1
|
Schepetkin IA, Karpenko OS, Kovrizhina AR, Kirpotina LN, Khlebnikov AI, Chekal SI, Radudik AV, Shybinska MO, Quinn MT. Novel Tryptanthrin Derivatives with Selectivity as c-Jun N-Terminal Kinase (JNK) 3 Inhibitors. Molecules 2023; 28:4806. [PMID: 37375361 DOI: 10.3390/molecules28124806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The c-Jun N-terminal kinase (JNK) family includes three proteins (JNK1-3) that regulate many physiological processes, including cell proliferation and differentiation, cell survival, and inflammation. Because of emerging data suggesting that JNK3 may play an important role in neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease, as well as cancer pathogenesis, we sought to identify JNK inhibitors with increased selectivity for JNK3. A panel of 26 novel tryptanthrin-6-oxime analogs was synthesized and evaluated for JNK1-3 binding (Kd) and inhibition of cellular inflammatory responses. Compounds 4d (8-methoxyindolo[2,1-b]quinazolin-6,12-dione oxime) and 4e (8-phenylindolo[2,1-b]quinazolin-6,12-dione oxime) had high selectivity for JNK3 versus JNK1 and JNK2 and inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) transcriptional activity in THP-1Blue cells and interleukin-6 (IL-6) production by MonoMac-6 monocytic cells in the low micromolar range. Likewise, compounds 4d, 4e, and pan-JNK inhibitor 4h (9-methylindolo[2,1-b]quinazolin-6,12-dione oxime) decreased LPS-induced c-Jun phosphorylation in MonoMac-6 cells, directly confirming JNK inhibition. Molecular modeling suggested modes of binding interaction of these compounds in the JNK3 catalytic site that were in agreement with the experimental data on JNK3 binding. Our results demonstrate the potential for developing anti-inflammatory drugs based on these nitrogen-containing heterocyclic systems with selectivity for JNK3.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Oleksander S Karpenko
- O.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 65080 Odesa, Ukraine
| | | | - Liliya N Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | | | - Stepan I Chekal
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Odesa I.I. Mechnikov National University, 65082 Odesa, Ukraine
| | - Alevtyna V Radudik
- O.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 65080 Odesa, Ukraine
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Odesa I.I. Mechnikov National University, 65082 Odesa, Ukraine
| | - Maryna O Shybinska
- O.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 65080 Odesa, Ukraine
| | - Mark T Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
2
|
Carvalho K, Schartz ND, Balderrama-Gutierrez G, Liang HY, Chu SH, Selvan P, Gomez-Arboledas A, Petrisko TJ, Fonseca MI, Mortazavi A, Tenner AJ. Modulation of C5a-C5aR1 signaling alters the dynamics of AD progression. J Neuroinflammation 2022; 19:178. [PMID: 35820938 PMCID: PMC9277945 DOI: 10.1186/s12974-022-02539-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The complement system is part of the innate immune system that clears pathogens and cellular debris. In the healthy brain, complement influences neurodevelopment and neurogenesis, synaptic pruning, clearance of neuronal blebs, recruitment of phagocytes, and protects from pathogens. However, excessive downstream complement activation that leads to generation of C5a, and C5a engagement with its receptor C5aR1, instigates a feed-forward loop of inflammation, injury, and neuronal death, making C5aR1 a potential therapeutic target for neuroinflammatory disorders. C5aR1 ablation in the Arctic (Arc) model of Alzheimer's disease protects against cognitive decline and neuronal injury without altering amyloid plaque accumulation. METHODS To elucidate the effects of C5a-C5aR1 signaling on AD pathology, we crossed Arc mice with a C5a-overexpressing mouse (ArcC5a+) and tested hippocampal memory. RNA-seq was performed on hippocampus and cortex from Arc, ArcC5aR1KO, and ArcC5a+ mice at 2.7-10 months and age-matched controls to assess mechanisms involved in each system. Immunohistochemistry was used to probe for protein markers of microglia and astrocytes activation states. RESULTS ArcC5a+ mice had accelerated cognitive decline compared to Arc. Deletion of C5ar1 delayed or