1
|
Nevarez-Mejia J, Jin YP, Pickering H, Parmar R, Valenzuela NM, Sosa RA, Heidt S, Fishbein GA, Rozengurt E, William MB, Fairchild RL, Reed EF. HLA class I antibody-activated endothelium promotes CD206+ M2-macrophage polarization and MMP9 secretion through TLR4 signaling and P-selectin in a model of antibody-mediated rejection and allograft vasculopathy. Am J Transplant 2023; 24:S1600-6135(23)00822-5. [PMID: 39491096 PMCID: PMC11110958 DOI: 10.1016/j.ajt.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/03/2023] [Accepted: 10/24/2023] [Indexed: 02/22/2024]
Abstract
HLA donor-specific antibodies (DSA) elicit alloimmune responses against the graft vasculature, leading to endothelial cell (EC) activation and monocyte infiltration during antibody-mediated rejection (AMR). AMR promotes chronic inflammation and remodeling, leading to thickening of the arterial intima termed transplant vasculopathy (TV) or cardiac allograft vasculopathy (CAV) in heart transplants. Intragraft-recipient macrophages serve as a diagnostic marker in AMR however, their polarization and function remain unclear. In this study, we utilized an in vitro transwell co-culture system to explore the mechanisms of monocyte-to-macrophage polarization induced by HLA I DSA activated ECs. Anti-HLA I (IgG or F(ab')2) antibody-activated ECs induced the polarization of M2-macrophages with increased CD206 expression and MMP9 secretion. However, inhibition of TLR4 signaling or PSGL-1-P-selectin interactions significantly decreased both CD206 and MMP9. Monocyte adherence to Fc-P-selectin coated plates induced M2-macrophages with increased CD206 and MMP9. Moreover, Fc-receptor and IgG interactions synergistically enhanced active-MMP9 in conjunction with P-selectin. Transcriptomic analysis of arteries from DSA+CAV+ rejected cardiac allografts and multiplex-immunofluorescent staining illustrated the expression of CD68+CD206+CD163+MMP9+ M2-macrophages within the neointima of CAV affected lesions. These findings reveal a novel mechanism linking HLA I antibody-activated endothelium to the generation of M2-macrophages which secrete vascular remodeling proteins contributing to AMR and CAV pathogenesis.
Collapse
Affiliation(s)
- Jessica Nevarez-Mejia
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Yi-Ping Jin
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Rajesh Parmar
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Rebecca A Sosa
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, CA
| | - M Baldwin William
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland Clinic, OH
| | - Robert L Fairchild
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland Clinic, OH
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA.
| |
Collapse
|
2
|
Venema WJ, Hiddingh S, Janssen GMC, Ossewaarde-van Norel J, van Loon ND, de Boer JH, van Veelen PA, Kuiper JJW. Retina-arrestin specific CD8+ T cells are not implicated in HLA-A29-positive birdshot chorioretinitis. Clin Immunol 2023; 247:109219. [PMID: 36581221 DOI: 10.1016/j.clim.2022.109219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND HLA-A29-positive birdshot chorioretinitis (BCR) is an inflammatory eye disorder that is generally assumed to be caused by an autoimmune response to HLA-A29-presented peptides from retinal arrestin (SAG), yet the epitopes recognized by CD8+ T cells from patients remain to be identified. OBJECTIVES The identification of natural ligands of SAG presented by HLA-A29. To quantify CD8+ T cells reactive to antigenic SAG peptides presented by HLA-A29 in patients and controls. METHODS We performed mass-spectrometry based immunopeptidomics of HLA-A29 of antigen-presenting cell lines from patients engineered to express SAG. MHC-I Dextramer technology was utilised to determine expansion of antigen-specific CD8+ T cells reactive to SAG peptides in complex with HLA-A29 in a cohort of BCR patients, HLA-A29-positive controls, and HLA-A29-negative controls. RESULTS We report on the naturally presented antigenic SAG peptides identified by sequencing the HLA-A29 immunopeptidome of antigen-presenting cells of patients. We show that the N-terminally extended SAG peptide precursors can be trimmed in vitro by the antigen-processing aminopeptidases ERAP1 and ERAP2. Unexpectedly, no enhanced antigen engagement by CD8+ T cells upon stimulation with SAG peptides was observed in patients or HLA-A29-positive controls. Multiplexed HLA-A29-peptide dextramer profiling of a case-control cohort revealed that CD8+ T cells specific for these SAG peptides were neither detectable in peripheral blood nor in eye biopsies of patients. CONCLUSIONS Collectively, these findings demonstrate that SAG is not a CD8+ T cell autoantigen and sharply contrast the paradigm in the pathogenesis of BCR. Therefore, the mechanism by which HLA-A29 is associated with BCR does not involve SAG.
Collapse
Affiliation(s)
- W J Venema
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - S Hiddingh
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - G M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - J Ossewaarde-van Norel
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - N Dam van Loon
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - J H de Boer
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - P A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - J J W Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Tector AJ, Adams AB, Tector M. Current Status of Renal Xenotransplantation and Next Steps. KIDNEY360 2023; 4:278-284. [PMID: 36821619 PMCID: PMC10103350 DOI: 10.34067/kid.0007152021] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/18/2022] [Indexed: 12/23/2022]
Abstract
Renal transplantation is the preferred treatment of ESKD, but the shortage of suitable donor kidneys from the cadaver pool means that many patients with ESKD will not receive a kidney transplant. Xenotransplantation has long represented a solution to the kidney shortage, but the occurrence of antibody-mediated rejection has precluded its clinical development. Developments in somatic cell nuclear transfer in pigs and gene editing tools have led to the creation of new donor pigs with greatly improved crossmatches to patients. In addition, improvements in preclinical kidney xenotransplant survival using new anti-CD40/CD154-based immunosuppression have pushed xenotransplantation to the point where it is reasonable to consider initiating a clinical trial to evaluate this potential therapy in patients.
Collapse
Affiliation(s)
- Alfred J. Tector
- Department of Surgery, University of Miami School of Medicine, Miami, Florida
| | - Andrew B. Adams
- Department of Surgery, University of Minnesota School of Medicine, Minneapolis, Minnesota
| | | |
Collapse
|
4
|
Meng T, Bezstarosti S, Singh U, Yap M, Scott L, Petrosyan N, Quiroz F, Eps NV, Hui EKW, Suh D, Zhu Q, Pei R, Kramer CSM, Claas FHJ, Lowe D, Heidt S. Site-directed mutagenesis of HLA molecules reveals the functional epitope of a human HLA-A1/A36-specific monoclonal antibody. HLA 2023; 101:138-142. [PMID: 36401817 PMCID: PMC10099858 DOI: 10.1111/tan.14895] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Eplet 44KM is currently listed in the HLA Epitope Registry but does not adhere to the eplet definition of an amino acid configuration within a 3.5 Å radius. Eplet 44KM has been previously redefined to the antibody-verified reactivity pattern 44K/150V/158V, based on reactivity analysis of monoclonal antibody VDK1D12. Since the three residues are always simultaneously present on common HLA alleles, methods to define which residue is crucial for antibody-induction and binding are limited. In this proof-of-concept study, we performed site-directed mutagenesis to narrow down the antibody-verified reactivity pattern 44K/150V/158V to a single amino acid and defined 44K as the eplet or functional epitope of mAb VDK1D12.
Collapse
Affiliation(s)
- Tina Meng
- Department of Research and Development, One Lambda, Inc. (A Part of Thermo Fisher Scientific Inc.), West Hills, California, USA
| | - Suzanne Bezstarosti
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
| | - Ujjwala Singh
- Department of Research and Development, One Lambda, Inc. (A Part of Thermo Fisher Scientific Inc.), West Hills, California, USA
| | - Michelle Yap
- Department of Research and Development, One Lambda, Inc. (A Part of Thermo Fisher Scientific Inc.), West Hills, California, USA
| | - Laura Scott
- Department of Research and Development, One Lambda, Inc. (A Part of Thermo Fisher Scientific Inc.), West Hills, California, USA
| | - Naiiry Petrosyan
- Department of Research and Development, One Lambda, Inc. (A Part of Thermo Fisher Scientific Inc.), West Hills, California, USA
| | - Fred Quiroz
- Department of Research and Development, One Lambda, Inc. (A Part of Thermo Fisher Scientific Inc.), West Hills, California, USA
| | - Ned Van Eps
- Department of Research and Development, One Lambda, Inc. (A Part of Thermo Fisher Scientific Inc.), West Hills, California, USA
| | - Eric Ka-Wai Hui
- Department of Research and Development, One Lambda, Inc. (A Part of Thermo Fisher Scientific Inc.), West Hills, California, USA
| | - David Suh
- Department of Research and Development, One Lambda, Inc. (A Part of Thermo Fisher Scientific Inc.), West Hills, California, USA
| | - Quansheng Zhu
- Department of Research and Development, One Lambda, Inc. (A Part of Thermo Fisher Scientific Inc.), West Hills, California, USA
| | - Rui Pei
- Department of Research and Development, One Lambda, Inc. (A Part of Thermo Fisher Scientific Inc.), West Hills, California, USA
| | - Cynthia S M Kramer
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans H J Claas
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - David Lowe
- Department of Research and Development, One Lambda, Inc. (A Part of Thermo Fisher Scientific Inc.), West Hills, California, USA
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Cooper DKC, Habibabady Z, Kinoshita K, Hara H, Pierson RN. The respective relevance of sensitization to alloantigens and xenoantigens in pig organ xenotransplantation. Hum Immunol 2023; 84:18-26. [PMID: 35817653 PMCID: PMC10154072 DOI: 10.1016/j.humimm.2022.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Antibody-mediated rejection is a major cause of graft injury and contributes to failure of pig xenografts in nonhuman primates (NHPs). Most 'natural' or elicited antibodies found in humans and NHPs are directed against pig glycan antigens, but antibodies binding to swine leukocyte antigens (SLA) have also been detected. Of clinical importance is (i) whether the presence of high levels of antibodies directed towards human leukocyte antigens (HLA) (i.e., high panel-reactive antibodies) would be detrimental to the outcome of a pig organ xenograft; and (ii) whether, in the event of sensitization to pig antigens, a subsequent allotransplant would be at increased risk of graft failure due to elicited anti-pig antibodies that cross-react with human HLA or other antigens. SUMMARY A literature review of pig-to-primate studies indicates that relatively few highly-HLA-sensitized humans have antibodies that cross-react with pigs, predicting that most would not be at increased risk of rejecting an organ xenograft. Furthermore, the existing evidence indicates that sensitization to pig antigens will probably not elicit increased alloantibody titers; if so, 'bridging' with a pig organ could be carried out without increased risk of subsequent antibody-mediated allograft failure. KEY MESSAGE These issues have important implications for the design and conduct of clinical xenotransplantation trials.
