1
|
Li K, Liu Y, Ding Y, Zhang Z, Feng J, Hu J, Chen J, Lian Z, Chen Y, Hu K, Chen Z, Cai Z, Liu M, Pang X. BCL6 is regulated by the MAPK/ELK1 axis and promotes KRAS-driven lung cancer. J Clin Invest 2022; 132:161308. [PMID: 36377663 PMCID: PMC9663163 DOI: 10.1172/jci161308] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Mutational activation of KRAS is a common oncogenic event in lung cancer, yet effective therapies are still lacking. Here, we identify B cell lymphoma 6 (BCL6) as a lynchpin in KRAS-driven lung cancer. BCL6 expression was increased upon KRAS activation in lung tumor tissue in mice and was positively correlated with the expression of KRAS-GTP, the active form of KRAS, in various human cancer cell lines. Moreover, BCL6 was highly expressed in human KRAS-mutant lung adenocarcinomas and was associated with poor patient survival. Mechanistically, the MAPK/ERK/ELK1 signaling axis downstream of mutant KRAS directly regulated BCL6 expression. BCL6 maintained the global expression of prereplication complex components; therefore, BCL6 inhibition induced stalling of the replication fork, leading to DNA damage and growth arrest in KRAS-mutant lung cancer cells. Importantly, BCL6-specific knockout in lungs significantly reduced the tumor burden and mortality in the LSL-KrasG12D/+ lung cancer mouse model. Likewise, pharmacological inhibition of BCL6 significantly impeded the growth of KRAS-mutant lung cancer cells both in vitro and in vivo. In summary, our findings reveal a crucial role of BCL6 in promoting KRAS-addicted lung cancer and suggest BCL6 as a therapeutic target for the treatment of this intractable disease.
Collapse
Affiliation(s)
- Kun Li
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
- Joint Translational Science and Technology Research Institute, East China Normal University, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanan Liu
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Yi Ding
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Zhengwei Zhang
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Juanjuan Feng
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Jiaxin Hu
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Jiwei Chen
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Zhengke Lian
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Yiliang Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Kewen Hu
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi Chen
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Zhenyu Cai
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Mingyao Liu
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Xiufeng Pang
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| |
Collapse
|
2
|
Huang H, Zhang G, Ruan GX, Li Y, Chen W, Zou J, Zhang R, Wang J, Ji SJ, Xu S, Ou X. Mettl14-Mediated m6A Modification Is Essential for Germinal Center B Cell Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1924-1936. [PMID: 35365563 DOI: 10.4049/jimmunol.2101071] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022]
Abstract
The germinal center (GC) response is essential for generating memory B and long-lived Ab-secreting plasma cells during the T cell-dependent immune response. In the GC, signals via the BCR and CD40 collaboratively promote the proliferation and positive selection of GC B cells expressing BCRs with high affinities for specific Ags. Although a complex gene transcriptional regulatory network is known to control the GC response, it remains elusive how the positive selection of GC B cells is modulated posttranscriptionally. In this study, we show that methyltransferase like 14 (Mettl14)-mediated methylation of adenosines at the position N 6 of mRNA (N 6-methyladenosine [m6A]) is essential for the GC B cell response in mice. Ablation of Mettl14 in B cells leads to compromised GC B cell proliferation and a defective Ab response. Interestingly, we unravel that Mettl14-mediated m6A regulates the expression of genes critical for positive selection and cell cycle regulation of GC B cells in a Ythdf2-dependent but Myc-independent manner. Furthermore, our study reveals that Mettl14-mediated m6A modification promotes mRNA decay of negative immune regulators, such as Lax1 and Tipe2, to upregulate genes requisite for GC B cell positive selection and proliferation. Thus, our findings suggest that Mettl14-mediated m6A modification plays an essential role in the GC B cell response.
