1
|
Abstract
We describe the domestication of the species, explore its value to agriculture and bioscience, and compare its immunoglobulin (Ig) genes to those of other vertebrates. For encyclopedic information, we cite earlier reviews and chapters. We provide current gene maps for the heavy and light chain loci and describe their polygeny and polymorphy. B-cell and antibody repertoire development is a major focus, and we present findings that challenge several mouse-centric paradigms. We focus special attention on the role of ileal Peyer's patches, the largest secondary lymphoid tissues in newborn piglets and a feature of all artiodactyls. We believe swine fetal development and early class switch evolved to provide natural secretory IgA antibodies able to prevent translocation of bacteria from the gut while the bacterial PAMPs drive development of adaptive immunity. We discuss the value of using the isolator piglet model to address these issues.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| | - Nancy Wertz
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| | - Marek Sinkora
- Laboratory of Gnotobiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| |
Collapse
|
2
|
Butler JE, Santiago-Mateo K, Wertz N, Sun X, Sinkora M, Francis DL. Antibody repertoire development in fetal and neonatal piglets. XXIV. Hypothesis: The ileal Peyer patches (IPP) are the major source of primary, undiversified IgA antibodies in newborn piglets. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:340-351. [PMID: 27497872 DOI: 10.1016/j.dci.2016.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/27/2016] [Accepted: 07/30/2016] [Indexed: 06/06/2023]
Abstract
The ileal Peyers patches (IPP) of newborn germfree (GF) piglets were isolated into blind loops and the piglets colonized with a defined probiotic microflora. After 5 weeks, IgA levels in the intestinal lavage (IL) of loop piglets remained at GF levels and IgM comprised ∼70% while in controls, IgA levels were elevated 5-fold and comprised ∼70% of total Igs. Loop piglets also had reduced serum IgA levels suggesting the source of serum IgA had been interrupted. The isotype profile for loop contents was intermediate between that in the IL of GF and probiotic controls. Surprisingly, colonization alone did not result in repertoire diversification in the IPP. Rather, colonization promoted pronounced proliferation of fully switched IgA(+)IgM(-) B cells in the IPP that supply early, non-diversified "natural" SIgA antibodies to the gut lumen and a primary IgA response in serum.
Collapse
Affiliation(s)
- John E Butler
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | | | - Nancy Wertz
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiuzhu Sun
- College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - David L Francis
- Department of Veterinary Sciences, South Dakota State University, Brooking, SD, USA
| |
Collapse
|
3
|
Sinkora M, Butler JE. Progress in the use of swine in developmental immunology of B and T lymphocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:1-17. [PMID: 26708608 DOI: 10.1016/j.dci.2015.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
The adaptive immune system of higher vertebrates is believed to have evolved to counter the ability of pathogens to avoid expulsion because their high rate of germline mutations. Vertebrates developed this adaptive immune response through the evolution of lymphocytes capable of somatic generation of a diverse repertoire of their antigenic receptors without the need to increase the frequency of germline mutation. The focus of our research and this article is on the ontogenetic development of the lymphocytes, and the repertoires they generate in swine. Several features are discussed including (a) the "closed" porcine placenta means that de novo fetal development can be studied for 114 days without passive influence from the mother, (b) newborn piglets are precocial permitting them to be reared without their mothers in germ-free isolators, (c) swine are members of the γδ-high group of mammals and thus provides a greater opportunity to characterize the role of γδ T cells and (d) because swine have a simplified variable heavy and light chain genome they offer a convenient system to study antibody repertoire development.