Collapse
Affiliation(s)
- D K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Z Habibabady
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - K Kinoshita
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - H Hara
- Yunnan Xenotransplantation Engineering Research Center, Yunnan Agricultural University, Kunming, Yunnan, China
| | - R N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
van Osch TLJ, Steuten J, Nouta J, Koeleman CAM, Bentlage AEH, Heidt S, Mulder A, Voorberg J, van Ham SM, Wuhrer M, Ten Brinke A, Vidarsson G. Phagocytosis of platelets opsonized with differently glycosylated anti-HLA hIgG1 by monocyte-derived macrophages. Platelets 2022; 34:2129604. [PMID: 36185007 DOI: 10.1080/09537104.2022.2129604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Immune-mediated platelet refractoriness (PR) remains a significant problem in the setting of platelet transfusion and is predominantly caused by the presence of alloantibodies directed against class I human leukocyte antigens (HLA). Opsonization of donor platelets with these alloantibodies can result in rapid clearance after transfusion via multiple mechanisms, including antibody dependent cellular phagocytosis (ADCP). Interestingly, not all alloimmunized patients develop PR to unmatched platelet transfusions, suggesting variation in HLA-specific IgG responses between patients. Previously, we observed that the glycosylation profile of anti-HLA antibodies was highly variable between PR patients, especially with respect to Fc galactosylation, sialylation and fucosylation. In the current study, we investigated the effect of different Fc glycosylation patterns, with known effects on complement deposition and FcγR binding, on phagocytosis of opsonized platelets by monocyte-derived human macrophages. We found that the phagocytosis of antibody- and complement-opsonized platelets, by monocyte derived M1 macrophages, was unaffected by these qualitative IgG-glycan differences.
Collapse
Affiliation(s)
- Thijs L J van Osch
- Immunoglobulin Research laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands.,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Juulke Steuten
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Arthur E H Bentlage
- Immunoglobulin Research laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands.,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arend Mulder
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Voorberg
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands and
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gestur Vidarsson
- Immunoglobulin Research laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands.,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Gille I, Claas FHJ, Haasnoot GW, Heemskerk MHM, Heidt S. Chimeric Antigen Receptor (CAR) Regulatory T-Cells in Solid Organ Transplantation. Front Immunol 2022; 13:874157. [PMID: 35720402 PMCID: PMC9204347 DOI: 10.3389/fimmu.2022.874157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Solid organ transplantation is the treatment of choice for various end-stage diseases, but requires the continuous need for immunosuppression to prevent allograft rejection. This comes with serious side effects including increased infection rates and development of malignancies. Thus, there is a clinical need to promote transplantation tolerance to prevent organ rejection with minimal or no immunosuppressive treatment. Polyclonal regulatory T-cells (Tregs) are a potential tool to induce transplantation tolerance, but lack specificity and therefore require administration of high doses. Redirecting Tregs towards mismatched donor HLA molecules by modifying these cells with chimeric antigen receptors (CAR) would render Tregs far more effective at preventing allograft rejection. Several studies on HLA-A2 specific CAR Tregs have demonstrated that these cells are highly antigen-specific and show a superior homing capacity to HLA-A2+ allografts compared to polyclonal Tregs. HLA-A2 CAR Tregs have been shown to prolong survival of HLA-A2+ allografts in several pre-clinical humanized mouse models. Although promising, concerns about safety and stability need to be addressed. In this review the current research, obstacles of CAR Treg therapy, and its potential future in solid organ transplantation will be discussed.
Collapse
Affiliation(s)
- Ilse Gille
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.,Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H J Claas
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.,Eurotransplant Reference Laboratory, Leiden University Medical Center, Leiden, Netherlands
| | - Geert W Haasnoot
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.,Eurotransplant Reference Laboratory, Leiden University Medical Center, Leiden, Netherlands
| | | | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.,Eurotransplant Reference Laboratory, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
8
|
Bezstarosti S, Bakker KH, Kramer CSM, de Fijter JW, Reinders MEJ, Mulder A, Claas FHJ, Heidt S. A Comprehensive Evaluation of the Antibody-Verified Status of Eplets Listed in the HLA Epitope Registry. Front Immunol 2022; 12:800946. [PMID: 35154076 PMCID: PMC8831796 DOI: 10.3389/fimmu.2021.800946] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/30/2021] [Indexed: 01/09/2023] Open
Abstract
Matching strategies based on HLA eplets instead of HLA antigens in solid organ transplantation may not only increase the donor pool for highly sensitized patients, but also decrease the incidence of de novo donor-specific antibody formation. However, since not all eplets are equally capable of inducing an immune response, antibody verification is needed to confirm their ability to be bound by antibodies, such that only clinically relevant eplets are considered. The HLA Epitope Registry has documented all theoretically defined HLA eplets along with their antibody verification status and has been the foundation for many clinical studies investigating eplet mismatch in transplantation. The verification methods for eplets in the Registry range from polyclonal sera from multi- and uni-parous women to murine and human monoclonal antibodies (mAbs), and antibodies purified by adsorption and elution from sera of HLA immunized individuals. The classification of antibody verification based on different methods for validation is problematic, since not all approaches represent the same level of evidence. In this study, we introduce a classification system to evaluate the level of evidence for the antibody-verified status of all eplets in the HLA Epitope Registry. We demonstrate that for a considerable number of eplets, the antibody-verified status is solely based on polyclonal serum reactivity of multiparous women or on reactivity of murine mAbs. Furthermore, we noted that a substantial proportion of patient sera analyses and human mAb data presented in the HLA Epitope Registry Database has never been published in a peer-reviewed journal. Therefore, we tested several unpublished human HLA-specific mAbs by luminex single antigen beads assay to analyze their HLA reactivity for eplet antibody verification. Although the majority of analyzed mAbs indeed verified their assigned eplets, this was not the case for a number of eplets. This comprehensive overview of evidence for antibody verification of eplets in the HLA Epitope Registry is instrumental for future investigations towards eplet immunogenicity and clinical studies considering antibody-verified eplet mismatch in transplantation and warrants further standardization of antibody verification using high quality data.
Collapse
Affiliation(s)
- Suzanne Bezstarosti
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, Netherlands
| | - Kim H. Bakker
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Johan W. de Fijter
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, Netherlands
| | - Marlies E. J. Reinders
- Department of Internal Medicine, Erasmus Medical Center Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Arend Mulder
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H. J. Claas
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Eurotransplant Reference Laboratory, Leiden, Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Eurotransplant Reference Laboratory, Leiden, Netherlands
| |
Collapse
|
9
|
de Groot NG, Heijmans CMC, Bezstarosti S, Bruijnesteijn J, Haasnoot GW, Mulder A, Claas FHJ, Heidt S, Bontrop RE. Two Human Monoclonal HLA-Reactive Antibodies Cross-React with Mamu-B*008, a Rhesus Macaque MHC Allotype Associated with Control of Simian Immunodeficiency Virus Replication. THE JOURNAL OF IMMUNOLOGY 2021; 206:1957-1965. [PMID: 33692147 DOI: 10.4049/jimmunol.2001405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/02/2021] [Indexed: 11/19/2022]
Abstract
MHC class I molecules play an important role in adaptive immune responses against intracellular pathogens. These molecules are highly polymorphic, and many allotypes have been characterized. In a transplantation setting, a mismatch between MHC allotypes may initiate an alloimmune response. Rhesus macaques (Macaca mulatta, Mamu) are valuable as a preclinical model species in transplantation research as well as to evaluate the safety and efficacy of vaccine candidates. In both lines of research, the availability of nonhuman primate MHC-reactive mAbs may enable in vitro monitoring and detection of presence of particular Mamu molecules. In this study, we screened a collection of thoroughly characterized HLA class I-specific human mAbs for cross-reactivity with rhesus macaque MHC class I allotypes. Two mAbs, OK4F9 and OK4F10, recognize an epitope that is defined by isoleucine (I) at amino acid position 142 that is present on the Indian rhesus macaque Mamu-B*008:01 allotype, which is an allotype known to be associated with elite control of SIV replication. The reactive pattern of a third mAb, MUS4H4, is more complex and includes an epitope shared on Mamu-A2*05:01 and -B*001:01-encoded Ags. This is the first description, to our knowledge, of human HLA-reactive mAbs that can recognize Mamu allotypes, and these can be useful tools for in vitro monitoring the presence of the relevant allelic products. Moreover, OK4F9 and OK4F10 can be powerful mAbs for application in SIV-related research.
Collapse
Affiliation(s)
- Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands;
| | - Corrine M C Heijmans
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Suzanne Bezstarosti
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Jesse Bruijnesteijn
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Geert W Haasnoot
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Arend Mulder
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Frans H J Claas
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
10
|
Venema WJ, Hiddingh S, de Boer JH, Claas FHJ, Mulder A, den Hollander AI, Stratikos E, Sarkizova S, van der Veken LT, Janssen GMC, van Veelen PA, Kuiper JJW. ERAP2 Increases the Abundance of a Peptide Submotif Highly Selective for the Birdshot Uveitis-Associated HLA-A29. Front Immunol 2021; 12:634441. [PMID: 33717175 PMCID: PMC7950316 DOI: 10.3389/fimmu.2021.634441] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
Birdshot Uveitis (BU) is a blinding inflammatory eye condition that only affects HLA-A29-positive individuals. Genetic association studies linked ERAP2 with BU, an aminopeptidase which trims peptides before their presentation by HLA class I at the cell surface, which suggests that ERAP2-dependent peptide presentation by HLA-A29 drives the pathogenesis of BU. However, it remains poorly understood whether the effects of ERAP2 on the HLA-A29 peptidome are distinct from its effect on other HLA allotypes. To address this, we focused on the effects of ERAP2 on the immunopeptidome in patient-derived antigen presenting cells. Using complementary HLA-A29-based and pan-class I immunopurifications, isotope-labeled naturally processed and presented HLA-bound peptides were sequenced by mass spectrometry. We show that the effects of ERAP2 on the N-terminus of ligands of HLA-A29 are shared across endogenous HLA allotypes, but discover and replicate that one peptide motif generated in the presence of ERAP2 is specifically bound by HLA-A29. This motif can be found in the amino acid sequence of putative autoantigens. We further show evidence for internal sequence specificity for ERAP2 imprinted in the immunopeptidome. These results reveal that ERAP2 can generate an HLA-A29-specific antigen repertoire, which supports that antigen presentation is a key disease pathway in BU.