Collapse
Affiliation(s)
- Hengjun Huang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Gaopu Zhang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Gui-Xin Ruan
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuxing Li
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wenjing Chen
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jia Zou
- Department of Computer Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Rui Zhang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jing Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Sheng-Jian Ji
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China;
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore; and.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xijun Ou
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China;
| |
Collapse
|
3
|
Wishnie AJ, Chwat-Edelstein T, Attaway M, Vuong BQ. BCR Affinity Influences T-B Interactions and B Cell Development in Secondary Lymphoid Organs. Front Immunol 2021; 12:703918. [PMID: 34381455 PMCID: PMC8350505 DOI: 10.3389/fimmu.2021.703918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
B cells produce high-affinity immunoglobulins (Igs), or antibodies, to eliminate foreign pathogens. Mature, naïve B cells expressing an antigen-specific cell surface Ig, or B cell receptor (BCR), are directed toward either an extrafollicular (EF) or germinal center (GC) response upon antigen binding. B cell interactions with CD4+ pre-T follicular helper (pre-Tfh) cells at the T-B border and effector Tfh cells in the B cell follicle and GC control B cell development in response to antigen. Here, we review recent studies demonstrating the role of B cell receptor (BCR) affinity in modulating T-B interactions and the subsequent differentiation of B cells in the EF and GC response. Overall, these studies demonstrate that B cells expressing high affinity BCRs preferentially differentiate into antibody secreting cells (ASCs) while those expressing low affinity BCRs undergo further affinity maturation or differentiate into memory B cells (MBCs).
Collapse
Affiliation(s)
- Alec J Wishnie
- Biology PhD Program, Graduate Center, The City University of New York, New York, NY, United States.,Department of Biology, The City College of New York, New York, NY, United States
| | - Tzippora Chwat-Edelstein
- Department of Biology, The City College of New York, New York, NY, United States.,Macaulay Honors College, New York, NY, United States
| | - Mary Attaway
- Department of Biology, The City College of New York, New York, NY, United States
| | - Bao Q Vuong
- Biology PhD Program, Graduate Center, The City University of New York, New York, NY, United States.,Department of Biology, The City College of New York, New York, NY, United States
| |
Collapse
|
4
|
Luo F, Xu R, Song G, Lu H, He X, Xia Y. The δ-Opioid Receptor Differentially Regulates MAPKs and Anti-inflammatory Cytokines in Rat Kidney Epithelial Cells Under Hypoxia. Front Physiol 2020; 10:1572. [PMID: 32038276 PMCID: PMC6985288 DOI: 10.3389/fphys.2019.01572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
Hypoxic injury is one of the most important factors in progressive kidney disorders. Since we have found that δ-opioid receptor (DOR) is neuroprotective against hypoxic stress through a differential regulation of mitogen-activated protein kinases (MAPKs) and anti-inflammatory cytokines, we asked if DOR that is highly expressed in the kidney can modulate renal MAPKs and anti-inflammatory cytokines under hypoxia. We exposed cultured rat kidney epithelial cells (NRK-52E) to prolonged hypoxia (1% O2) with applications of specific DOR agonist or/and antagonist to examine if DOR affects hypoxia-induced changes in MAPKs and anti-inflammatory cytokines. The results showed that endogenous DOR expression remained unchanged under hypoxia, while DOR activation with UFP-512 (a specific DOR agonist) reversed the hypoxia-induced up-regulation of ERK1/2 and p38 phosphorylation. DOR inhibition with naltrindole had no appreciable effect on the hypoxia-induced changes in ERK1/2 phosphorylation, but increased p38 phosphorylation. DOR inhibition with naltrindole attenuated the effects of DOR activation on the changes in ERK1/2 and p38 phosphorylation in hypoxia. Moreover, DOR activation/inhibition differentially affected the expression of transcriptional repressor B-cell lymphoma 6 (Bcl-6), anti-inflammatory cytokines tristetraprolin (TTP), and interleukin-10 (IL-10). Taken together, our novel data suggest that DOR activation differentially regulates ERK1/2, p38, Bcl-6, TTP, and IL-10 in the renal cells under hypoxia.