prevented the expression of some, but not all, AD-associated genes in the hippocampus and a subset of pan-reactive and A1 reactive astrocyte genes, indicating a separation between genes induced by amyloid plaques alone and those influenced by C5a-C5aR1 signaling. Biological processes associated with AD and AD mouse models, including inflammatory signaling, microglial cell activation, and astrocyte migration, were delayed in the ArcC5aR1KO hippocampus. Interestingly, C5a overexpression also delayed the increase of some AD-, complement-, and astrocyte-associated genes, suggesting the possible involvement of neuroprotective C5aR2. However, these pathways were enhanced in older ArcC5a+ mice compared to Arc. Immunohistochemistry confirmed that C5a-C5aR1 modulation in Arc mice delayed the increase in CD11c-positive microglia, while not affecting other pan-reactive microglial or astrocyte markers. CONCLUSION C5a-C5aR1 signaling in AD largely exerts its effects by enhancing microglial activation pathways that accelerate disease progression. While C5a may have neuroprotective effects via C5aR2, engagement of C5a with C5aR1 is detrimental in AD models. These data support specific pharmacological inhibition of C5aR1 as a potential therapeutic strategy to treat AD.
Collapse
Affiliation(s)
- Klebea Carvalho
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697 USA
| | - Nicole D. Schartz
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | | | - Heidi Y. Liang
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697 USA
| | - Shu-Hui Chu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | - Purnika Selvan
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | - Angela Gomez-Arboledas
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | - Tiffany J. Petrisko
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | - Maria I. Fonseca
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | - Ali Mortazavi
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697 USA
| | - Andrea J. Tenner
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA USA
| |
Collapse
|
3
|
Surfactant protein A enhances the degradation of LPS-induced TLR4 in primary alveolar macrophages involving Rab7, β-arrestin2, and mTORC1. Infect Immun 2021; 90:e0025021. [PMID: 34780278 DOI: 10.1128/iai.00250-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory infections by Gram-negative bacteria are a major cause of global morbidity and mortality. Alveolar macrophages (AMs) play a central role in maintaining lung immune homeostasis and host defense by sensing pathogens via pattern recognition receptors (PRR). The PRR Toll-like receptor (TLR) 4 is a key sensor of lipopolysaccharide (LPS) from Gram-negative bacteria. Pulmonary surfactant is the natural microenvironment of AMs. Surfactant protein A (SP-A), a multifunctional host defense collectin, controls LPS-induced pro-inflammatory immune responses at the organismal and cellular level via distinct mechanisms. We found that SP-A post-transcriptionally restricts LPS-induced TLR4 protein expression in primary AMs from healthy humans, rats, wild-type and SP-A-/- mice by further decreasing cycloheximide-reduced TLR4 protein translation and enhances the co-localization of TLR4 with the late endosome/lysosome. Both effects as well as the SP-A-mediated inhibition of LPS-induced TNFα release are counteracted by pharmacological inhibition of the small GTPase Rab7. SP-A-enhanced Rab7 expression requires β-arrestin2 and, in β-arrestin2-/- AMs and after intratracheal LPS challenge of β-arrestin2-/- mice, SP-A fails to enhance TLR4/lysosome co-localization and degradation of LPS-induced TLR4. In SP-A-/- mice, TLR4 levels are increased after pulmonary LPS challenge. SP-A-induced activation of mechanistic target of rapamycin complex 1 (mTORC1) kinase requires β-arrestin2 and is critically involved in degradation of LPS-induced TLR4. The data suggest that SP-A post-translationally limits LPS-induced TLR4 expression in primary AMs by lysosomal degradation comprising Rab7, β-arrestin2, and mTORC1. This study may indicate a potential role of SP-A-based therapeutic interventions in unrestricted TLR4-driven immune responses to lower respiratory tract infections caused by Gram-negative bacteria.