Collapse
Affiliation(s)
- Wouter J Venema
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Sanne Hiddingh
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Joke H de Boer
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Frans H J Claas
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Arend Mulder
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Efstratios Stratikos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Greece
| | - Siranush Sarkizova
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States.,Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Lars T van der Veken
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - George M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Jonas J W Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| |
Collapse
|
11
|
Gunawardana H, Romero T, Yao N, Heidt S, Mulder A, Elashoff DA, Valenzuela NM. Tissue-specific endothelial cell heterogeneity contributes to unequal inflammatory responses. Sci Rep 2021; 11:1949. [PMID: 33479269 PMCID: PMC7820348 DOI: 10.1038/s41598-020-80102-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/16/2020] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells (EC) coordinate vascular homeostasis and inflammation. In organ transplantation, EC are a direct alloimmune target. We posited that tissue specific heterogeneity of vascular EC may partly underlie the disparate organ-specific alloimmune risk. We examined the vascular endothelial response to inflammation across six primary endothelial beds from four major transplanted organs: the heart, lung, kidney and liver. First, we reanalyzed a public dataset of cardiac allograft rejection and found that endothelial inflammatory response genes were elevated in human cardiac allograft biopsies undergoing rejection compared with stable grafts. Next, the inducible inflammatory phenotypes of EC from heart, lung, kidney, and liver were characterized in vitro, focused on expression of adhesion molecules and chemokines, and recruitment of allogeneic peripheral blood mononuclear immune cells. Large vessel cardiac EC most highly upregulated VCAM-1, particularly compared with hepatic EC, supported greater leukocyte adhesion and had distinct chemokine profiles after stimulation with cytokines and complement. Differentially expressed gene candidates that are known regulators of cytokine signaling and inflammatory programming were verified in publicly available datasets of organ-specific endothelial transcriptomes. In summary, differential baseline expression of immune regulating genes may contribute to differential vascular inflammatory responses depending on organ.
Collapse
Affiliation(s)
- Hasitha Gunawardana
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 1000 Veteran Avenue, Room 1-520, Los Angeles, CA, 90095, USA
| | - Tahmineh Romero
- Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ning Yao
- Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sebastiaan Heidt
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Arend Mulder
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - David A Elashoff
- Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 1000 Veteran Avenue, Room 1-520, Los Angeles, CA, 90095, USA.
| |
Collapse
|
12
|
Jongsma MLM, de Waard AA, Raaben M, Zhang T, Cabukusta B, Platzer R, Blomen VA, Xagara A, Verkerk T, Bliss S, Kong X, Gerke C, Janssen L, Stickel E, Holst S, Plomp R, Mulder A, Ferrone S, Claas FHJ, Heemskerk MHM, Griffioen M, Halenius A, Overkleeft H, Huppa JB, Wuhrer M, Brummelkamp TR, Neefjes J, Spaapen RM. The SPPL3-Defined Glycosphingolipid Repertoire Orchestrates HLA Class I-Mediated Immune Responses. Immunity 2021; 54:132-150.e9. [PMID: 33271119 PMCID: PMC8722104 DOI: 10.1016/j.immuni.2020.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/25/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022]
Abstract
HLA class I (HLA-I) glycoproteins drive immune responses by presenting antigens to cognate CD8+ T cells. This process is often hijacked by tumors and pathogens for immune evasion. Because options for restoring HLA-I antigen presentation are limited, we aimed to identify druggable HLA-I pathway targets. Using iterative genome-wide screens, we uncovered that the cell surface glycosphingolipid (GSL) repertoire determines effective HLA-I antigen presentation. We show that absence of the protease SPPL3 augmented B3GNT5 enzyme activity, resulting in upregulation of surface neolacto-series GSLs. These GSLs sterically impeded antibody and receptor interactions with HLA-I and diminished CD8+ T cell activation. Furthermore, a disturbed SPPL3-B3GNT5 pathway in glioma correlated with decreased patient survival. We show that the immunomodulatory effect could be reversed through GSL synthesis inhibition using clinically approved drugs. Overall, our study identifies a GSL signature that inhibits immune recognition and represents a potential therapeutic target in cancer, infection, and autoimmunity.
Collapse
Affiliation(s)
- Marlieke L M Jongsma
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Oncode Institute and Department of Cell and Chemical Biology, LUMC, Leiden, the Netherlands
| | - Antonius A de Waard
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Matthijs Raaben
- Oncode Institute, Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolics, LUMC, Leiden, the Netherlands
| | - Birol Cabukusta
- Oncode Institute and Department of Cell and Chemical Biology, LUMC, Leiden, the Netherlands
| | - René Platzer
- Institut für Hygiene und Angewandte Immunologie, Vienna, Austria
| | - Vincent A Blomen
- Oncode Institute, Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anastasia Xagara
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Tamara Verkerk
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Sophie Bliss
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Xiangrui Kong
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Carolin Gerke
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lennert Janssen
- Oncode Institute and Department of Cell and Chemical Biology, LUMC, Leiden, the Netherlands
| | - Elmer Stickel
- Oncode Institute, Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stephanie Holst
- Center for Proteomics and Metabolics, LUMC, Leiden, the Netherlands
| | - Rosina Plomp
- Center for Proteomics and Metabolics, LUMC, Leiden, the Netherlands
| | - Arend Mulder
- Department of Immunology, LUMC, Leiden, the Netherlands
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anne Halenius
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hermen Overkleeft
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Johannes B Huppa
- Institut für Hygiene und Angewandte Immunologie, Vienna, Austria
| | - Manfred Wuhrer
- Center for Proteomics and Metabolics, LUMC, Leiden, the Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute, Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, the Netherlands; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Cancer Genomics Center, Amsterdam, the Netherlands
| | - Jacques Neefjes
- Oncode Institute and Department of Cell and Chemical Biology, LUMC, Leiden, the Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
13
|
Yoon CH, Choi HJ, Kim MK. Corneal xenotransplantation: Where are we standing? Prog Retin Eye Res 2021; 80:100876. [PMID: 32755676 PMCID: PMC7396149 DOI: 10.1016/j.preteyeres.2020.100876] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
Abstract
The search for alternatives to allotransplants is driven by the shortage of corneal donors and is demanding because of the limitations of the alternatives. Indeed, current progress in genetically engineered (GE) pigs, the introduction of gene-editing technology by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, and advanced immunosuppressants have made xenotransplantation a possible option for a human trial. Porcine corneal xenotransplantation is considered applicable because the eye is regarded as an immune-privileged site. Furthermore, recent non-human primate studies have shown long-term survival of porcine xenotransplants in keratoplasty. Herein, corneal immune privilege is briefly introduced, and xenogeneic reactions are compared with allogeneic reactions in corneal transplantation. This review describes the current knowledge on special issues of xenotransplantation, xenogeneic rejection mechanisms, current immunosuppressive regimens of corneal xenotransplantation, preclinical efficacy and safety data of corneal xenotransplantation, and updates of the regulatory framework to conduct a clinical trial on corneal xenotransplantation. We also discuss barriers that might prevent xenotransplantation from becoming common practice, such as ethical dilemmas, public concerns on xenotransplantation, and the possible risk of xenozoonosis. Given that the legal definition of decellularized porcine cornea (DPC) lies somewhere between a medical device and a xenotransplant, the preclinical efficacy and clinical trial data using DPC are included. The review finally provides perspectives on the current standpoint of corneal xenotransplantation in the fields of regenerative medicine.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea; Department of Ophthalmology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Wei X, Valenzuela NM, Rossetti M, Sosa RA, Nevarez-Mejia J, Fishbein GA, Mulder A, Dhar J, Keslar KS, Baldwin WM, Fairchild RL, Hou J, Reed EF. Antibody-induced vascular inflammation skews infiltrating macrophages to a novel remodeling phenotype in a model of transplant rejection. Am J Transplant 2020; 20:2686-2702. [PMID: 32320528 PMCID: PMC7529968 DOI: 10.1111/ajt.15934] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/15/2020] [Accepted: 04/07/2020] [Indexed: 01/25/2023]
Abstract
HLA donor-specific antibodies (DSAs) binding to vascular endothelial cells of the allograft trigger inflammation, vessel injury, and antibody-mediated rejection (AMR). Accumulation of intragraft-recipient macrophages is a histological characteristic of AMR, which portends worse outcome. HLA class I (HLA I) DSAs enhance monocyte recruitment by activating endothelial cells and engaging FcγRs, but the DSA-activated donor endothelial influence on macrophage differentiation is unknown. In this study, we explored the consequence of DSA-activated endothelium on infiltrating monocyte differentiation. Here we show that cardiac allografts from murine recipients treated with MHC I DSA upregulated genes related to monocyte transmigration and Fc receptor stimulation. Human monocytes co-cultured with HLA I IgG-stimulated primary human endothelium promoted monocyte differentiation into CD68+ CD206+ CD163+ macrophages (M(HLA I IgG)), whereas HLA I F(ab')2 stimulated endothelium solely induced higher CD206 (M(HLA I F(ab')2 )). Both macrophage subtypes exhibited significant changes in discrete cytokines/chemokines and unique gene expression profiles. Cross-comparison of gene transcripts between murine DSA-treated cardiac allografts and human co-cultured macrophages identified overlapping genes. These findings uncover the role of HLA I DSA-activated endothelium in monocyte differentiation, and point to a novel, remodeling phenotype of infiltrating macrophages that may contribute to vascular injury.
Collapse
Affiliation(s)
- Xuedong Wei
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California,Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Nicole M. Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Maura Rossetti
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Rebecca A. Sosa
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Jessica Nevarez-Mejia
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Gregory A. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Arend Mulder
- Department of Immunohaematology and Bloodtransfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Jayeeta Dhar
- Lerner Research Institute and Transplant Center, Cleveland Clinic, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Karen S. Keslar
- Lerner Research Institute and Transplant Center, Cleveland Clinic, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - William M. Baldwin
- Lerner Research Institute and Transplant Center, Cleveland Clinic, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Robert L. Fairchild
- Lerner Research Institute and Transplant Center, Cleveland Clinic, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
15
|
Karahan GE, Claas FHJ, Heidt S. Pre-existing Alloreactive T and B Cells and Their Possible Relevance for Pre-transplant Risk Estimation in Kidney Transplant Recipients. Front Med (Lausanne) 2020; 7:340. [PMID: 32793610 PMCID: PMC7385137 DOI: 10.3389/fmed.2020.00340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
In allogeneic transplantation, genetic disparities between patient and donor may lead to cellular and humoral immune responses mediated by both naïve and memory alloreactive cells of the adaptive immune system. This review will focus on alloreactive T and B cells with emphasis on the memory compartment, their role in relation to kidney rejection, and in vitro assays to detect these alloreactive cells. Finally, the potential additional value of utilizing donor-specific memory T and B cell assays supplementary to current routine pre-transplant risk assessment of kidney transplant recipients will be discussed.