Collapse
Affiliation(s)
- Fengbao Luo
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Renfang Xu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guanglai Song
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hao Lu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Luo F, Shi J, Shi Q, He X, Xia Y. ERK and p38 Upregulation versus Bcl-6 Downregulation in Rat Kidney Epithelial Cells Exposed to Prolonged Hypoxia. Cell Transplant 2018; 26:1441-1451. [PMID: 28901193 PMCID: PMC5680977 DOI: 10.1177/0963689717720296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypoxia is a common cause of kidney injury and a major issue in kidney transplantation. Mitogen-activated protein kinases (MAPKs) are involved in the cellular response to hypoxia, but the precise roles of MAPKs in renal cell reactions to hypoxic stress are not well known yet. This work was conducted to investigate the regulation of extracellular signal-regulated kinase-1 and -2 (ERK1/2) and p38 and their signaling-relevant molecules in kidney epithelial cells exposed to prolonged hypoxia. Rat kidney epithelial cells Normal Rat Kidney (NRK)-52E were exposed to hypoxic conditions (1% O2) for 24 to 72 h. Cell morphology was examined by light microscopy, and cell viability was checked by 3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxypheny]-2-[4-sulfophenyl]-2H-tetrazolium (MTS). The expression of ERK1/2 and p38 MAPK, as well as their signaling-related molecules, was measured by Western blot and real-time polymerase chain (RT-PCR) reaction. At the 1% oxygen level, cell morphology had no appreciable changes compared to the control up to 72 h of exposure under light microscopy, whereas the results of MTS showed a slight but significant reduction in cell viability after 72 h of hypoxia. On the other hand, ERK1/2 and p38 phosphorylation remarkably increased in these cells after 24 to 72 h of hypoxia. In sharp contrast, the expression of transcription factor B-cell lymphoma 6 (Bcl-6) was significantly downregulated in response to hypoxic stress. Other intracellular molecules relevant to the ERK1/2 and p38 signaling pathway, such as protein kinase A, protein kinase C, Bcl-2, nuclear factor erythroid 2-related factor 2, tristetraprolin, and interleukin-10(IL-10), had no significant alterations after 24 to 72 h of hypoxic exposure. We conclude that hypoxic stress increases the phosphorylation of both ERK1/2 and p38 but decreases the level of Bcl-6 in rat kidney epithelial cells.
Collapse
Affiliation(s)
- Fengbao Luo
- 1 Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jian Shi
- 1 Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Qianqian Shi
- 1 Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xiaozhou He
- 1 Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ying Xia
- 2 Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Kim N, Thatcher TH, Sime PJ, Phipps RP. Corticosteroids inhibit anti-IgE activities of specialized proresolving mediators on B cells from asthma patients. JCI Insight 2017; 2:e88588. [PMID: 28194434 DOI: 10.1172/jci.insight.88588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Specialized proresolving mediators (SPMs) promote the resolution of inflammation and exert beneficial effects in animal models of chronic inflammatory diseases, including asthma. Previously, we have shown that certain SPMs reduce IgE production in B cells from healthy individuals, which has a critical role in allergic asthma. Here, we investigated the effects of SPMs on B cell IgE production in asthma patients. Peripheral blood mononuclear cells from asthma patients were treated with 17-HDHA or RvD1, and IgE levels were measured. RvD1 and 17-HDHA dampened IgE production in B cells from most asthma patients, whereas B cells from a subset of patients taking oral steroids were refractory to SPM treatment. Molecular mechanisms underlying the interaction between corticosteroids and SPMs were investigated by treating B cells from nonasthmatic donors with corticosteroids in vitro. Corticosteroids blocked the inhibitory effects of 17-HDHA and RvD1 on B cell IgE production by abolishing the suppressive activity of these mediators on IgE class switching. Corticosteroids decreased the expression of transcriptional repressor Bcl-6 as well as its suppressive activity on epsilon germline transcription. We conclude that 17-HDHA and RvD1 can reduce IgE production in asthma patients not taking high doses of steroids but that corticosteroids interfere with the ability of B cells to respond to proresolving mediators.