Collapse
Affiliation(s)
- Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Novy Hradek, Czech Republic.
| | - John E Butler
- Department of Microbiology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
4
|
Abstract
Porcine reproductive and respiratory disease syndrome (PRRS) is a viral pandemic that especially affects neonates within the “critical window” of immunological development. PRRS was recognized in 1987 and within a few years became pandemic causing an estimated yearly $600,000 economic loss in the USA with comparative losses in most other countries. The causative agent is a single-stranded, positive-sense enveloped arterivirus (PRRSV) that infects macrophages and plasmacytoid dendritic cells. Despite the discovery of PRRSV in 1991 and the publication of >2,000 articles, the control of PRRS is problematic. Despite the large volume of literature on this disease, the cellular and molecular mechanisms describing how PRRSV dysregulates the host immune system are poorly understood. We know that PRRSV suppresses innate immunity and causes abnormal B cell proliferation and repertoire development, often lymphopenia and thymic atrophy. The PRRSV genome is highly diverse, rapidly evolving but amenable to the generation of many mutants and chimeric viruses for experimental studies. PRRSV only replicates in swine which adds to the experimental difficulty since no inbred well-defined animal models are available. In this article, we summarize current knowledge and apply it toward developing a series of provocative and testable hypotheses to explain how PRRSV immunomodulates the porcine immune system with the goal of adding new perspectives on this disease.
Collapse
|
5
|
Abstract
The mammary gland (MG) lacks a mucosa but is part of the mucosal immune system because of its role in passive mucosal immunity. The MG is not an inductive site for mucosal immunity. Rather, synthesis of immunoglobulin (Ig)A by plasma cells stimulated at distal inductive sites dominate in the milk of rodents, humans, and swine whereas IgG1 derived from serum predominates in ruminants. Despite the considerable biodiversity in the role of the MG, IgG passively transfers the maternal systemic immunological experience whereas IgA transfers the mucosal immunological experience. Although passive antibodies are protective, they and other lacteal constituents can be immunoregulatory. Immune protection of the MG largely depends on the innate immune system; the monocytes–macrophages group together with intraepithelial lymphocytes is dominant in the healthy gland. An increase in somatic cells (neutrophils) and various interleukins signal infection (mastitis) and a local immune response in the MG. The major role of the MG to mucosal immunity is the passive immunity supplied to the suckling neonate.
Collapse
|
6
|
Butler J. Collection, Handling, and Analysis of Specimens for Studies of Mucosal Immunity in Animals of Veterinary Importance. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.15003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Muraoka J, Ozawa T, Enomoto Y, Kiyose N, Imamura A, Arima K, Nakayama H, Ito Y. Selection and characterization of human serum albumin-specific porcine scFv antibodies using a phage display library. Monoclon Antib Immunodiagn Immunother 2014; 33:42-8. [PMID: 24555936 DOI: 10.1089/mab.2013.0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A new single-chain variable fragment (scFv) antibody library was generated and human serum albumin (HSA)-specific clones were characterized to investigate the usefulness of porcine antibodies. Phage libraries were developed from pigs immunized with the model antigen HSA. The library size was 1.5 × 10(7) for kappa (VL) and 1.4 × 10(7) for lambda fragments. Eight HSA-specific clones from the kappa library and one clone from the lambda library were isolated using affinity selection. The binding specificity of these clones was confirmed using a phage enzyme-linked immunosorbent assay (ELISA). The scFvs were expressed in Escherichia coli and purified from the periplasm fraction for further investigation. Based on the results of ELISA and Western blot analysis, four scFv clones with high activity and high yield were selected and purified. The purified scFvs from four of the nine clones exhibited an approximate KD of 10(-8) M. This is the first report describing isolation of HSA-specific porcine scFv antibodies from an antibody phage library and characterization of their binding properties.
