resulting in a nonsense mutation from Arg-380 (R380X). The patient's clinically normal mother was heterozygous for this mutation. A sequence-specific primer (SSP) PCR coupled with StuI-restriction fragment length polymorphism (RFLP) was developed to detect the novel mutation. Screening of 209 African-American SLE patients suggested that the R380X mutation is a rare causal variant. Mutations leading to early complement component deficiencies in SLE are mostly private variants with large effects.
Collapse
Affiliation(s)
- Y L Wu
- Center for Molecular and Human Genetics, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
31
|
Kallel-Sellami M, Laadhar L, Zerzeri Y, Makni S. Complement deficiency and systemic lupus erythematosus: consensus and dilemma. Expert Rev Clin Immunol 2010; 4:629-37. [PMID: 20476965 DOI: 10.1586/1744666x.4.5.629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The involvement of the complement system in the pathogenesis of autoimmune diseases is a matter of debate. However, the link between complement abnormalities and systemic lupus erythematosus (SLE) is well established and widely described. Homozygous and/or heterozygous complement-component deficiencies of the classical pathway (C1q, C1r, C1s, C4A, C4B and C2) are causally associated with susceptibility to the development of SLE. Although the severity of the disease and the strength of the association are heterogeneous for deficiencies of these proteins, they commonly cause peculiar SLE syndromes with an early age of onset, a susceptibility to bacterial infections and negative anti-dsDNA antibodies. In this review, we highlight the available data on complement deficiency and SLE with a focus on deficiencies in classical complement pathway components. We also discuss the paradox of the link between complement deficiency and lupus. The complement system acts as a 'friend' through the clearance of immune complexes and apoptotic cells, which explains the close association between complement deficiency and lupus. It also acts as an 'enemy' by participating in the effector inflammatory phase of the autoimmune response. Understanding the importance of complement deficiencies should provide novel targets for therapeutic interventions in the modulation of the immune response.
Collapse
|
32
|
Bienaimé F, Quartier P, Dragon-Durey MA, Frémeaux-Bacchi V, Bader-Meunier B, Patey N, Salomon R, Noël LH. Lupus nephritis associated with complete C1s deficiency efficiently treated with rituximab: A case report. Arthritis Care Res (Hoboken) 2010; 62:1346-50. [DOI: 10.1002/acr.20163] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Abstract
The complement system is composed of more than 30 serum and membrane-bound proteins, all of which are needed for normal function of complement in innate and adaptive immunity. Historically, deficiencies within the complement system have been suspected when young children have had recurrent and difficult-to-control infections. As our understanding of the complement system has increased, many other diseases have been attributed to deficiencies within the complement system. Generally, complement deficiencies within the classical pathway lead to increased susceptibility to encapsulated bacterial infections as well as a syndrome resembling systemic lupus erythematosus. Complement deficiencies within the mannose-binding lectin pathway generally lead to increased bacterial infections, and deficiencies within the alternative pathway usually lead to an increased frequency of Neisseria infections. However, factor H deficiency can lead to membranoproliferative glomerulonephritis and hemolytic uremic syndrome. Finally, deficiencies within the terminal complement pathway lead to an increased incidence of Neisseria infections. Two other notable complement-associated deficiencies are complement receptor 3 and 4 deficiency, which result from a deficiency of CD18, a disease known as leukocyte adhesion deficiency type 1, and CD59 deficiency, which causes paroxysmal nocturnal hemoglobinuria. Most inherited deficiencies of the complement system are autosomal recessive, but properidin deficiency is X-linked recessive, deficiency of C1 inhibitor is autosomal dominant, and mannose-binding lectin and factor I deficiencies are autosomal co-dominant. The diversity of clinical manifestations of complement deficiencies reflects the complexity of the complement system.
Collapse
Affiliation(s)
- H David Pettigrew
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, California 95616, USA
| | | | | |
Collapse
|
34
|
Welch TR, Blystone LW. Renal disease associated with inherited disorders of the complement system. Pediatr Nephrol 2009; 24:1439-44. [PMID: 18958500 DOI: 10.1007/s00467-008-1027-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 09/23/2008] [Accepted: 09/24/2008] [Indexed: 12/25/2022]
Abstract
The human complement system is vital for host defense and plays a role in a number of inflammatory disorders. Inherited deficiency or dysfunction of most of the individual complement components occurs uncommonly. The phenotype displayed by such patients varies with the specific component deficiency and ranges from recurrent infections to autoimmune diseases. Most of the latter are associated with glomerulonephritis. The onset of severe lupus erythematosus in a young child, with prominent cutaneous and renal manifestations, especially if a similar disorder is present in another family member, is a clue to the presence of a complement component deficiency. The distinguishing of acquired deficiencies from inherited deficiencies in complement components is sometimes difficult and may require sophisticated laboratory testing.
Collapse
Affiliation(s)
- Thomas R Welch
- Department of Pediatrics, State University of New York, Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA.
| | | |
Collapse
|
35
|
Abe K, Endo Y, Nakazawa N, Kanno K, Okubo M, Hoshino T, Fujita T. Unique Phenotypes of C1s Deficiency and Abnormality Caused by Two Compound Heterozygosities in a Japanese Family. THE JOURNAL OF IMMUNOLOGY 2009; 182:1681-8. [DOI: 10.4049/jimmunol.182.3.1681] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Immune evasion of leptospira species by acquisition of human complement regulator C4BP. Infect Immun 2008; 77:1137-43. [PMID: 19114549 DOI: 10.1128/iai.01310-08] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leptospirosis is a spirochetal zoonotic disease of global distribution with a high incidence in tropical regions. In the last 15 years it has been recognized as an important emerging infectious disease due to the occurrence of large outbreaks in warm-climate countries and, occasionally, in temperate regions. Pathogenic leptospires efficiently colonize target organs after penetrating the host. Their invasiveness is attributed to the ability to multiply in blood, adhere to host cells, and penetrate into tissues. Therefore, they must be able to evade the innate host defense. The main purpose of the present study was to evaluate how several Leptospira strains evade the protective function of the complement system. The serum resistance of six Leptospira strains was analyzed. We demonstrate that the pathogenic strain isolated from infected hamsters avoids serum bactericidal activity more efficiently than the culture-attenuated or the nonpathogenic Leptospira strains. Moreover, both the alternative and the classical pathways of complement seem to be responsible for the killing of leptospires. Serum-resistant and serum-intermediate strains are able to bind C4BP, whereas the serum-sensitive strain Patoc I is not. Surface-bound C4BP promotes factor I-mediated cleavage of C4b. Accordingly, we found that pathogenic strains displayed reduced deposition of the late complement components C5 to C9 upon exposure to serum. We conclude that binding of C4BP contributes to leptospiral serum resistance against host complement.
Collapse
|