Collapse
Affiliation(s)
- Nina Kim
- Department of Microbiology and Immunology
| | | | - Patricia J Sime
- Division of Pulmonary and Critical Care Medicine, and.,Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| | - Richard P Phipps
- Department of Microbiology and Immunology.,Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| |
Collapse
|
7
|
Park MK, Jung YO, Lee SY, Lee SH, Heo YJ, Kim EK, Oh HJ, Moon YM, Son HJ, Park MJ, Park SH, Kim HY, La Cho M, Min JK. Amelioration of autoimmune arthritis by adoptive transfer of Foxp3-expressing regulatory B cells is associated with the Treg/Th17 cell balance. J Transl Med 2016; 14:191. [PMID: 27350539 PMCID: PMC4924280 DOI: 10.1186/s12967-016-0940-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 06/11/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Foxp3 is a key regulator of the development and function of regulatory T cells (Tregs), and its expression is thought to be T cell-restricted. We found that B cells in mice can express Foxp3 and B cells expressing Foxp3 may play a role in preventing the development of collagen-induced arthritis (CIA) in DBA/1J mice. METHODS Foxp3 expression was modulated in CD19(+) B cells by transfection with shRNA or using an over-expression construct. In addition, Foxp3-transfected B cells were adoptively transferred to CIA mice. We found that LPS or anti-IgM stimulation induced Foxp3 expression in B cells. Foxp3-expressing B cells were found in the spleens of mice. RESULTS Over-expression of Foxp3 conferred a contact-dependent suppressive ability on proliferation of responder T cells. Down-regulation of Foxp3 by shRNA caused a profound induction in proliferation of responder T cells. Adoptive transfer of Foxp3(+)CD19(+) B cells attenuated the clinical symptoms of CIA significantly with concomitant suppression of IL-17 production and enhancement of Foxp3 expression in CD4(+) T cells from splenocytes. CONCLUSION Our data indicate that Foxp3 expression is not restricted to T cells. The expression of Foxp3 in B cells is critical for the immunoregulation of T cells and limits autoimmunity in a mouse model.
Collapse
Affiliation(s)
- Mi Kyung Park
- />The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040 South Korea
| | - Young Ok Jung
- />Division of Rheumatology, Department of Internal Medicine, Hallym University Kang-Nam Sacred Heart Hospital, Seoul, South Korea
| | - Seon-Yeong Lee
- />The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040 South Korea
| | - Seung Hoon Lee
- />The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040 South Korea
| | - Yu Jung Heo
- />The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040 South Korea
| | - Eun Kyung Kim
- />The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040 South Korea
| | - Hye Jwa Oh
- />The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040 South Korea
| | - Young Mee Moon
- />The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040 South Korea
| | - Hye-Jin Son
- />The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040 South Korea
| | - Min Jung Park
- />The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040 South Korea
| | - Sung Hwan Park
- />Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ho Youn Kim
- />Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi La Cho
- />The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040 South Korea
| | - Jun Ki Min
- />Bucheon St. Mary’s Hospital, Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 327 Sosa-ro, Wonmi-gu, Bucheon, Gyeonggi-do 420-717 South Korea
- />Division of Rheumatology, Department of Internal Medicine, College of Medicine, Holy Family Hospital, Rheumatism Research Center (RhRC), Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
8
|
Deucher AM, Qi Z, Yu J, George TI, Etzell JE. BCL6 expression correlates with the t(1;19) translocation in B-lymphoblastic leukemia. Am J Clin Pathol 2015; 143:547-57. [PMID: 25780007 DOI: 10.1309/ajcpo4u4vyaaotel] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Study to date suggests that BCL6 protein expression in B-cell neoplasia predominates in germinal center-derived tumors, but less is known regarding its expression in B-lymphoblastic leukemia. Therefore, we designed a comprehensive study of BCL6 expression in B-lymphoblastic leukemia. METHODS BCL6, LMO, and HGAL protein expression in B-lymphoblastic leukemia was investigated using immunohistochemical staining of paraffin-embedded bone marrow specimens. Cryptic TCF3(E2A)-PBX1 rearrangements were investigated using interphase fluorescence in situ hybridization. RESULTS Six (12%) of 52 B-lymphoblastic leukemias demonstrated BCL6 protein expression, with B-cell lymphoblastic leukemias containing a t(1;19) translocation demonstrating the strongest staining (three of three). Additional t(1;19) cases beyond the screening study showed similar results. Public microarray expression database mining showed that BCL6 messenger RNA expression levels in B-lymphoblastic leukemia correlated with the protein expression findings. Finally, other markers of B-cell development correlated with BCL6 expression in t(1;19) B-lymphoblastic leukemia cases, with LMO2 and HGAL proteins expressed in six (67%) of nine and eight (89%) of nine cases, respectively. CONCLUSIONS BCL6 expression is present in a subset of B-lymphoblastic leukemias, especially in cases containing the 1;19 translocation. Investigation for TCF3(E2A)-PBX1 rearrangements may be useful in BCL6-positive B-lymphoblastic leukemia.