Collapse
Affiliation(s)
- Junko Muraoka
- Graduate School of Science and Engineering, Kagoshima University , Kagoshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Battista JM, Tallmadge RL, Stokol T, Felippe MJB. Hematopoiesis in the equine fetal liver suggests immune preparedness. Immunogenetics 2014; 66:635-49. [PMID: 25179685 PMCID: PMC4198492 DOI: 10.1007/s00251-014-0799-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/19/2014] [Indexed: 01/26/2023]
Abstract
We investigated how the equine fetus prepares its pre-immune humoral repertoire for an imminent exposure to pathogens in the neonatal period, particularly how the primary hematopoietic organs are equipped to support B cell hematopoiesis and immunoglobulin (Ig) diversity. We demonstrated that the liver and the bone marrow at approximately 100 days of gestation (DG) are active sites of hematopoiesis based on the expression of signature messenger RNA (mRNA) (c-KIT, CD34, IL7R, CXCL12, IRF8, PU.1, PAX5, NOTCH1, GATA1, CEBPA) and protein markers (CD34, CD19, IgM, CD3, CD4, CD5, CD8, CD11b, CD172A) of hematopoietic development and leukocyte differentiation molecules, respectively. To verify Ig diversity achieved during the production of B cells, V(D)J segments were sequenced in primary lymphoid organs of the equine fetus and adult horse, revealing that similar heavy chain VDJ segments and CDR3 lengths were most frequently used independent of life stage. In contrast, different lambda light chain segments were predominant in equine fetal compared to adult stage, and surprisingly, the fetus had less restricted use of variable gene segments to construct the lambda chain. Fetal Igs also contained elements of sequence diversity, albeit to a smaller degree than that of the adult horse. Our data suggest that the B cells produced in the liver and bone marrow of the equine fetus generate a wide repertoire of pre-immune Igs for protection, and the more diverse use of different lambda variable gene segments in fetal life may provide the neonate an opportunity to respond to a wider range of antigens at birth.
Collapse
Affiliation(s)
- JM Battista
- Equine Immunology Lab, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA,
| | - RL Tallmadge
- Equine Immunology Lab, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA,
| | - T Stokol
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA,
| | - MJB Felippe
- Equine Immunology Lab, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
9
|
Mair KH, Sedlak C, Käser T, Pasternak A, Levast B, Gerner W, Saalmüller A, Summerfield A, Gerdts V, Wilson HL, Meurens F. The porcine innate immune system: an update. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:321-43. [PMID: 24709051 PMCID: PMC7103209 DOI: 10.1016/j.dci.2014.03.022] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 05/21/2023]
Abstract
Over the last few years, we have seen an increasing interest and demand for pigs in biomedical research. Domestic pigs (Sus scrofa domesticus) are closely related to humans in terms of their anatomy, genetics, and physiology, and often are the model of choice for the assessment of novel vaccines and therapeutics in a preclinical stage. However, the pig as a model has much more to offer, and can serve as a model for many biomedical applications including aging research, medical imaging, and pharmaceutical studies to name a few. In this review, we will provide an overview of the innate immune system in pigs, describe its anatomical and physiological key features, and discuss the key players involved. In particular, we compare the porcine innate immune system to that of humans, and emphasize on the importance of the pig as model for human disease.
Collapse
Affiliation(s)
- K H Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - C Sedlak
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - T Käser
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - A Pasternak
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - B Levast
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - W Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - A Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - A Summerfield
- Institute of Virology and Immunoprophylaxis (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
| | - V Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - H L Wilson
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - F Meurens
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
10
|
Butler J, Wertz N, Sun X. Antibody repertoire development in fetal and neonatal piglets. XIV. Highly restricted IGKV gene usage parallels the pattern seen with IGLV and IGHV. Mol Immunol 2013; 55:329-36. [DOI: 10.1016/j.molimm.2013.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/04/2013] [Accepted: 03/13/2013] [Indexed: 01/17/2023]
|
11
|
Tallmadge RL, Tseng CT, King RA, Felippe MJB. Developmental progression of equine immunoglobulin heavy chain variable region diversity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:33-43. [PMID: 23567345 PMCID: PMC3672396 DOI: 10.1016/j.dci.2013.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
Humoral immunity is a critical component of the immune system that is established during fetal life and expands upon exposure to pathogens. The extensive humoral immune response repertoire is generated in large part via immunoglobulin (Ig) heavy chain variable region diversity. The horse is a useful model to study the development of humoral diversity because the placenta does not transfer maternal antibodies; therefore, Igs detected in the fetus and pre-suckle neonate were generated in utero. The goal of this study was to compare the equine fetal Ig VDJ repertoire to that of neonatal, foal, and adult horse stages of life. We found similar profiles of IGHV, IGHD, and IGHJ gene usage throughout life, including predominant usage of IGHV2S3, IGHD18S1, and IGHJ1S5. CDR3H lengths were also comparable throughout life. Unexpectedly, Ig sequence diversity significantly increased between the fetal and neonatal age, and, as expected, between the foal and adult age.