Collapse
Affiliation(s)
- Gonca E Karahan
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Sebastiaan Heidt
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
16
|
Forneris N, Levy H, Burlak C. Human-porcine MHC-I homology allows for antibody cross-reactivity. HLA 2020; 96:197-201. [PMID: 32452158 DOI: 10.1111/tan.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 11/27/2022]
Abstract
Pigs are especially useful large animal models, however, limited availability of commercially available antibodies for immunoblotting presents a significant obstacle facing preclinical xenotransplantation research. Major histocompatibility complex class I (MHC-I) molecule expression enhancement by nucleotide-binding oligomerization domain (NOD)-like receptor family with a caspase recruitment domain (CARD) containing caspase 5 (NLRC5) is fundamental to understanding porcine xenoantigen presentation. Swine Leukocyte Antigens (SLAs) are the porcine MHC homologs for human leukocyte antigens. SLA-I is a known xenoantigen that causes T cell activation. NLRC5, SLA-I, and B2M are all targets of immune modulation in genetically engineered pigs in xenotransplantation research with the goal to reduce SLA-I expression. In the present study, the human anti-NLRC5 (ab105411), anti-NLRC5 (ab117624), anti-NLRC5 N-terminal (ab178767), anti-HLA E (ab203082), anti-HLA E (ab135826), anti-HLA E (ab2216) and anti-β2 M (ab75853) antibodies were examined using immunoblots for porcine cross-reactivity. The anti-human antibodies ab117624, ab105411, ab178767, ab2216, and ab75853 cross reacted with cognate proteins in porcine cell lysates. Antibody reagents from this study will allow for validation of NLRC5, B2M, MHC-I expression in future research studies. In addition, following the methodology described in this study for other xenotransplantation targets may provide an alternative to custom antibody development.
Collapse
Affiliation(s)
- Nicole Forneris
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Heather Levy
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Christopher Burlak
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
17
|
Wehmeier C, Karahan GE, Heidt S. HLA-specific memory B-cell detection in kidney transplantation: Insights and future challenges. Int J Immunogenet 2020; 47:227-234. [PMID: 32390325 PMCID: PMC7317812 DOI: 10.1111/iji.12493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Humoral alloimmunity mediated by anti‐human leucocyte antigen (HLA) antibodies is a major challenge in kidney transplantation and impairs the longevity of the transplanted organ. The immunological risk of an individual patient is currently mainly assessed by detection of HLA antibodies in the serum, which are produced by long‐lived bone marrow‐residing plasma cells. However, humoral alloimmunity is complex, and alloreactive memory B cells constitute an additional factor in the interplay of immune cells. These recirculating “silent” cells are responsible for the immunological recall response by differentiating into antibody‐producing cells upon antigen re‐encounter. Historically, due to the lack of appropriate and routinely applicable assays to determine the presence and HLA specificity of alloreactive memory B cells, their contribution to the humoral alloimmune response has clinically often been suspected but could not be determined. In this review, we give an overview of recent advances in techniques to detect alloreactive memory B cells and discuss their strengths and limitations. Furthermore, we summarize experiences with these techniques in alloimmunized individuals and transplant recipients, thereby emphasizing unmet needs to be addressed in future studies.
Collapse
Affiliation(s)
- Caroline Wehmeier
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Gonca E Karahan
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sebastiaan Heidt
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
18
|
Novel insights into the pathobiology of humoral alloimmune memory in kidney transplantation. Curr Opin Organ Transplant 2020; 25:15-21. [DOI: 10.1097/mot.0000000000000717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Ladowski JM, Martens GR, Reyes LM, Hauptfeld-Dolejsek V, Tector M, Tector J. Examining epitope mutagenesis as a strategy to reduce and eliminate human antibody binding to class II swine leukocyte antigens. Immunogenetics 2019; 71:479-487. [PMID: 31270568 DOI: 10.1007/s00251-019-01123-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/14/2019] [Indexed: 11/26/2022]
Abstract
Xenotransplantation of pig organs into people may help alleviate the critical shortage of donors which faces organ transplantation. Unfortunately, human antibodies vigorously attack pig tissues preventing the clinical application of xenotransplantation. The swine leukocyte antigens (SLA), homologs of human HLA molecules, can be xenoantigens. SLA molecules, encoded by genes in the pig major histocompatibility complex, contribute to protective immune responses in pig. Therefore, simply inactivating them through genome engineering could reduce the ability of the human immune system to surveil transplanted pig organs for infectious disease or the development of neoplasms. A potential solution to this problem is to identify and modify epitopes in SLA proteins to eliminate their contribution to humoral xenoantigenicity while retaining their biosynthetic competence and ability to contribute to protective immunity. We previously showed that class II SLA proteins were recognized as xenoantigens and mutating arginine at position 55 to proline, in an SLA-DQ beta chain, could reduce human antibody binding. Here, we extend these observations by creating several additional point mutants at position 55. Using a panel of monoclonal antibodies specific for class II SLA proteins, we show that these mutants remain biosynthetically competent. Examining antibody binding to these variants shows that point mutagenesis can reduce, eliminate, or increase antibody binding to class II SLA proteins. Individual mutations can have opposite effects on antibody binding when comparing samples from different people. We also performed a preliminary analysis of creating point mutants near to position 55 to demonstrate that manipulating additional residues also affects antibody reactivity.
Collapse
Affiliation(s)
- Joseph M Ladowski
- Department of Surgery, University of Alabama at Birmingham, ZRB 701, 1720 2nd Ave South, Birmingham, AL, 35294, USA
| | - Gregory R Martens
- Department of Surgery, University of Alabama at Birmingham, ZRB 701, 1720 2nd Ave South, Birmingham, AL, 35294, USA
| | - Luz M Reyes
- Department of Surgery, University of Alabama at Birmingham, ZRB 701, 1720 2nd Ave South, Birmingham, AL, 35294, USA
| | - Vera Hauptfeld-Dolejsek
- Department of Surgery, University of Alabama at Birmingham, ZRB 701, 1720 2nd Ave South, Birmingham, AL, 35294, USA
- Transplant Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew Tector
- Department of Surgery, University of Alabama at Birmingham, ZRB 701, 1720 2nd Ave South, Birmingham, AL, 35294, USA
- Transplant Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joseph Tector
- Department of Surgery, University of Alabama at Birmingham, ZRB 701, 1720 2nd Ave South, Birmingham, AL, 35294, USA.
- Transplant Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
20
|
Wolf E, Kemter E, Klymiuk N, Reichart B. Genetically modified pigs as donors of cells, tissues, and organs for xenotransplantation. Anim Front 2019; 9:13-20. [PMID: 32002258 PMCID: PMC6951927 DOI: 10.1093/af/vfz014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Science, LMU Munich, Munich, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Science, LMU Munich, Munich, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Nikolai Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Science, LMU Munich, Munich, Germany
| | - Bruno Reichart
- Walter Brendel Center for Experimental Medicine, LMU Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Germany
| |
Collapse
|
21
|
Sake HJ, Frenzel A, Lucas-Hahn A, Nowak-Imialek M, Hassel P, Hadeler KG, Hermann D, Becker R, Eylers H, Hein R, Baars W, Brinkmann A, Schwinzer R, Niemann H, Petersen B. Possible detrimental effects of beta-2-microglobulin knockout in pigs. Xenotransplantation 2019; 26:e12525. [PMID: 31119817 DOI: 10.1111/xen.12525] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Despite major improvements in pig-to-primate xenotransplantation, long-term survival of xenografts is still challenging. The major histocompatibility complex (MHC) class I, which is crucial in cellular immune response, is an important xenoantigen. Abrogating MHC class I expression on xenografts might be beneficial for extending graft survival beyond current limits. METHODS In this study, we employed the CRISPR/Cas9 system to target exon 2 of the porcine beta-2-microglobulin (B2M) gene to abrogate SLA class I expression on porcine cells. B2M-KO cells served as donor cells for somatic cell nuclear transfer, and cloned embryos were transferred to three recipient sows. The offspring were genotyped for mutations at the B2M locus, and blood samples were analyzed via flow cytometry for the absence of SLA class I molecules. RESULTS Pregnancies were successfully established and led to the birth of seven viable piglets. Genomic sequencing proved that all piglets carried biallelic modifications at the B2M locus leading to a frameshift, a premature stop codon, and ultimately a functional knockout. However, survival times of these animals did not exceed 4 weeks due to unexpected disease processes. CONCLUSION Here, we demonstrate the feasibility of generating SLA class I knockout pigs by targeting the porcine beta-2-microglobulin gene using the CRISPR/Cas9 system. Additionally, our findings indicate for the first time that this genetic modification might have a negative impact on the viability of the animals. These issues need to be solved to unveil the real value for xenotransplantation in the future.
Collapse
Affiliation(s)
| | - Antje Frenzel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Andrea Lucas-Hahn
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Monika Nowak-Imialek
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Petra Hassel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Klaus-Gerd Hadeler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Doris Hermann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Roswitha Becker
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Heinke Eylers
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Rabea Hein
- Transplant Laboratory, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Wiebke Baars
- Transplant Laboratory, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Antje Brinkmann
- Transplant Laboratory, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Reinhard Schwinzer
- Transplant Laboratory, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Heiner Niemann
- REBIRTH/Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| |
Collapse
|
22
|
Visentin J, Leu DL, Mulder A, Jambon F, Badier L, Lee JH, Guidicelli G, Bouthemy C, Ralazamahaleo M, Claas F, Di Primo C, Taupin JL. Measuring anti-HLA antibody active concentration and affinity by surface plasmon resonance: Comparison with the luminex single antigen flow beads and T-cell flow cytometry crossmatch results. Mol Immunol 2019; 108:34-44. [DOI: 10.1016/j.molimm.2019.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 12/11/2022]
|
23
|
Opstelten R, Slot MC, Lardy NM, Lankester AC, Mulder A, Claas FHJ, van Rood JJ, Amsen D. Determining the extent of maternal-foetal chimerism in cord blood. Sci Rep 2019; 9:5247. [PMID: 30918307 PMCID: PMC6437214 DOI: 10.1038/s41598-019-41733-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/14/2019] [Indexed: 12/28/2022] Open
Abstract
During pregnancy, maternal T cells can enter the foetus, leading to maternal-foetal chimerism. This phenomenon may affect how leukaemia patients respond to transplantation therapy using stem cells from cord blood (CB). It has been proposed that maternal T cells, primed to inherited paternal HLAs, are present in CB transplants and help to suppress leukaemic relapse. Several studies have reported evidence for the presence of maternal T cells in most CBs at sufficiently high numbers to lend credence to this idea. We here aimed to functionally characterise maternal T cells from CB. To our surprise, we could not isolate viable maternal cells from CB even after using state-of-the-art enrichment techniques that allow detection of viable cells in heterologous populations at frequencies that were several orders of magnitude lower than reported frequencies of maternal T cells in CB. In support of these results, we could only detect maternal DNA in a minority of samples and at insufficient amounts for reliable quantification through a sensitive PCR-based assay to measure In/Del polymorphisms. We conclude that maternal microchimerism is far less prominent than reported, at least in our cohort of CBs, and discuss possible explanations and implications.