Collapse
|
9
|
Ritz O, Rommel K, Dorsch K, Kelsch E, Melzner J, Buck M, Leroy K, Papadopoulou V, Wagner S, Marienfeld R, Brüderlein S, Lennerz JK, Möller P. STAT6-mediated BCL6 repression in primary mediastinal B-cell lymphoma (PMBL). Oncotarget 2014; 4:1093-102. [PMID: 23852366 PMCID: PMC3759668 DOI: 10.18632/oncotarget.1149] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Primary mediastinal B-cell lymphoma (PMBL) is characterized by aberrant activation of JAK/STAT-signaling resulting in constitutive presence of phosphorylated STAT6 (pSTAT6). In primary PMBL samples pSTAT6 is only expressed in a sub-population of lymphoma cells in a pattern that is reminiscent of that of the BCL6 oncogene. Double-fluorescence staining was carried out to determine the association between these two proteins in ten primary PMBL cases and three available PMBL cell line models. Surprisingly, only a minute fraction of double-positive nuclei was observed, while each sample contained considerable fractions of single-positive pSTAT6 and BCL6 nuclei. The intratumoral coexistence of BCL6+/pSTAT6− and BCL6−/pSTAT6+ subpopulations suggests a negative interaction between these factors. In silico screening of the STAT6 /BCL6 promoters for DNA consensus binding sites identified five STAT-binding-sites in the BCL6 promoter. We confirmed STAT6 binding to the BCL6 promoter in vitro and in vivo by band shift / super shift assays and chromatin immunoprecipitations. Using BCL6 luciferase reporter assays, depletion of STAT6 by siRNA, and ectopic overexpression of a constitutive active STAT6 mutant, we proved that pSTAT6 is sufficient to transcriptionally repress BCL6. Recently developed small molecule inhibitors 79-6 and TG101348 that increases BCL6 target gene expression and decreases pSTAT6 levels, respectively, demonstrate that a combined targeting results in additive efficacy regarding their negative effect on cell viability. The delineated pSTAT6-mediated molecular repression mechanism links JAK/STAT to BCL6-signaling in PMBL and may carry therapeutic potential.
Collapse
Affiliation(s)
- Olga Ritz
- Institute of Pathology, University Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Batlle-López A, Cortiguera MG, Rosa-Garrido M, Blanco R, del Cerro E, Torrano V, Wagner SD, Delgado MD. Novel CTCF binding at a site in exon1A of BCL6 is associated with active histone marks and a transcriptionally active locus. Oncogene 2013; 34:246-56. [PMID: 24362533 DOI: 10.1038/onc.2013.535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 10/01/2013] [Accepted: 11/01/2013] [Indexed: 12/14/2022]
Abstract
BCL6 is a zinc-finger transcriptional repressor, which is highly expressed in germinal centre B-cells and is essential for germinal centre formation and T-dependent antibody responses. Constitutive BCL6 expression is sufficient to produce lymphomas in mice. Deregulated expression of BCL6 due to chromosomal rearrangements, mutations of a negative autoregulatory site in the BCL6 promoter region and aberrant post-translational modifications have been detected in a number of human lymphomas. Tight lineage and temporal regulation of BCL6 is, therefore, required for normal immunity, and abnormal regulation occurs in lymphomas. CCCTC-binding factor (CTCF) is a multi-functional chromatin regulator, which has recently been shown to bind in a methylation-sensitive manner to sites within the BCL6 first intron. We demonstrate a novel CTCF-binding site in BCL6 exon1A within a potential CpG island, which is unmethylated both in cell lines and in primary lymphoma samples. CTCF binding, which was found in BCL6-expressing cell lines, correlated with the presence of histone variant H2A.Z and active histone marks, suggesting that CTCF induces chromatin modification at a transcriptionally active BCL6 locus. CTCF binding to exon1A was required to maintain BCL6 expression in germinal centre cells by avoiding BCL6-negative autoregulation. Silencing of CTCF in BCL6-expressing cells reduced BCL6 mRNA and protein expression, which is sufficient to induce B-cell terminal differentiation toward plasma cells. Moreover, lack of CTCF binding to exon1A shifts the BCL6 local chromatin from an active to a repressive state. This work demonstrates that, in contexts in which BCL6 is expressed, CTCF binding to BCL6 exon1A associates with epigenetic modifications indicative of transcriptionally open chromatin.