Collapse
Affiliation(s)
- Rebecca L Tallmadge
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States.
| | | | | | | |
Collapse
|
12
|
Butler JE, Sinkora M. The enigma of the lower gut-associated lymphoid tissue (GALT). J Leukoc Biol 2013; 94:259-70. [PMID: 23695307 DOI: 10.1189/jlb.0313120] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Artiodactyls possess GALT that appears in fetal life and is located at the extreme end of the ileum. These IPP contain mostly B cells and involute early in postnatal life. Rabbits have a similarly located lymphoid organ, called the sacculus rotundus. Studies in sheep and rabbits have led to the concept that the lower hindgut GALT represents primary lymphoid tissue for B cells and is necessary for normal B cell development, analogous to the bursa of Fabricius. This review traces the history of the observations and theories that have led to the existing concept concerning the role of lower GALT. We then review recent data from piglets with resected IPP that challenges the concept that the IPP is primary B cell lymphoid tissue and that artiodactyls and rabbits are members of the GALT group in the same context as gallinaceous birds. Eliminating the IPP as the primary lymphoid tissue for B cells leads to the hypothesis that the IPP acts as first-responder mucosal lymphoid tissue.
Collapse
Affiliation(s)
- John E Butler
- Institute of Microbiology AS CR, v.v.i., Doly 183, 54922 Novy Hradek, Czech Republic.
| | | |
Collapse
|
13
|
Wertz N, Vazquez J, Wells K, Sun J, Butler JE. Antibody repertoire development in fetal and neonatal piglets. XII. Three IGLV genes comprise 70% of the pre-immune repertoire and there is little junctional diversity. Mol Immunol 2013; 55:319-28. [PMID: 23570908 DOI: 10.1016/j.molimm.2013.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/04/2013] [Accepted: 03/13/2013] [Indexed: 01/17/2023]
Abstract
We characterized 239 lambda rearrangements from fetal and germfree (GF) piglets to: (1) determine if transcripts recovered from the earliest sites of B cell lymphogenesis were unique (2) determine what proportion of the genome is used to form the pre-immune repertoire (3) estimate the degree of somatic hypermutation and junctional diversity during ontogeny and (4) test whether piglets maintained germfree in isolators (GF piglets) have a more diversified repertoire than fetal piglets. We show that all expressed lambda genes belong to the IGLV3 and IGLV8 families and only IGLJ2 and IGLJ3 were expressed and used equally throughout fetal and neonatal life. Only genes of the IGLV8 family were used in yolk sac and fetal liver and in these tissues, IGLV8-10 comprised >50%. However, the IGLV8 genes recovered at these early sites of B cell lymphogenesis were recovered at all stages of development. Thus, no unique lambda rearrangement was recovered at the first sites of B cell development. The frequency of somatic hypermutation (SHM) in fetal piglets was ~5.9 per Kb equivalent, mutation were concentrated in CDR regions and did not increase in GF piglets. The average CDR3 length was 30 nt ± 2.7 and did not change in GF piglets. Similar to the heavy chain pre-immune repertoire in this species, three IGLV genes account for ~70% of the repertoire. Unlike the heavy chain repertoire, junctional diversity was very limited.