Collapse
|
4
|
Wang H, He J, Xu C, Chen X, Yang H, Shi S, Liu C, Zeng Y, Wu D, Bai Z, Wang M, Wen Y, Su P, Xia M, Huang B, Ma C, Bian L, Lan Y, Cheng T, Shi L, Liu B, Zhou J. Decoding Human Megakaryocyte Development. Cell Stem Cell 2020; 28:535-549.e8. [PMID: 33340451 DOI: 10.1016/j.stem.2020.11.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/25/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022]
Abstract
Despite our growing understanding of embryonic immune development, rare early megakaryocytes (MKs) remain relatively understudied. Here we used single-cell RNA sequencing of human MKs from embryonic yolk sac (YS) and fetal liver (FL) to characterize the transcriptome, cellular heterogeneity, and developmental trajectories of early megakaryopoiesis. In the YS and FL, we found heterogeneous MK subpopulations with distinct developmental routes and patterns of gene expression that could reflect early functional specialization. Intriguingly, we identified a subpopulation of CD42b+CD14+ MKs in vivo that exhibit high expression of genes associated with immune responses and can also be derived from human embryonic stem cells (hESCs) in vitro. Furthermore, we identified THBS1 as an early marker for MK-biased embryonic endothelial cells. Overall, we provide important insights and invaluable resources for dissection of the molecular and cellular programs underlying early human megakaryopoiesis.
Collapse
Affiliation(s)
- Hongtao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Changlu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Xiaoyuan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Hua Yang
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300052, China
| | - Shujuan Shi
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300052, China
| | - Cuicui Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Yang Zeng
- Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Dan Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Mengge Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Yuqi Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Meijuan Xia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Baiming Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Chunyu Ma
- Department of Gynecology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Lihong Bian
- Department of Gynecology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China.
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China; Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China.
| |
Collapse
|
5
|
Zeng Y, Liu C, Gong Y, Bai Z, Hou S, He J, Bian Z, Li Z, Ni Y, Yan J, Huang T, Shi H, Ma C, Chen X, Wang J, Bian L, Lan Y, Liu B, Hu H. Single-Cell RNA Sequencing Resolves Spatiotemporal Development of Pre-thymic Lymphoid Progenitors and Thymus Organogenesis in Human Embryos. Immunity 2019; 51:930-948.e6. [PMID: 31604687 DOI: 10.1016/j.immuni.2019.09.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/25/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023]
Abstract
Generation of the first T lymphocytes in the human embryo involves the emergence, migration, and thymus seeding of lymphoid progenitors together with concomitant thymus organogenesis, which is the initial step to establish the entire adaptive immune system. However, the cellular and molecular programs regulating this process remain unclear. We constructed a single-cell transcriptional landscape of human early T lymphopoiesis by using cells from multiple hemogenic and hematopoietic sites spanning embryonic and fetal stages. Among heterogenous early thymic progenitors, one subtype shared common features with a subset of lymphoid progenitors in fetal liver that are known as thymus-seeding progenitors. Unbiased bioinformatics analysis identified a distinct type of pre-thymic lymphoid progenitors in the aorta-gonad-mesonephros (AGM) region. In parallel, we investigated thymic epithelial cell development and potential cell-cell interactions during thymus organogenesis. Together, our data provide insights into human early T lymphopoiesis that prospectively direct T lymphocyte regeneration, which might lead to development of clinical applications.
Collapse
Affiliation(s)
- Yang Zeng
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Chen Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Yandong Gong
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Siyuan Hou
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Zhilei Bian
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yanli Ni
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Jing Yan
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Tao Huang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Hui Shi
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Chunyu Ma
- Department of Gynecology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xueying Chen
- Department of Rheumatology and Immunology, Rare Disease Center, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University. Collaboration and Innovation Center for Biotherapy. Chengdu 610041, China
| | - Jinyong Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lihong Bian
- Department of Gynecology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China.