Collapse
Affiliation(s)
- A Batlle-López
- 1] Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) and Departamento de Biología Molecular, Universidad de Cantabria, CSIC, SODERCAN, Santander, Spain [2] Servicio de Hematología, Hospital U. Marqués de Valdecilla, and IFIMAV-FMV, Santander, Spain
| | - M G Cortiguera
- 1] Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) and Departamento de Biología Molecular, Universidad de Cantabria, CSIC, SODERCAN, Santander, Spain [2] Servicio de Hematología, Hospital U. Marqués de Valdecilla, and IFIMAV-FMV, Santander, Spain
| | - M Rosa-Garrido
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) and Departamento de Biología Molecular, Universidad de Cantabria, CSIC, SODERCAN, Santander, Spain
| | - R Blanco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) and Departamento de Biología Molecular, Universidad de Cantabria, CSIC, SODERCAN, Santander, Spain
| | - E del Cerro
- Servicio de Hematología, Hospital U. Marqués de Valdecilla, and IFIMAV-FMV, Santander, Spain
| | - V Torrano
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) and Departamento de Biología Molecular, Universidad de Cantabria, CSIC, SODERCAN, Santander, Spain
| | - S D Wagner
- Department of Cancer Studies and Molecular Medicine and MRC Toxicology Unit, University of Leicester, Leicester, UK
| | - M D Delgado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) and Departamento de Biología Molecular, Universidad de Cantabria, CSIC, SODERCAN, Santander, Spain
| |
Collapse
|
11
|
Okada T, Moriyama S, Kitano M. Differentiation of germinal center B cells and follicular helper T cells as viewed by tracking Bcl6 expression dynamics. Immunol Rev 2012; 247:120-32. [DOI: 10.1111/j.1600-065x.2012.01120.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Lu H, Crawford RB, Kaplan BLF, Kaminski NE. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-mediated disruption of the CD40 ligand-induced activation of primary human B cells. Toxicol Appl Pharmacol 2011; 255:251-60. [PMID: 21807014 DOI: 10.1016/j.taap.2011.06.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/21/2011] [Accepted: 06/30/2011] [Indexed: 11/27/2022]
Abstract
Suppression of the primary antibody response is particularly sensitive to suppression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice; however, surprisingly little is known concerning the effects of TCDD on humoral immunity or B cell function in humans. Results from a limited number of previous studies, primarily employing in vitro activation models, suggested that human B cell effector function is suppressed by TCDD. The present study sought to extend these findings by investigating, in primary human B cells, the effects of TCDD on several critical stages leading to antibody secretion including activation and plasmacytic differentiation using an in vitro CD40 ligand activation model. These studies revealed important differences in the response of human and mouse B cells to TCDD, the most striking being altered expression of plasmacytic differentiation regulators, B lymphocyte-induced maturation protein 1 and paired box protein 5, in mouse but not human B cells. The activation of human B cells was profoundly impaired by TCDD, as evidenced by decreased expression of activation markers CD80, CD86, and CD69. The impaired activation correlated with decreased cell viability, which prevented the progression of human B cells toward plasmacytic differentiation. TCDD treatment also attenuated the early activation of mitogen-activated protein kinases (MAPK) and Akt signaling in human B cells. Collectively, the present study provided experimental evidence for novel mechanisms by which TCDD impairs the effector function of primary human B cells.
Collapse
Affiliation(s)
- Haitian Lu
- Department of Pharmacology and Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | |
Collapse
|
13
|
Franke A, Niederfellner GJ, Klein C, Burtscher H. Antibodies against CD20 or B-cell receptor induce similar transcription patterns in human lymphoma cell lines. PLoS One 2011; 6:e16596. [PMID: 21364752 PMCID: PMC3041769 DOI: 10.1371/journal.pone.0016596] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 01/05/2011] [Indexed: 11/19/2022] Open
Abstract
Background CD20 is a cell surface protein exclusively expressed on B cells. It is a clinically validated target for Non-Hodgkin's lymphomas (NHL) and autoimmune diseases. The B cell receptor (BCR) plays an important role for development and proliferation of pre-B and B cells. Physical interaction of CD20 with BCR and components of the BCR signaling cascade has been reported but the consequences are not fully understood. Methodology In this study we employed antibodies against CD20 and against the BCR to trigger the respective signaling. These antibodies induced very similar expression patterns of up- and down-regulated genes in NHL cell lines indicating that CD20 may play a role in BCR signaling and vice versa. Two of the genes that were rapidly and transiently induced by both stimuli are CCL3 and CCL4. 4 hours after stimulation the concentration of these chemokines in culture medium reaches a maximum. Spleen tyrosine kinase Syk is a cytoplasmic tyrosine kinase and a key component of BCR signaling. Both siRNA mediated silencing of Syk and inhibition by selective small molecule inhibitors impaired CCL3/CCL4 protein induction after treatment with either anti-CD20 or anti-BCR antibodies. Conclusion Our results suggest that treatment with anti-CD20 antibodies triggers at least partially a BCR activation-like response in NHL cell lines.