Collapse
Affiliation(s)
- Nancy Wertz
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
14
|
Butler JE, Sun X, Wertz N, Vincent AL, Zanella EL, Lager KM. Antibody repertoire development in fetal and neonatal piglets. XVI. Influenza stimulates adaptive immunity, class switch and diversification of the IgG repertoire encoded by downstream Cγ genes. Immunology 2013; 138:134-44. [PMID: 23320646 PMCID: PMC3575766 DOI: 10.1111/imm.12018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 09/27/2012] [Accepted: 10/02/2012] [Indexed: 12/15/2022] Open
Abstract
Infection of germ-free isolator piglets with swine influenza (S-FLU) that generates dsRNA during replication causes elevation of immunoglobulins in serum and bronchoalveolar lavage, a very weak response to trinitrophenyl conjugates but an immune response to S-FLU. The increased immunoglobulin levels result mainly from the polyclonal activation of B cells during the infection, but model antigen exposure may contribute. The 10-fold increase in local and serum IgG accompanies a 10-fold decrease in the transcription of IgG3 in the tracheal-bronchial lymph nodes and in the ileal Peyer's patches. Infection results in class switch recombination to downstream Cγ genes, which diversify their repertoire; both features are diagnostic of adaptive immunity. Meanwhile the repertoires of IgM and IgG3 remain undiversified suggesting that they encode innate, natural antibodies. Whereas IgG3 may play an initial protective role, antibodies encoded by downstream Cγ genes with diversified repertoires are predicted to be most important in long-term protection against S-FLU.
Collapse
Affiliation(s)
- John E Butler
- Department of Microbiology, Carver College of Medicine, Iowa City, IA 52240, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Sun X, Wertz N, Lager K, Sinkora M, Stepanova K, Tobin G, Butler JE. Antibody repertoire development in fetal and neonatal piglets. XXII. λ Rearrangement precedes κ rearrangement during B-cell lymphogenesis in swine. Immunology 2012; 137:149-59. [PMID: 22724577 PMCID: PMC3461396 DOI: 10.1111/j.1365-2567.2012.03615.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 01/01/2023] Open
Abstract
VDJ and VJ rearrangements, expression of RAG-1, Tdt and VpreB, and the presence of signal joint circles (SJC) were used to identify sites of B-cell lymphogenesis. VDJ, VλJλ but not VκJκ rearrangements or SJC were recovered from yolk sac (YS) at 20 days of gestation (DG) along with strong expression of VpreB and RAG-1 but weak Tdt expression. VλJλ rearrangements but not VκJκ rearrangements were recovered from fetal liver at 30-50 DG. SJC were pronounced in bone marrow at 95 DG where VκJκ rearrangements were first recovered. The VλJλ rearrangements recovered at 20-50 DG used some of the same Vλ and Jλ segments seen in older fetuses and adult animals. Hence the textbook paradigm for the order of light-chain rearrangement does not apply to swine. Consistent with weak Tdt expression in early sites of lymphogenesis, N-region additions in VDJ rearrangements were more frequent at 95 DG. Junctional diversity in VλJλ rearrangement was limited at all stages of development. There was little evidence for B-cell lymphogenesis in the ileal Peyer's patches. The widespread recovery of VpreB transcripts in whole, non-lymphoid tissue was unexpected as was its recovery from bone marrow and peripheral blood monocytes. Based on recovery of SJC, B-cell lymphogenesis continues for at least 5 weeks postpartum.