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China; State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, Rare Disease Center, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University. Collaboration and Innovation Center for Biotherapy. Chengdu 610041, China.
| |
Collapse
|
6
|
Cai Y, Yang C, Yu X, Qian J, Dai M, Wang Y, Qin C, Lai W, Chen S, Wang T, Zhou J, Ma N, Zhang Y, Zhang R, Shen N, Xie X, Du C. Deficiency of β-Arrestin 2 in Dendritic Cells Contributes to Autoimmune Diseases. THE JOURNAL OF IMMUNOLOGY 2018; 202:407-420. [PMID: 30541881 DOI: 10.4049/jimmunol.1800261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 11/13/2018] [Indexed: 12/30/2022]
Abstract
Altered migration and immune responses of dendritic cells (DCs) lead to inflammatory and autoimmune diseases. Our studies demonstrated that β-arrestin 2 deficiency promoted migration and cytokine production of mouse bone marrow-derived DCs. We further found that β-arrestin 2 directly interacted with Zbtb46, a DC-specific transcription factor. What's more, our results suggested that the interaction between β-arrestin 2 and Zbtb46 might negatively regulate DC migration. Using RNA sequencing, we indicated that genes CD74, NR4A1, and ZFP36 might be the target genes regulated by the interaction between β-arrestin 2 and Zbtb46. Mice with selective deficiency of β-arrestin 2 in DCs developed severer experimental autoimmune encephalomyelitis with more DC infiltration in the CNS and increased IL-6 in serum. In the systemic lupus erythematosus mice model, Arrb2fl/fl Itgax-cre+ mice were prone to exacerbation of lupus nephritis with a higher level of IL-6 and DC accumulation. Taken together, our study identified β-arrestin 2 as a new regulator of DC migration and immune properties, providing new insights into the mechanisms underlying the development of autoimmune disease.
Collapse
Affiliation(s)
- Yingying Cai
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Cuixia Yang
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaohan Yu
- Department of Respiratory and Gastroenterology, Yingshan People's Hospital, Yingshan, Hubei 436700, China
| | - Jie Qian
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Min Dai
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Yan Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China; and
| | - Chaoyan Qin
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Weiming Lai
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shuai Chen
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Tingting Wang
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jinfeng Zhou
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ningjia Ma
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yue Zhang
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ru Zhang
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Nan Shen
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Xin Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Changsheng Du
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China;
| |
Collapse
|
7
|
SCIMP is a transmembrane non-TIR TLR adaptor that promotes proinflammatory cytokine production from macrophages. Nat Commun 2017; 8:14133. [PMID: 28098138 PMCID: PMC5253658 DOI: 10.1038/ncomms14133] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/02/2016] [Indexed: 01/04/2023] Open
Abstract
Danger signals activate Toll-like receptors (TLRs), thereby initiating inflammatory responses. Canonical TLR signalling, via Toll/Interleukin-1 receptor domain (TIR)-containing adaptors and proinflammatory transcription factors such as NF-κB, occurs in many cell types; however, additional mechanisms are required for specificity of inflammatory responses in innate immune cells. Here we show that SCIMP, an immune-restricted, transmembrane adaptor protein (TRAP), promotes selective proinflammatory cytokine responses by direct modulation of TLR4. SCIMP is a non-TIR-containing adaptor, binding directly to the TLR4-TIR domain in response to lipopolysaccharide. In macrophages, SCIMP is constitutively associated with the Lyn tyrosine kinase, is required for tyrosine phosphorylation of TLR4, and facilitates TLR-inducible production of the proinflammatory cytokines IL-6 and IL-12p40. Point mutations in SCIMP abrogating TLR4 binding also prevent SCIMP-mediated cytokine production. SCIMP is, therefore, an immune-specific TLR adaptor that shapes host defence and inflammation. Toll-like receptors engage TIR domain-containing adaptors to control proinflammatory gene expression in response to pathogens and tissue damage. Here the authors show that the non-TIR domain-containing transmembrane protein SCIMP is a previously unrecognized TLR adaptor expressed by macrophages.