Collapse
Affiliation(s)
- Rianne Opstelten
- Sanquin Research, Dept of Hematopoiesis, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Manon C Slot
- Sanquin Research, Dept of Hematopoiesis, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Neubury M Lardy
- Sanquin Diagnostics BV, Department of Immunogenetics, Amsterdam, The Netherlands
| | - Arjan C Lankester
- Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Arend Mulder
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Jon J van Rood
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Derk Amsen
- Sanquin Research, Dept of Hematopoiesis, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Ladowski J, Martens G, Estrada J, Tector M, Tector J. The desirable donor pig to eliminate all xenoreactive antigens. Xenotransplantation 2019; 26:e12504. [PMID: 30825348 DOI: 10.1111/xen.12504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 12/17/2018] [Accepted: 01/29/2019] [Indexed: 02/05/2023]
Abstract
The humoral barrier has been the limiting factor in moving xenotransplantation towards the clinic. Improvements in somatic cell nuclear transfer and genome editing, particularly CRISPR-Cas9, have made it possible to create pigs with multiple glycan xenoantigen deletions for the purposes of reducing xenoreactive antibody binding to the xenografted organ. Recent studies have also considered the aetiology and existence of antibodies directed at the swine leucocyte antigen (SLA) complex, and potential genetic engineering strategies to avoid these antibodies. Evaluation of xenoreactive antibody binding is very important for the advancement of xenotransplantation, because if patients do not have any detectable xenoreactive antibody, then it is reasonable to expect that cellular rejection and not antibody-mediated rejection (AMR) will be the next hurdle to clinical application.
Collapse
Affiliation(s)
- Joseph Ladowski
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Greg Martens
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jose Estrada
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Matthew Tector
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joseph Tector
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
25
|
Measuring Alloreactive B Cell Responses in Transplant Recipients. CURRENT TRANSPLANTATION REPORTS 2019. [DOI: 10.1007/s40472-019-00234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Immune Responses of HLA Highly Sensitized and Nonsensitized Patients to Genetically Engineered Pig Cells. Transplantation 2019; 102:e195-e204. [PMID: 29266033 DOI: 10.1097/tp.0000000000002060] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND We investigated in vitro whether HLA highly sensitized patients with end-stage renal disease will be disadvantaged immunologically after a genetically engineered pig kidney transplant. METHODS Blood was drawn from patients with a calculated panel-reactive antibody (cPRA) 99% to 100% (Gp1, n = 10) or cPRA 0% (Gp2, n = 12), and from healthy volunteers (Gp3, n = 10). Serum IgM and IgG binding was measured (i) to galactose-α1-3 galactose and N-glycolylneuraminic acid glycans by enzyme-linked immunosorbent assay, and (ii) to pig red blood cell, pig aortic endothelial cells, and pig peripheral blood mononuclear cell from α1,3-galactosyltransferase gene-knockout (GTKO)/CD46 and GTKO/CD46/cytidine monophosphate-N-acetylneuraminic acid hydroxylase-knockout (CMAHKO) pigs by flow cytometry. (iii) T-cell and B-cell phenotypes were determined by flow cytometry, and (iv) proliferation of T-cell and B-cell carboxyfluorescein diacetate succinimidyl ester-mixed lymphocyte reaction. RESULTS (i) By enzyme-linked immunosorbent assay, there was no difference in IgM or IgG binding to galactose-α1-3 galactose or N-glycolylneuraminic acid between Gps1 and 2, but binding was significantly reduced in both groups compared to Gp3. (ii) IgM and IgG binding in Gps1 and 2 was also significantly lower to GTKO/CD46 pig cells than in healthy controls, but there were no differences between the 3 groups in binding to GTKO/CD46/CMAHKO cells. (iii and iv) Gp1 patients had more memory T cells than Gp2, but there was no difference in T or B cell proliferation when stimulated by any pig cells. The proliferative responses in all 3 groups were weakest when stimulated by GTKO/CD46/CMAHKO pig peripheral blood mononuclear cell. CONCLUSIONS (i) End-stage renal disease was associated with low antipig antibody levels. (ii) Xenoreactivity decreased with increased genetic engineering of pig cells. (iii) High cPRA status had no significant effect on antibody binding or T-cell and B-cell response.
Collapse
|
27
|
Ma W, Stroobant V, Heirman C, Sun Z, Thielemans K, Mulder A, van der Bruggen P, Van den Eynde BJ. The Vacuolar Pathway of Long Peptide Cross-Presentation Can Be TAP Dependent. THE JOURNAL OF IMMUNOLOGY 2018; 202:451-459. [PMID: 30559321 DOI: 10.4049/jimmunol.1800353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/12/2018] [Indexed: 11/19/2022]
Abstract
The intracellular pathway of cross-presentation, which allows MHC class I-restricted presentation of peptides derived from exogenous Ags, remains poorly defined and may vary with the nature of the exogenous Ag and the type of APC. It can be cytosolic, characterized by proteasome and TAP dependency, or vacuolar, usually believed to be proteasome and TAP independent. Cross-presentation is particularly effective with long synthetic peptides, and we previously reported that the HLA-A2-restricted cross-presentation of a long peptide derived from melanoma Ag gp100 by human monocyte-derived immature dendritic cells occurred in a vacuolar pathway, making use of newly synthesized HLA-A2 molecules that follow a nonclassical secretion route. In this article, we show that the HLA-A1-restricted cross-presentation of a long peptide derived from tumor Ag MAGE-A3 by human monocyte-derived immature dendritic cells also follows a vacuolar pathway. However, as opposed to the HLA-A2-restricted peptide, cross-presentation of the HLA-A1-restricted peptide is TAP dependent. We show that this paradoxical TAP-dependency is indirect and reflects the need for TAP to load HLA-A1 molecules with peptides in the endoplasmic reticulum, to allow them to escape the endoplasmic reticulum and reach the vacuole, where peptide exchange with the cross-presented peptide likely occurs. Our results confirm and extend the involvement of the vacuolar pathway in the cross-presentation of long peptides, and indicate that TAP-dependency can no longer be used as a key criterion to distinguish the cytosolic from the vacuolar pathway of cross-presentation. They also stress the existence of an alternative secretory route for MHC class I, which will be worthy of further studies.
Collapse
Affiliation(s)
- Wenbin Ma
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| | - Carlo Heirman
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Vrije Universiteit Brussel, Brussels B-1090, Belgium; and
| | - Zhaojun Sun
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Vrije Universiteit Brussel, Brussels B-1090, Belgium; and
| | - Arend Mulder
- Laboratory for Transplantation Immunology, Department of Immunohaematology and Bloodtransfusion, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Pierre van der Bruggen
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| | - Benoît J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium; .,Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| |
Collapse
|
28
|
No Evidence for Cross-reactivity of Virus-specific Antibodies With HLA Alloantigens. Transplantation 2018; 102:1844-1849. [DOI: 10.1097/tp.0000000000002369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Byrne GW. Does human leukocyte antigens sensitization matter for xenotransplantation? Xenotransplantation 2018; 25:e12411. [PMID: 29913037 DOI: 10.1111/xen.12411] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/16/2018] [Accepted: 05/02/2018] [Indexed: 01/09/2023]
Abstract
The major histocompatibility complex class I and class II human leukocyte antigens (HLA) play a central role in adaptive immunity but are also the dominant polymorphic proteins targeted in allograft rejection. Sensitized patients with high levels of panel-reactive anti-HLA antibody (PRA) are at risk of early allograft injury, rejection, reduced allograft survival and often experience prolonged waiting times prior to transplantation. Xenotransplantation, using genetically modified porcine organs, offers a unique source of donor organs for these highly sensitized patients if the anti-HLA antibody, which places the allograft at risk, does not also enhance anti-pig antibody reactivity responsible for xenograft rejection. Recent improvements in xenotransplantation efficacy have occurred due to improved immune suppression, identification of additional xenogeneic glycans, and continued improvements in donor pig genetic modification. Genetically engineered pig cells, devoid of the known xenogeneic glycans, minimize human antibody reactivity in 90% of human serum samples. For waitlisted patients, early comparisons of patient PRA and anti-pig antibody reactivity found no correlation suggesting that patients with high PRA levels were not at increased risk of xenograft rejection. Subsequent studies have found that some, but not all, highly sensitized patients express anti-HLA class I antibody which cross-reacts with swine leukocyte antigen (SLA) class I proteins. Recent detailed antigen-specific analysis suggests that porcine-specific anti-SLA antibody from sensitized patients binds cross-reactive groups present in a limited subset of HLA antigens. This suggests that using modern genetic methods, a program to eliminate specific SLA alleles through donor genetic engineering or stringent donor selection is possible to minimize recipient antibody reactivity even for highly sensitized individuals.
Collapse
Affiliation(s)
- Guerard W Byrne
- Institute of Cardiovascular Science, University College London, London, UK.,Department of Surgery, University of Alabama, Birmingham, UK
| |
Collapse
|
30
|
Daugs A, Lehmann N, Eroglu D, Meinke MC, Markhoff A, Bloch O. In VitroDetection System to Evaluate the Immunogenic Potential of Xenografts. Tissue Eng Part C Methods 2018; 24:280-288. [DOI: 10.1089/ten.tec.2017.0532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Aila Daugs
- Auto Tissue Berlin GmbH, Berlin, Germany
| | | | | | - Martina C. Meinke
- Center of Experimental and Applied Cutaneous Physiology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
31
|
Li Q, Hara H, Zhang Z, Breimer ME, Wang Y, Cooper DKC. Is sensitization to pig antigens detrimental to subsequent allotransplantation? Xenotransplantation 2018; 25:e12393. [PMID: 29655276 DOI: 10.1111/xen.12393] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
An important question in xenotransplantation is whether an allotransplant can safely be carried out in a patient who has become sensitized to a pig xenograft. To answer this question, we have searched the literature. We primarily limited our review to the clinically relevant pig-to-non-human primate (NHP) model and found five studies that explored this topic. No NHP that had received a pig graft developed antibodies to alloantigens, and in vitro studies indicated no increased humoral and/or cellular alloreactivity. We carried out a small in vitro study ourselves that confirmed this conclusion. There have been three experiments in which patients undergoing dialysis were exposed to wild-type pig kidneys and three clinical studies related to bridging a patient in hepatic failure to liver allotransplantation. Despite the development of anti-pig antibodies, all subsequent organ (kidney or liver) allografts were successful (except possibly in one case). In addition, pig fetal islets were transplanted into patients with kidney allografts; there was no increase in panel-reactive alloantibodies and the kidney grafts continued to function satisfactorily. In conclusion, the limited data suggest that, after sensitization to pig antigens, there is no evidence of antibody-mediated or accelerated cellular rejection of a subsequent allograft.
Collapse
Affiliation(s)
- Qi Li
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.,Second Affiliated Hospital, University of South China, Hengyang City, China
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhongqiang Zhang
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Organ Transplantation and General Surgery, Second Xiangya Hospital of Central South University, Changsha, China
| | - Michael E Breimer
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Yi Wang
- Second Affiliated Hospital, University of South China, Hengyang City, China
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
32
|
Platelets from donors with consistently low HLA-B8, -B12, or -B35 expression do not undergo antibody-mediated internalization. Blood 2018; 131:144-152. [DOI: 10.1182/blood-2017-07-799270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022] Open
Abstract
Key Points
HLA-B8, -B12, or -B35 expression on platelets varies significantly between donors and in certain donors is consistently low or undetectable. Antibody-mediated internalization of platelets correlates with antigen expression and is absent in platelets with low HLA expression.