Collapse
MESH Headings
- Antibodies/pharmacology
- Antibodies, Monoclonal, Murine-Derived/pharmacology
- Antigens, CD20/immunology
- Cell Line, Tumor
- Cluster Analysis
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Regulatory Networks/drug effects
- Humans
- Immunoglobulin G/pharmacology
- Immunoglobulin M/pharmacology
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/metabolism
- Lymphoma, Non-Hodgkin/pathology
- Microarray Analysis
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/immunology
- Rituximab
- Transcription, Genetic/drug effects
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Andreas Franke
- Pharma Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | | | | | | |
Collapse
|
14
|
Tuning of CD40–CD154 Interactions in Human B-Lymphocyte Activation: A Broad Array of In Vitro Models for a Complex In Vivo Situation. Arch Immunol Ther Exp (Warsz) 2011; 59:25-40. [DOI: 10.1007/s00005-010-0108-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 08/19/2010] [Indexed: 12/13/2022]
|
15
|
Abstract
BCL6 is a transcription factor that has essential B-cell and T-cell roles in normal antibody responses. It is involved in chromosomal translocations in diffuse large B-cell lymphoma (DBCL; including primary mediastinal B-cell lymphoma) and nodular lymphocyte predominant Hodgkin lymphoma, and is expressed in follicular lymphoma and Burkitt's lymphoma. The neoplastic T-cells of angioimmunoblastic T-cell lymphoma also express BCL6. BCL6 prevents terminal B-cell differentiation largely through repression of PRDM1. In the "cell of origin" classification of DLBCL BCL6 is associated with the germinal centre subtype, which carries a good response to modern treatments. More recently, specific BCL6 antagonists, including small molecule inhibitors, have been developed. These antagonists have demonstrated that DLBCL cells, in which BCL6 is transcriptionally active, are dependent on this gene for survival. BCL6 antagonists are active against primary DLBCL and may find future application in the treatment of lymphomas.
Collapse
Affiliation(s)
- Simon D Wagner
- Department of Cancer Studies and Molecular Medicine and MRC Toxicology Unit, University of Leicester, Lancaster Road, Leicester, UK.
| | | | | |
Collapse
|
16
|
ZEB1 and CtBP form a repressive complex at a distal promoter element of the BCL6 locus. Biochem J 2010; 427:541-50. [DOI: 10.1042/bj20091578] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BCL6 is essential for normal antibody responses and is highly expressed in germinal centre B-cells. Constitutive expression due to chromosomal translocations or mutations of cis-acting regulatory elements contributes to diffuse large B-cell lymphoma. BCL6 expression is therefore tightly regulated in a lineage- and developmental-stage-specific manner, and disruption of normal controls can contribute to lymphomagenesis. In order to discover potential cis-acting control regions we carried out DNase I-hypersensitive site mapping. Gel-shift assays and chromatin immunoprecipitation of the core region of a hypersensitive site 4.4 kb upstream of BCL6 transcription initiation (HSS-4.4) showed an E-box element-binding ZEB1 (zinc finger E-boxbinding homeobox 1) and the co-repressor CtBP (C-terminal binding protein). As compared with peripheral blood B-cells, ZEB1, a two-handed zinc finger transcriptional repressor, is expressed at relatively low levels in germinal centre cells, whereas BCL6 has the opposite pattern of expression. Transfection of ZEB1 cDNA caused a reduction in BCL6 expression and a mutated ZEB1, incapable of binding CtBP, lacked this effect. siRNA (small interfering RNA)-mediated knockdown of ZEB1 or CtBP produced an increase in BCL6 mRNA. We propose that HSS-4.4 is a distal promoter element binding a repressive complex consisting of ZEB1 and CtBP. CtBP is ubiquitously expressed and the results of the present study suggest that regulation of ZEB1 is required for control of BCL6 expression.
Collapse
|