Collapse
|
8
|
Sharma D, Parameswaran N. Multifaceted role of β-arrestins in inflammation and disease. Genes Immun 2015; 16:499-513. [PMID: 26378652 PMCID: PMC4670277 DOI: 10.1038/gene.2015.37] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/05/2015] [Accepted: 07/31/2015] [Indexed: 12/19/2022]
Abstract
Arrestins are intracellular scaffolding proteins known to regulate a range of biochemical processes including G protein-coupled receptor (GPCR) desensitization, signal attenuation, receptor turnover and downstream signaling cascades. Their roles in regulation of signaling network have lately been extended to receptors outside of the GPCR family, demonstrating their roles as important scaffolding proteins in various physiological processes including proliferation, differentiation and apoptosis. Recent studies have demonstrated a critical role for arrestins in immunological processes including key functions in inflammatory signaling pathways. In this review, we provide a comprehensive analysis of the different functions of the arrestin family of proteins especially related to immunity and inflammatory diseases.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Physiology and Division of Pathology Michigan State University East Lansing, MI 48824
| | - Narayanan Parameswaran
- Department of Physiology and Division of Pathology Michigan State University East Lansing, MI 48824
| |
Collapse
|
9
|
Neu1 sialidase and matrix metalloproteinase-9 cross-talk regulates nucleic acid-induced endosomal TOLL-like receptor-7 and -9 activation, cellular signaling and pro-inflammatory responses. Cell Signal 2013; 25:2093-105. [PMID: 23827939 DOI: 10.1016/j.cellsig.2013.06.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/05/2013] [Accepted: 06/18/2013] [Indexed: 11/20/2022]
Abstract
The precise mechanism(s) by which intracellular TOLL-like receptors (TLRs) become activated by their ligands remains unclear. Here, we report a molecular organizational G-protein coupled receptor (GPCR) signaling platform to potentiate a novel mammalian neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B GPCR, all of which form a tripartite complex with TLR-7 and -9. siRNA silencing Neu1, MMP-9 and neuromedin-B GPCR in RAW-blue macrophage cells significantly reduced TLR7 imiquimod- and TLR9 ODN1826-induced NF-κB (NF-κB-pSer(536)) activity. Tamiflu, specific MMP-9 inhibitor, neuromedin B receptor specific antagonist BIM23127, and the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 significantly block nucleic acid-induced TLR-7 and -9 MyD88 recruitment, NF-κB activation and proinflammatory TNFα and MCP-1 cytokine responses. For the first time, Neu1 clearly plays a central role in mediating nucleic acid-induced intracellular TLR activation, and the interactions involving NMBR-MMP9-Neu1 cross-talk constitute a novel intracellular TLR signaling platform that is essential for NF-κB activation and pro-inflammatory responses.