Collapse
|
33
|
Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, Leong JW, Abdel-Latif S, Schneider SE, Willey S, Neal CC, Yu L, Oh ST, Lee YS, Mulder A, Claas F, Cooper MA, Fehniger TA. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med 2017; 8:357ra123. [PMID: 27655849 DOI: 10.1126/scitranslmed.aaf2341] [Citation(s) in RCA: 606] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 08/04/2016] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells are an emerging cellular immunotherapy for patients with acute myeloid leukemia (AML); however, the best approach to maximize NK cell antileukemia potential is unclear. Cytokine-induced memory-like NK cells differentiate after a brief preactivation with interleukin-12 (IL-12), IL-15, and IL-18 and exhibit enhanced responses to cytokine or activating receptor restimulation for weeks to months after preactivation. We hypothesized that memory-like NK cells exhibit enhanced antileukemia functionality. We demonstrated that human memory-like NK cells have enhanced interferon-γ production and cytotoxicity against leukemia cell lines or primary human AML blasts in vitro. Using mass cytometry, we found that memory-like NK cell functional responses were triggered against primary AML blasts, regardless of killer cell immunoglobulin-like receptor (KIR) to KIR-ligand interactions. In addition, multidimensional analyses identified distinct phenotypes of control and memory-like NK cells from the same individuals. Human memory-like NK cells xenografted into mice substantially reduced AML burden in vivo and improved overall survival. In the context of a first-in-human phase 1 clinical trial, adoptively transferred memory-like NK cells proliferated and expanded in AML patients and demonstrated robust responses against leukemia targets. Clinical responses were observed in five of nine evaluable patients, including four complete remissions. Thus, harnessing cytokine-induced memory-like NK cell responses represents a promising translational immunotherapy approach for patients with AML.
Collapse
Affiliation(s)
- Rizwan Romee
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maximillian Rosario
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Melissa M Berrien-Elliott
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julia A Wagner
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brea A Jewell
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy Schappe
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey W Leong
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sara Abdel-Latif
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephanie E Schneider
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sarah Willey
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carly C Neal
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Liyang Yu
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephen T Oh
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yi-Shan Lee
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Arend Mulder
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZC Leiden, Netherlands
| | - Frans Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZC Leiden, Netherlands
| | - Megan A Cooper
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
34
|
Karahan GE, de Vaal YJH, Krop J, Wehmeier C, Roelen DL, Claas FHJ, Heidt S. A Memory B Cell Crossmatch Assay for Quantification of Donor-Specific Memory B Cells in the Peripheral Blood of HLA-Immunized Individuals. Am J Transplant 2017; 17:2617-2626. [PMID: 28371365 DOI: 10.1111/ajt.14293] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 01/25/2023]
Abstract
Humoral responses against mismatched donor HLA are routinely measured as serum HLA antibodies, which are mainly produced by bone marrow-residing plasma cells. Individuals with a history of alloimmunization but lacking serum antibodies may harbor circulating dormant memory B cells, which may rapidly become plasma cells on antigen reencounter. Currently available methods to detect HLA-specific memory B cells are scarce and insufficient in quantifying the complete donor-specific memory B cell response due to their dependence on synthetic HLA molecules. We present a highly sensitive and specific tool for quantifying donor-specific memory B cells in peripheral blood of individuals using cell lysates covering the complete HLA class I and class II repertoire of an individual. Using this enzyme-linked immunospot (ELISpot) assay, we found a median frequency of 31 HLA class I and 89 HLA class II-specific memory B cells per million IgG-producing cells directed at paternal HLA in peripheral blood samples from women (n = 22) with a history of pregnancy, using cell lysates from spouses. The donor-specific memory B cell ELISpot can be used in HLA diagnostic laboratories as a cross-match assay to quantify donor-specific memory B cells in patients with a history of sensitizing events.
Collapse
Affiliation(s)
- G E Karahan
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Y J H de Vaal
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - J Krop
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - C Wehmeier
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - D L Roelen
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - F H J Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - S Heidt
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
35
|
Luque S, Lúcia M, Bestard O. Refinement of humoral immune monitoring in kidney transplantation: the role of “hidden” alloreactive memory B cells. Transpl Int 2017; 30:955-968. [DOI: 10.1111/tri.13014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/07/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Sergi Luque
- Experimental Nephrology Laboratory; IDIBELL; Barcelona Spain
| | - Marc Lúcia
- Experimental Nephrology Laboratory; IDIBELL; Barcelona Spain
- Transplant Immunology; Stanford School of Medicine; Stanford CA USA
| | - Oriol Bestard
- Experimental Nephrology Laboratory; IDIBELL; Barcelona Spain
- Kidney Transplant Unit; Nephrology Department; Bellvitge University Hospital; Barcelona University; Barcelona Spain
| |
Collapse
|
36
|
Complement-Mediated Enhancement of Monocyte Adhesion to Endothelial Cells by HLA Antibodies, and Blockade by a Specific Inhibitor of the Classical Complement Cascade, TNT003. Transplantation 2017. [PMID: 28640789 PMCID: PMC5482566 DOI: 10.1097/tp.0000000000001486] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Antibody-mediated rejection (AMR) of most solid organs is characterized by evidence of complement activation and/or intragraft macrophages (C4d + and CD68+ biopsies). We previously demonstrated that crosslinking of HLA I by antibodies triggered endothelial activation and monocyte adhesion. We hypothesized that activation of the classical complement pathway at the endothelial cell surface by HLA antibodies would enhance monocyte adhesion through soluble split product generation, in parallel with direct endothelial activation downstream of HLA signaling. Methods Primary human aortic endothelial cells (HAEC) were stimulated with HLA class I antibodies in the presence of intact human serum complement. C3a and C5a generation, endothelial P-selectin expression, and adhesion of human primary and immortalized monocytes (Mono Mac 6) were measured. Alternatively, HAEC or monocytes were directly stimulated with purified C3a or C5a. Classical complement activation was inhibited by pretreatment of complement with an anti-C1s antibody (TNT003). Results Treatment of HAEC with HLA antibody and human complement increased the formation of C3a and C5a. Monocyte recruitment by human HLA antibodies was enhanced in the presence of intact human serum complement or purified C3a or C5a. Specific inhibition of the classical complement pathway using TNT003 or C1q-depleted serum significantly reduced adhesion of monocytes in the presence of human complement. Conclusions Despite persistent endothelial viability in the presence of HLA antibodies and complement, upstream complement anaphylatoxin production exacerbates endothelial exocytosis and leukocyte recruitment. Upstream inhibition of classical complement may be therapeutic to dampen mononuclear cell recruitment and endothelial activation characteristic of microvascular inflammation during AMR. Valenzuela et al show that HLA antibody binding to human endothelial cells in vitro, triggered complement C3a and C5a deposition that mediated monocyte recruitment, and the salutary effects of inhibiting the classical complement pathway with an anti-C1s antibody. Supplemental digital content is available in the text.
Collapse
|
37
|
Martens GR, Reyes LM, Li P, Butler JR, Ladowski JM, Estrada JL, Sidner RA, Eckhoff DE, Tector M, Tector AJ. Humoral Reactivity of Renal Transplant-Waitlisted Patients to Cells From GGTA1/CMAH/B4GalNT2, and SLA Class I Knockout Pigs. Transplantation 2017; 101:e86-e92. [PMID: 28114170 DOI: 10.1097/tp.0000000000001646] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Antipig antibodies are a barrier to clinical xenotransplantation. We evaluated antibody binding of waitlisted renal transplant patients to 3 glycan knockout (KO) pig cells and class I swine leukocyte antigens (SLA). METHODS Peripheral blood mononuclear cells from SLA identical wild type (WT), α1, 3-galactosyltransferase (GGTA1) KO, GGTA1/ cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) KO, and GGTA1/ CMAH /b1,4 N-acetylgalactosaminyl transferase (B4GalNT2) KO pigs were screened for human antibody binding using flow cytometric crossmatch (FCXM). Sera from 820 patients were screened on GGTA1/CMAH/B4GalNT2 KO cells and a subset with elevated binding was evaluated further. FCXM was performed on SLA intact cells and GGTA1/SLA class I KO cells after depletion with WT pig RBCs to remove cell surface reactive antibodies, but leave SLA antibodies. Lastly, human and pig reactive antibodies were eluted and tested for cross-species binding and reactivity to single-antigen HLA beads. RESULTS Sequential glycan KO modifications significantly reduce antibody binding of waitlisted patients. Sera exhibiting elevated binding without reduction after depletion with WT RBCs demonstrate reduced binding to SLA class I KO cells. Human IgG, eluted from human and pig peripheral blood mononuclear cells, interacted across species and bound single-antigen HLA beads in common epitope-restricted patterns. CONCLUSIONS Many waitlisted patients have minimal xenoreactive antibody binding to the triple KO pig, but some HLA antibodies in sensitized patients cross-react with class I SLA. SLA class I is a target for genome editing in xenotransplantation.
Collapse
Affiliation(s)
- Gregory R Martens
- 1 Department of Surgery, University of Alabama at Birmingham, Birmingham, AL. 2 Department of Surgery, Indiana University, School of Medicine, Indianapolis, IN. 3 Transplant Surgery, University of Alabama at Birmingham, Birmingham, AL
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
van der Torren CR, Suwandi JS, Lee D, Van't Wout EJT, Duinkerken G, Swings G, Mulder A, Claas FHJ, Ling Z, Gillard P, Keymeulen B, In't Veld P, Roep BO. Identification of Donor Origin and Condition of Transplanted Islets In Situ in the Liver of a Type 1 Diabetic Recipient. Cell Transplant 2017; 26:1-9. [PMID: 27729094 DOI: 10.3727/096368916x693437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transplantation of islet allografts into type 1 diabetic recipients usually requires multiple pancreas donors to achieve insulin independence. This adds to the challenges of immunological monitoring of islet transplantation currently relying on surrogate immune markers in peripheral blood. We investigated donor origin and infiltration of islets transplanted in the liver of a T1D patient who died of hemorrhagic stroke 4 months after successful transplantation with two intraportal islet grafts combining six donors. Immunohistological staining for donor HLA using a unique panel of human monoclonal HLA-specific alloantibodies was performed on liver cryosections after validation on cryopreserved kidney, liver, and pancreas and compared with auto- and alloreactive T-cell immunity in peripheral blood. HLA-specific staining intensity and signal-to-noise ratio varied between tissues from very strong on kidney glomeruli, less in liver, kidney tubuli, and endocrine pancreas to least in exocrine pancreas, complicating the staining of inflamed islets in an HLA-disparate liver. Nonetheless, five islets from different liver lobes could be attributed to donors 1, 2, and 5 by staining patterns with multiple HLA types. All islets showed infiltration with CD8+ cytotoxic T cells that was mirrored by progressive alloreactive responses in peripheral blood mononuclear cells (PBMCs) to donors 1, 2, and 5 after transplantation. Stably low rates of peripheral islet autoreactive T-cell responses after islet infusion fit with a complete HLA mismatch between grafts and recipient and exclude the possibility that the islet-infiltrating CD8 T cells were autoreactive. HLA-specific immunohistochemistry can identify donor origin in situ and differentiate graft dysfunction and immunological destruction.