Collapse
Affiliation(s)
- Xiuzhu Sun
- Department of Microbiology and Interdisciplinary Immunology Program, University of Iowa College of Medicine, Iowa City, IA, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Butler JE, Wertz N. The porcine antibody repertoire: variations on the textbook theme. Front Immunol 2012; 3:153. [PMID: 22754553 PMCID: PMC3384076 DOI: 10.3389/fimmu.2012.00153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/24/2012] [Indexed: 11/13/2022] Open
Abstract
The genes encoding the heavy and light chains of swine antibodies are organized in the same manner as in other eutherian mammals. There are ∼30 VH genes, two functional DH genes and one functional JH gene, 14-60 Vκ genes, 5 Jκ segments, 12-13 functional Vλ genes, and two functional Jλ genes. The heavy chain constant regions encode the same repertoire of isotypes common to other eutherian mammals. The piglet models offers advantage over rodent models since the fetal repertoire develops without maternal influences and the precocial nature of their multiple offspring allows the experimenter to control the influences of environmental and maternal factors on repertoire development postnatally. B cell lymphogenesis in swine begins in the fetal yolk sac at 20 days of gestation (DG), moves to the fetal liver at 30 DG and eventually to the bone marrow which dominates until birth (114 DG) and to at least 5 weeks postpartum. There is no evidence that the ileal Peyers patches are a site of B cell lymphogenesis or are required for B cell maintenance. Unlike rodents and humans, light chain rearrangement begins first in the lambda locus; kappa rearrangements are not seen until late gestation. Dissimilar to lab rodents and more in the direction of the rabbit, swine utilize a small number of VH genes to form >90% of their pre-immune repertoire. Diversification in response to environmental antigen does not alter this pattern and is achieved by somatic hypermutation (SHM) of the same small number of VH genes. The situation for light chains is less well studied, but certain Vκ and Jκ and Vλ and Jλ are dominant in transcripts and in contrast to rearranged heavy chains, there is little junctional diversity, less SHM, and mutations are not concentrated in CDR regions. The transcribed and secreted pre-immune antibodies of the fetus include mainly IgM, IgA, and IgG3; this last isotype may provide a type of first responder mucosal immunity. Development of functional adaptive immunity is dependent on bacterial MAMPs or MAMPs provided by viral infections, indicating the importance of innate immunity for development of adaptive immunity. The structural analysis of Ig genes of this species indicate that especially the VH and Cγ gene are the result of tandem gene duplication in the context of genomic gene conversion. Since only a few of these duplicated VH genes substantially contribute to the antibody repertoire, polygeny may be a vestige from a time before somatic processes became prominently evolved to generate the antibody repertoire. In swine we believe such duplications within the genome have very limited functional significance and their occurrence is therefore overrated.
Collapse
Affiliation(s)
- John E Butler
- Department of Microbiology, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | | |
Collapse
|
17
|
Antibody repertoire development in fetal and neonatal piglets. XXIII: fetal piglets infected with a vaccine strain of PRRS Virus display the same immune dysregulation seen in isolator piglets. Vaccine 2012; 30:3646-52. [PMID: 22465749 DOI: 10.1016/j.vaccine.2012.03.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/28/2012] [Accepted: 03/16/2012] [Indexed: 01/22/2023]
Abstract
The Ig levels and antibody repertoire diversification in fetal piglets infected with an attenuated Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) were measured. Serum Ig levels were greatly elevated in PRRSV-infected fetuses; IgG was elevated >50-fold, IgM>5-15-fold and IgA>2-fold compared to control fetuses. Their IgM to IgG to IgA profile was the same as that in isolator piglets infected for the same period with wild-type PRRSV. Fetal animals showed less repertoire diversification than even isolator piglets that were maintained germfree (GF) while the repertoire diversification index (RDI) for PRRSV-infected isolator piglets was 10-fold higher and comparable to littermates infected with swine influenza (S-FLU). However, when expressed as the RDI:Ig ratio, infected fetuses appeared 10-fold less capable of repertoire diversification than uninfected littermates and GF isolator piglets. Compared to S-FLU isolator piglets that resolve the infection, the RDI:Ig of PRRSV-infected isolator piglets was 100-fold lower. Overall, infection of fetuses with an attenuated virus shows the same immune dysregulation seen postnatally in wild type infected isolator piglets, indicating that: (a) attenuation did not alter the ability of the virus to cause dysregulation and (b) the isolator infectious model reflects the fetal disease.
Collapse
|