Collapse
|
10
|
Sender V, Lang L, Stamme C. Surfactant protein-A modulates LPS-induced TLR4 localization and signaling via β-arrestin 2. PLoS One 2013; 8:e59896. [PMID: 23536892 PMCID: PMC3607558 DOI: 10.1371/journal.pone.0059896] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 02/19/2013] [Indexed: 12/17/2022] Open
Abstract
The soluble C-type lectin surfactant protein (SP)-A mediates lung immune responses partially via its direct effects on alveolar macrophages (AM), the main resident leukocytes exposed to antigens. SP-A modulates the AM threshold of lipopolysaccharide (LPS) activity towards an anti-inflammatory phenotype both in vitro and in vivo through various mechanisms. LPS responses are tightly regulated via distinct pathways including subcellular TLR4 localization and thus ligand sensing. The cytosolic scaffold and signaling protein β-arrestin 2 acts as negative regulator of LPS-induced TLR4 activation. Here we show that SP-A neither increases TLR4 abundancy nor co-localizes with TLR4 in primary AM. SP-A significantly reduces the LPS-induced co-localization of TLR4 with the early endosome antigen (EEA) 1 by promoting the co-localization of TLR4 with the post-Golgi compartment marker Vti1b in freshly isolated AM from rats and wild-type (WT) mice, but not in β-arrestin 2(-/-) AM. Compared to WT mice pulmonary LPS-induced TNF-α release in β-arrestin 2(-/-) mice is accelerated and enhanced and exogenous SP-A fails to inhibit both lung LPS-induced TNF-α release and TLR4/EEA1 positioning. SP-A, but not LPS, enhances β-arrestin 2 protein expression in a time-dependent manner in primary rat AM. The constitutive expression of β-arrestin 2 in AM from SP-A(-/-) mice is significantly reduced compared to SP-A(+/+) mice and is rescued by SP-A. Prolonged endosome retention of LPS-induced TLR4 in AM from SP-A(-/-) mice is restored by exogenous SP-A, and is antagonized by β-arrestin 2 blocking peptides. LPS induces β-arrestin 2/TLR4 association in primary AM which is further enhanced by SP-A. The data demonstrate that SP-A modulates LPS-induced TLR4 trafficking and signaling in vitro and in vivo engaging β-arrestin 2.
Collapse
Affiliation(s)
- Vicky Sender
- Division of Cellular Pneumology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Linda Lang
- Division of Cellular Pneumology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Cordula Stamme
- Division of Cellular Pneumology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
- Department of Anesthesiology, University Hospital of Lübeck, Lübeck, Germany
- * E-mail:
| |
Collapse
|
11
|
Abstract
β-Arrestins regulate G protein-coupled receptors through receptor desensitization while also acting as signaling scaffolds to facilitate numerous effector pathways. Recent studies have provided evidence that β-arrestins play a key role in inflammatory responses. Here, we summarize these advances on the roles of β-arrestins in immune regulation and inflammatory responses under physiological and pathological conditions, with an emphasis on translational implications of β-arrestins on human diseases.
Collapse
|
12
|
G-protein coupled receptor agonists mediate Neu1 sialidase and matrix metalloproteinase-9 cross-talk to induce transactivation of TOLL-like receptors and cellular signaling. Cell Signal 2012; 24:2035-42. [DOI: 10.1016/j.cellsig.2012.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 06/25/2012] [Indexed: 12/28/2022]
|
13
|
Kapetanovic R, Fairbairn L, Beraldi D, Sester DP, Archibald AL, Tuggle CK, Hume DA. Pig bone marrow-derived macrophages resemble human macrophages in their response to bacterial lipopolysaccharide. THE JOURNAL OF IMMUNOLOGY 2012; 188:3382-94. [PMID: 22393154 DOI: 10.4049/jimmunol.1102649] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mouse bone marrow-derived macrophages (BMDM) grown in M-CSF (CSF-1) have been used widely in studies of macrophage biology and the response to TLR agonists. We investigated whether similar cells could be derived from the domestic pig using human rCSF-1 and whether porcine macrophages might represent a better model of human macrophage biology. Cultivation of pig bone marrow cells for 5-7 d in presence of human rCSF-1 generated a pure population of BMDM that expressed the usual macrophage markers (CD14, CD16, and CD172a), were potent phagocytic cells, and produced TNF in response to LPS. Pig BMDM could be generated from bone marrow cells that had been stored frozen and thawed so that multiple experiments can be performed on samples from a single animal. Gene expression in pig BMDM from outbred animals responding to LPS was profiled using Affymetrix microarrays. The temporal cascade of inducible and repressible genes more closely resembled the known responses of human than mouse macrophages, sharing with humans the regulation of genes involved in tryptophan metabolism (IDO, KYN), lymphoattractant chemokines (CCL20, CXCL9, CXCL11, CXCL13), and the vitamin D3-converting enzyme, Cyp27B1. Conversely, in common with published studies of human macrophages, pig BMDM did not strongly induce genes involved in arginine metabolism, nor did they produce NO. These results establish pig BMDM as an alternative tractable model for the study of macrophage transcriptional control.