Collapse
|
39
|
Kametani Y, Ohshima S, Miyamoto A, Shigenari A, Takasu M, Imaeda N, Matsubara T, Tanaka M, Shiina T, Kamiguchi H, Suzuki R, Kitagawa H, Kulski JK, Hirayama N, Inoko H, Ando A. Production of a Locus- and Allele-Specific Monoclonal Antibody for the Characterization of SLA-1*0401 mRNA and Protein Expression Levels in MHC-Defined Microminipigs. PLoS One 2016; 11:e0164995. [PMID: 27760184 PMCID: PMC5070868 DOI: 10.1371/journal.pone.0164995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/04/2016] [Indexed: 12/17/2022] Open
Abstract
The class I major histocompatibility complex (MHC) presents self-developed peptides to specific T cells to induce cytotoxity against infection. The MHC proteins are encoded by multiple loci that express numerous alleles to preserve the variability of the antigen-presenting ability in each species. The mechanism regulating MHC mRNA and protein expression at each locus is difficult to analyze because of the structural and sequence similarities between alleles. In this study, we examined the correlation between the mRNA and surface protein expression of swine leukocyte antigen (SLA)-1*0401 after the stimulation of peripheral blood mononuclear cells (PBMCs) by Staphylococcus aureus superantigen toxic shock syndrome toxin-1 (TSST-1). We prepared a monoclonal antibody (mAb) against a domain composed of Y102, L103 and L109 in the α2 domain. The Hp-16.0 haplotype swine possess only SLA-1*0401, which has the mAb epitope, while other haplotypes possess 0 to 3 SLA classical class I loci with the mAb epitopes. When PBMCs from SLA-1*0401 homozygous pigs were stimulated, the SLA-1*0401 mRNA expression level increased until 24 hrs and decreased at 48 hrs. The kinetics of the interferon regulatory transcription factor-1 (IRF-1) mRNA level were similar to those of the SLA-1*0401 mRNA. However, the surface protein expression level continued to increase until 72 hrs. Similar results were observed in the Hp-10.0 pigs with three mAb epitopes. These results suggest that TSST-1 stimulation induced both mRNA and surface protein expression of class I SLA in the swine PBMCs differentially and that the surface protein level was sustained independently of mRNA regulation.
Collapse
Affiliation(s)
- Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Institute of Advanced Biosciences, Tokai University, Kanagawa, Japan
- * E-mail:
| | - Shino Ohshima
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Asuka Miyamoto
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Atsuko Shigenari
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masaki Takasu
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Noriaki Imaeda
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Tatsuya Matsubara
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Masafumi Tanaka
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroshi Kamiguchi
- Teaching and Research Support Center, Tokai University School of Medicine, Isehara, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Sagamihara, Kanagawa, Japan
| | - Hitoshi Kitagawa
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Crawley WA, Australia
| | - Noriaki Hirayama
- Institute of Glycoscience, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Asako Ando
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
40
|
Immunogenicity of Renal Microvascular Endothelial Cells From Genetically Modified Pigs. Transplantation 2016; 100:533-7. [PMID: 26906938 DOI: 10.1097/tp.0000000000001070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Disrupting the porcine GGTA1 and CMAH genes [double knockout (DKO)] that produce the gal-α(1,3)-gal and N-glycolylneuraminic acid xenoantigens reduces human antibody binding to porcine peripheral blood mononuclear cells. It is important to examine rejection pathways at an organ-specific level. The object of this study is to evaluate the human preformed antibody reactivity against DKO renal microvascular endothelial cells (RMEC) in vitro. METHODS Characteristics of DKO RMEC were analyzed using flow cytometry. Human IgG/M binding to primary RMEC, immortalized RMEC (iRMEC), and iRMEC-deficient in B4GALNT2 genes were examined using flow cytometric crossmatch assay. RESULTS Porcine RMEC expressed gal-α(1,3)-gal, N-glycolylneuraminic acid, and Dolichos biflorus agglutinin glycans recognized by human preexisting antibodies in humans. Antigenicity of DKO RMEC was lower than GGTA1 KO RMEC. The disruption of B4GALNT2 gene in DKO iRMEC further reduced human IgG/IgM binding. CONCLUSIONS Silencing the porcine GGTA1, CMAH, and B4GALNT2 genes is an effective strategy to reduce human preformed antibody binding to RMEC. Porcine RMEC will be a useful reagent for the further study of xenoimmunology.
Collapse
|
41
|
Abstract
The availability of cells, tissues and organs from a non-human species such as the pig could, at least in theory, meet the demand of organs necessary for clinical transplantation. At this stage, the important goal of getting over the first year of survival has been reported for both cellular and solid organ xenotransplantation in relevant preclinical primate models. In addition, xenotransplantation is already in the clinic as shown by the broad use of animal-derived medical devices, such as bioprosthetic heart valves and biological materials used for surgical tissue repair. At this stage, however, prior to starting a wide-scale clinical application of xenotransplantation of viable cells and organs, the important obstacle represented by the humoral immune response will need to be overcome. Likewise, the barriers posed by the activation of the innate immune system and coagulative pathway will have to be controlled. As far as xenogeneic nonviable xenografts, increasing evidence suggests that considerable immune reactions, mediated by both innate and adaptive immunity, take place and influence the long-term outcome of xenogeneic materials in patients, possibly precluding the use of bioprosthetic heart valves in young individuals. In this context, the present article provides an overview of current knowledge on the immune processes following xenotransplantation and on the possible therapeutic interventions to overcome the immunological drawbacks involved in xenotransplantation.
Collapse
Affiliation(s)
- M Vadori
- CORIT (Consortium for Research in Organ Transplantation), Via dell'Università 10, 35020 Legnaro, Padua, Italy
| | - E Cozzi
- CORIT (Consortium for Research in Organ Transplantation), Via dell'Università 10, 35020 Legnaro, Padua, Italy.,Transplant Immunology Unit, Department of Transfusion Medicine, Padua University Hospital, Via Giustiniani, 2, 35128 Padua, Italy
| |
Collapse
|
42
|
Bestard O, Cravedi P. Monitoring alloimmune response in kidney transplantation. J Nephrol 2016; 30:187-200. [PMID: 27245689 DOI: 10.1007/s40620-016-0320-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/15/2016] [Indexed: 01/22/2023]
Abstract
Currently, immunosuppressive therapy in kidney transplant recipients is generally performed by protocols and adjusted according to functional or histological evaluation of the allograft and/or signs of drug toxicity or infection. As a result, a large fraction of patients are likely to receive too much or too little immunosuppression, exposing them to higher rates of infection, malignancy and drug toxicity, or increased risk of acute and chronic graft injury from rejection, respectively. Developing reliable biomarkers is crucial for individualizing therapy aimed at extending allograft survival. Emerging data indicate that many assays, likely used in panels rather than single assays, have potential to be diagnostic and predictive of short and also long-term outcome. While numerous cross-sectional studies have found associations between the results of these assays and the presence of clinically relevant post-transplantation outcomes, data from prospective studies are still scanty, thereby preventing widespread implementation in the clinic. Of note, some prospective, randomized, multicenter biomarker-driven studies are currently on-going aiming at confirming such preliminary data. These works as well as other future studies are highly warranted to test the hypothesis that tailoring immunosuppression on the basis of results offered by these biomarkers leads to better outcomes than current standard clinical practice.
Collapse
Affiliation(s)
- Oriol Bestard
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona University, IDIBELL, Barcelona, Spain
| | - Paolo Cravedi
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Annenberg Building, New York, NY, 10029, USA.
| |
Collapse
|
43
|
Apps R, Del Prete GQ, Chatterjee P, Lara A, Brumme ZL, Brockman MA, Neil S, Pickering S, Schneider DK, Piechocka-Trocha A, Walker BD, Thomas R, Shaw GM, Hahn BH, Keele BF, Lifson JD, Carrington M. HIV-1 Vpu Mediates HLA-C Downregulation. Cell Host Microbe 2016; 19:686-95. [PMID: 27173934 PMCID: PMC4904791 DOI: 10.1016/j.chom.2016.04.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/08/2016] [Accepted: 04/05/2016] [Indexed: 12/31/2022]
Abstract
Many pathogens evade cytotoxic T lymphocytes (CTLs) by downregulating HLA molecules on infected cells, but the loss of HLA can trigger NK cell-mediated lysis. HIV-1 is thought to subvert CTLs while preserving NK cell inhibition by Nef-mediated downregulation of HLA-A and -B but not HLA-C molecules. We find that HLA-C is downregulated by most primary HIV-1 clones, including transmitted founder viruses, in contrast to the laboratory-adapted NL4-3 virus. HLA-C reduction is mediated by viral Vpu and reduces the ability of HLA-C restricted CTLs to suppress viral replication in CD4+ cells in vitro. HLA-A/B are unaffected by Vpu, and primary HIV-1 clones vary in their ability to downregulate HLA-C, possibly in response to whether CTLs or NK cells dominate immune pressure through HLA-C. HIV-2 also suppresses HLA-C expression through distinct mechanisms, underscoring the immune pressure HLA-C exerts on HIV. This viral immune evasion casts new light on the roles of CTLs and NK cells in immune responses against HIV.
Collapse
Affiliation(s)
- Richard Apps
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Pramita Chatterjee
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Abigail Lara
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V67 1Y6, Canada
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V67 1Y6, Canada
| | - Stuart Neil
- Department of Infectious Disease, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Suzanne Pickering
- Department of Infectious Disease, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Douglas K Schneider
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139-3583, USA
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139-3583, USA
| | - Rasmi Thomas
- Host Genetics Section, US Military HIV Research Program, Silver Spring, MD 20910, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA 19104-6076, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA 19104-6076, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139-3583, USA.
| |
Collapse
|
44
|
Hering BJ, O'Connell PJ. First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes--Chapter 6: patient selection for pilot clinical trials of islet xenotransplantation. Xenotransplantation 2016; 23:60-76. [PMID: 26918540 DOI: 10.1111/xen.12228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 12/22/2022]
Abstract
Patients in whom type 1 diabetes is complicated by impaired awareness of hypoglycemia and recurrent episodes of severe hypoglycemia are candidates for islet or pancreas transplantation if severe hypoglycemia persists after completion of a structured stepped care approach or a formalized medical optimization run-in period that provides access to hypoglycemia-specific education including behavioral therapies, insulin analogs, and diabetes technologies under the close supervision of a specialist hypoglycemia service. Patients with type 1 diabetes and end-stage renal failure who cannot meet clinically appropriate glycemic goals or continue to experience severe hypoglycemia after completion of a formalized medical optimization program under the guidance of an expert diabetes care team are candidates for islet or pancreas transplantation either simultaneously with or after a previous kidney transplant. Similarly, patients with type 2 diabetes and problematic hypoglycemia or renal failure who meet these criteria are considered candidates for islet replacement. Likewise, patients with pancreatectomy-induced diabetes in whom an islet autograft was not available or deemed inappropriate are candidates for islet or pancreas transplantation if extreme glycemic lability persists despite best medical therapy. To justify participation of these transplant candidates in early-phase trials of porcine islet cell products, lack of timely access to islet or pancreas allotransplantation due to allosensitization, high islet dose requirements, or other factors, or alternatively, a more favorable benefit-risk determination associated with the xenoislet than the alloislet or allopancreas transplant must be demonstrated. Additionally, in non-uremic xenoislet recipients, the risks associated with diabetes must be perceived to be more serious than the risks associated with the xenoislet product and the rejection prophylaxis, and in xenoislet recipients with renal failure, the xenoislet product and immunosuppression must not impact negatively on renal transplant outcomes. The most appropriate patient group for islet xenotransplantation trials will be defined by the specific characteristics of each investigational xenoislet product and related technologies applied for preventing rejection. Selecting recipients who are more likely to experience prolonged benefits associated with the islet xenograft will help these patients comply with lifelong monitoring and other public health measures.