Collapse
Affiliation(s)
- Ronan Kapetanovic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Honoré A, Le corre S, Derambure C, Normand R, Duclos C, Boyer O, Marie JP, Guérout N. Isolation, characterization, and genetic profiling of subpopulations of olfactory ensheathing cells from the olfactory bulb. Glia 2011; 60:404-13. [DOI: 10.1002/glia.22274] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/04/2011] [Indexed: 12/15/2022]
|
15
|
Abdulkhalek S, Amith SR, Franchuk SL, Jayanth P, Guo M, Finlay T, Gilmour A, Guzzo C, Gee K, Beyaert R, Szewczuk MR. Neu1 sialidase and matrix metalloproteinase-9 cross-talk is essential for Toll-like receptor activation and cellular signaling. J Biol Chem 2011; 286:36532-49. [PMID: 21873432 DOI: 10.1074/jbc.m111.237578] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The signaling pathways of mammalian Toll-like receptors (TLRs) are well characterized, but the precise mechanism(s) by which TLRs are activated upon ligand binding remains poorly defined. Recently, we reported a novel membrane sialidase-controlling mechanism that depends on ligand binding to its TLR to induce mammalian neuraminidase-1 (Neu1) activity, to influence receptor desialylation, and subsequently to induce TLR receptor activation and the production of nitric oxide and proinflammatory cytokines in dendritic and macrophage cells. The α-2,3-sialyl residue of TLR was identified as the specific target for hydrolysis by Neu1. Here, we report a membrane signaling paradigm initiated by endotoxin lipopolysaccharide (LPS) binding to TLR4 to potentiate G protein-coupled receptor (GPCR) signaling via membrane Gα(i) subunit proteins and matrix metalloproteinase-9 (MMP9) activation to induce Neu1. Central to this process is that a Neu1-MMP9 complex is bound to TLR4 on the cell surface of naive macrophage cells. Specific inhibition of MMP9 and GPCR Gα(i)-signaling proteins blocks LPS-induced Neu1 activity and NFκB activation. Silencing MMP9 mRNA using lentivirus MMP9 shRNA transduction or siRNA transfection of macrophage cells and MMP9 knock-out primary macrophage cells significantly reduced Neu1 activity and NFκB activation associated with LPS-treated cells. These findings uncover a molecular organizational signaling platform of a novel Neu1 and MMP9 cross-talk in alliance with TLR4 on the cell surface that is essential for ligand activation of TLRs and subsequent cellular signaling.
Collapse
Affiliation(s)
- Samar Abdulkhalek
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fan H, Liao Y, Tang Q, Liang L, Chen XY. Role of β-arrestins in the pathogenesis of inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2010; 18:3114-3120. [DOI: 10.11569/wcjd.v18.i29.3114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
β-arrestins, as adaptor proteins involved in G protein-coupled receptor (GPCR)-related signaling, have diverse biological functions and can regulate cell proliferation, survival, apoptosis, motility and gene transcription. β-arrestins regulate several aspects of inflammatory and immune reactions. First, they limit the basal activity of pro-inflammatory transcription factor NF-κB and regulate activation of NF-κB via the Toll-like receptors (TLR)/NF-κB signal pathway. Second, they facilitate T cell activation, suppress the apoptosis of CD4+ T cells, inhibit NK cell-mediated cytotoxicity, and constrain factor-independent survival of macrophages. Finally, β-arrestins influence chemotaxis of immune cells and neutrophil degranulation by regulating desensitization, internalization and signal transduction of various chemokine receptors. The pathogenesis of inflammatory bowel disease (IBD) may be attributed to various genetic abnormalities that result in excessive immune response against the normal intestinal microbe flora. Abnormal immune response is considered to play a pivotal role in the development of IBD. The role of β-arrestins in regulating immune response involved in intestinal mucosal inflammation in IBD implies that they may participate in the pathogenesis of IBD.
Collapse
|