Collapse
Affiliation(s)
- Bernhard J Hering
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, USA
| | - Philip J O'Connell
- The Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
45
|
de Groot NG, Heijmans CMC, van der Wiel MKH, Blokhuis JH, Mulder A, Guethlein LA, Doxiadis GGM, Claas FHJ, Parham P, Bontrop RE. Complex MHC Class I Gene Transcription Profiles and Their Functional Impact in Orangutans. THE JOURNAL OF IMMUNOLOGY 2015; 196:750-8. [PMID: 26685209 DOI: 10.4049/jimmunol.1500820] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 11/13/2015] [Indexed: 11/19/2022]
Abstract
MHC haplotypes of humans and the African great ape species have one copy of the MHC-A, -B, and -C genes. In contrast, MHC haplotypes of orangutans, the Asian great ape species, exhibit variation in the number of gene copies. An in-depth analysis of the MHC class I gene repertoire in the two orangutan species, Pongo abelii and Pongo pygmaeus, is presented in this article. This analysis involved Sanger and next-generation sequencing methodologies, revealing diverse and complicated transcription profiles for orangutan MHC-A, -B, and -C. Thirty-five previously unreported MHC class I alleles are described. The data demonstrate that each orangutan MHC haplotype has one copy of the MHC-A gene, and that the MHC-B region has been subject to duplication, giving rise to at least three MHC-B genes. The MHC-B*03 and -B*08 lineages of alleles each account for a separate MHC-B gene. All MHC-B*08 allotypes have the C1-epitope motif recognized by killer cell Ig-like receptor. At least one other MHC-B gene is present, pointing to MHC-B alleles that are not B*03 or B*08. The MHC-C gene is present only on some haplotypes, and each MHC-C allotype has the C1-epitope. The transcription profiles demonstrate that MHC-A alleles are highly transcribed, whereas MHC-C alleles, when present, are transcribed at very low levels. The MHC-B alleles are transcribed to a variable extent and over a wide range. For those orangutan MHC class I allotypes that are detected by human monoclonal anti-HLA class I Abs, the level of cell-surface expression of proteins correlates with the level of transcription of the allele.
Collapse
Affiliation(s)
- Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands;
| | - Corrine M C Heijmans
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Marit K H van der Wiel
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Jeroen H Blokhuis
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Arend Mulder
- Immunohaematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Gaby G M Doxiadis
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Frans H J Claas
- Immunohaematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
46
|
Reagan JL, Fast LD, Nevola M, Mantripragada K, Mulder A, Claas FHJ, Rosati K, Schumacher A, Safran H, Young CT, Quesenberry MI, Winer ES, Butera JN, Quesenberry PJ. Nonengraftment donor lymphocyte infusions for refractory acute myeloid leukemia. Blood Cancer J 2015; 5:e371. [PMID: 26636286 PMCID: PMC4735067 DOI: 10.1038/bcj.2015.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- J L Reagan
- Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - L D Fast
- Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - M Nevola
- Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - K Mantripragada
- Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - A Mulder
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - F H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - K Rosati
- Brown University Oncology Group, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - A Schumacher
- Lifespan Office of Clinical Research, Rhode Island Hospital/The Miriam Hospital, Providence, RI, USA
| | - H Safran
- Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - C T Young
- Rhode Island Blood Center, The Warren Alpert Medical School of Brown University, Department of Pathology, Providence, USA
| | - M I Quesenberry
- Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - E S Winer
- Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - J N Butera
- Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - P J Quesenberry
- Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
47
|
van der Garde M, van Hensbergen Y, Brand A, Slot MC, de Graaf-Dijkstra A, Mulder A, Watt SM, Zwaginga JJ. Thrombopoietin treatment of one graft in a double cord blood transplant provides early platelet recovery while contributing to long-term engraftment in NSG mice. Stem Cells Dev 2015; 24:67-76. [PMID: 25137252 DOI: 10.1089/scd.2014.0294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human cord blood (CB) hematopoietic stem cell (HSC) transplants demonstrate delayed early neutrophil and platelet recovery and delayed longer term immune reconstitution compared to bone marrow and mobilized peripheral blood transplants. Despite advances in enhancing early neutrophil engraftment, platelet recovery after CB transplantation is not significantly altered when compared to contemporaneous controls. Recent studies have identified a platelet-biased murine HSC subset, maintained by thrombopoietin (TPO), which has enhanced capacity for short- and long-term platelet reconstitution, can self-renew, and can give rise to myeloid- and lymphoid-biased HSCs. In previous studies, we have shown that transplantation of human CB CD34(+) cells precultured in TPO as a single graft accelerates early platelet recovery as well as yielding long-term repopulation in immune-deficient mice. In this study, using a double CB murine transplant model, we investigated whether TPO cultured human CB CD34(+) cells have a competitive advantage or disadvantage over untreated human CB CD34(+) cells in terms of (1) short-term and longer term platelet recovery and (2) longer term hematological recovery. Our studies demonstrate that the TPO treated graft shows accelerated early platelet recovery without impairing the platelet engraftment of untreated CD34(+) cells. Notably, this was followed by a dominant contribution to platelet production through the untreated CD34(+) cell graft over the intermediate to longer term. Furthermore, although the contribution of the TPO treated graft to long-term hematological engraftment was reduced, the TPO treated and untreated grafts both contributed significantly to long-term chimerism in vivo.
Collapse
Affiliation(s)
- Mark van der Garde
- 1 Jon J. van Rood Center for Clinical Transfusion Research , Sanquin Blood Supply Foundation, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Detecting the humoral alloimmune response: we need more than serum antibody screening. Transplantation 2015; 99:908-15. [PMID: 25839708 DOI: 10.1097/tp.0000000000000724] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Whereas many techniques exist to detect HLA antibodies in the sera of immunized individuals, assays to detect and quantify HLA-specific B cells are only just emerging. The need for such assays is becoming clear, as in some patients, HLA-specific memory B cells have been shown to be present in the absence of the accompanying serum HLA antibodies. Because HLA-specific B cells in the peripheral blood of immunized individuals are present at only a very low frequency, assays with high sensitivity are required. In this review, we discuss the currently available methods to detect and/or quantify HLA-specific B cells, as well as their promises and limitations. We also discuss scenarios in which quantification of HLA-specific B cells may be of additional value, besides classical serum HLA antibody detection.
Collapse
|
49
|
Valenzuela NM, Trinh KR, Mulder A, Morrison SL, Reed EF. Monocyte recruitment by HLA IgG-activated endothelium: the relationship between IgG subclass and FcγRIIa polymorphisms. Am J Transplant 2015; 15:1502-18. [PMID: 25648976 PMCID: PMC4439339 DOI: 10.1111/ajt.13174] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/01/2014] [Accepted: 12/15/2014] [Indexed: 01/25/2023]
Abstract
It is currently unclear which donor specific HLA antibodies confer the highest risk of antibody-mediated rejection (AMR) and allograft loss. In this study, we hypothesized that two distinct features (HLA IgG subclass and Fcγ receptor [FcγR] polymorphisms) which vary from patient to patient, influence the process of monocyte trafficking to and macrophage accumulation in the allograft during AMR in an interrelated fashion. Here, we investigated the contribution of human IgG subclass and FcγR polymorphisms in monocyte recruitment in vitro by primary human aortic endothelium activated with chimeric anti-HLA I human IgG1 and IgG2. Both subclasses triggered monocyte adhesion to endothelial cells, via a two-step process. First, HLA I crosslinking by antibodies stimulated upregulation of P-selectin on endothelium irrespective of IgG subclass. P-selectin-induced monocyte adhesion was enhanced by secondary interactions of IgG with FcγRs, which was highly dependent upon subclass. IgG1 was more potent than IgG2 through differential engagement of FcγRs. Monocytes homozygous for FcγRIIa-H131 adhered more readily to HLA antibody-activated endothelium compared with FcγRIIa-R131 homozygous. Finally, direct modification of HLA I antibodies with immunomodulatory enzymes EndoS and IdeS dampened recruitment by eliminating antibody-FcγR binding, an approach that may have clinical utility in reducing AMR and other forms of antibody-induced inflammation.
Collapse
Affiliation(s)
- Nicole M. Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - K. Ryan Trinh
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA
| | - Arend Mulder
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Sherie L. Morrison
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
50
|
Crespo M, Heidt S, Redondo D, Pascual J. Monitoring B cell subsets and alloreactivity in kidney transplantation. Transplant Rev (Orlando) 2015; 29:45-52. [PMID: 25867605 DOI: 10.1016/j.trre.2015.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 01/09/2023]
Abstract
B cells are the precursors of antibody producing plasma cells that can give rise to the formation of donor-specific antibodies. However, recent data suggest that besides their role in antibody production, B cells participate in antibody-independent responses, potentially leading to allograft rejection or allograft tolerance. The presence of CD20(+) B cells in kidney graft biopsies has been shown during severe acute rejection episodes and during chronic rejection. Furthermore, operationally tolerant kidney transplant recipients showed a clear B cell dominated fingerprint of tolerance. Several techniques exist to study B cells on different levels. Numerous classification schemes allow for the distinction of many different B cell subsets using flow cytometry. Regardless, data on B cell subsets during stable graft function, rejection or tolerance remain scarce. To obtain a complete picture of the role of B cells during transplantation, antigen specific B cell assays may be required. Therefore, techniques have now been developed that allow for studying the specificity and frequency of HLA specific B cells. Here, we present an overview of the existent assays, panels and techniques intended to characterize peripheral B cells, and the currently available HLA specific B cell functional assays that may allow for monitoring the humoral alloimmune response in transplant recipients.
Collapse
Affiliation(s)
- Marta Crespo
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain.
| | - Sebastiaan Heidt
- Dept. of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Dolores Redondo
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain
| | - Julio Pascual
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain
| |
Collapse
|